无机高分子复合混凝剂PPFS的制备、表征及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝工艺是水处理中最重要的处理工艺之一。混凝工艺的核心技术是混凝剂的开发,混凝剂的优劣是决定混凝效果甚至整个水处理效果的关键因素之一。混凝剂可与水溶液中的溶质、胶体和悬浮物颗粒产生混状物沉淀,从而达到去除水体中各种污染物质的目的。开发新型高效优质混凝剂产品以提高水处理效果、降低成本、拓展应用领域,是水处理工作中的一项重要任务。目前,一方面是水资源的不断减少,另一方面是污水和废水的排放规模不断加大种类不断增加,水中污染物的成分日趋复杂,对环境的危害日益加重。因此,水处理的难度进一步加大,特别是传统的混凝剂已不能满足现有混凝技术的需要,新型混凝剂的研究和开发已成为当今世界各国的重要研究课题之一。
     聚磷硫酸铁(简称PPFS)是基于磷酸根对聚合硫酸铁(简称PFS)的强增聚作用,在PFS制备过程中引入了适量的磷酸盐,使得PPFS中产生了新一类高电荷的带磷酸根的多核中间络合物。与传统的无机混凝剂相比较,它具有絮体形成快、颗粒密度大、沉降速度快、对TP去除率高等特点,且具有安全无害、无二次污染、高效低耗、成本低廉、附加值高、对水温和pH值适应范围广等优点,可部分取代价格昂贵的有机高分子混凝剂。PPFS是目前有极好的发展和应用前景的铁系物结高分子混凝剂之一,可以用于各种工业废水、生活污水及饮用水的处理工艺中。论文的主要研究内容和结论如下:
     (1)PPFS制备条件的单因素分析表明,制备温度为80℃、制备时间为60min时有利于PPFS的制备,nPO_4~(3-)/nFe~(3+)、B分别为20%时,产品稳定且混凝效果最好。在此基础上,选择了nPO_4~(3-)/nFe~(3+)、B和制备温度进行了正交试验,结果表明在nPO_4~(3-)/nFe~(3+)为0.3、B为30%、制备温度为80℃条件下制备的PPFS对模拟废水的去除效果最好。两次试验的B值有所不同,这表明制备因素之间有一定的交互作用。
     (2)考察了制备的PPFS的稳定性。与PFS相比,由于PPFS中引入了PO_4~(3-),从而改变了Fe的聚合形态,并削弱了Fe的水解能力,使得PPFS更加稳定。
     (3)研究了PPFS水解过程中的优势形态,并考察了引入PO_4~(3-)后,PPFS在结构、组成成分及表面微观形貌上的变化。根据逐时络合比色法,在PPFS中铁的主要形态是Fea和Fec,Feb为前两者的过渡平衡态,且含量很少。发挥好的混凝效果主要是以高铁聚合物存在的Fec形态。通过紫外吸收光谱分析,得出聚磷硫酸铁混凝剂中铁的形态主要主要以Fe_5(OH)_9~(6+)、Fe_5(OH)_8~(7+)、Fe_5(OH)_7~(8+)、Fe_6(OH)_(12)~(6+)、Fe_7(OH)_(12)~(9+)和Fe_7(OH)_(11_~(10+)等形式存在。与PFS的紫外光谱吸收相比,PPFS在450nm处产生一新的吸收峰,这说明磷酸根的引入改变了PFS中铁的形态,可能生成了[Fe_x (OH)_y]_2H_2PO_4~((6x-2y-1)+)、[Fe_x (OH)_y]_2HPO_4~((3x-y-1)+)、[Fe_x (OH)_y]_2PO_4~((6x-2y-3)+)等大分子络合物,其具体结构还需进一步研究。并且nPO_4~(3-)/nFe~(3+)为0.3,B为0.2时,PPFS的高聚态浓度较大。通过红外光谱分析可知,PPFS在3400cm-1和1640cm-1处的2个特征吸收峰峰形基本相似,只是峰的面积和波数有所变化,可认为是分子中的-OH的伸缩振动和结合水分子H-O-H的弯曲振动,而在波数为900~1200cm-1峰形的变化比较明显,这些峰可能为Fe-OH-Fe或Fe-PO_4的振动,这说明聚合硫酸铁和磷酸根复合后,PFS中的水解络合铁离子与共存的磷酸根发生了反应生成Fe-PO_4聚合物。通过X-射线衍射分析可知,PPFS中主要Fe4.67(SO_4)6(OH)_2·20H_2O、FeHSO_4·4H_2O、Na_2HPO_4·2H_2O等物质存在。XRD分析表明由于PO_4~(3-)的加入,形成新的磷铁聚合物物相,说明PPFS是在PFS基础上制备的一种新的无机高分子复合混凝剂。SEM表征分析表明,PO_4~(3-)的加入使得在PFS表面形成了大量的聚合物支链,这赋予PPFS优异的架桥作用,增强了其混凝性能。
     (4)将PPFS实际应用至城镇生活污水的试验中,发现PPFS对SS、COD和TP,特别是TP,均有良好的去除作用。采用单因素试验方法,针对PPFS处理生活污水的主要影响因素加以分析,包括nPO_4~(3-)/nFe~(3+)、B和投加量。以生活污水中COD、TP的去除率为考察对象,采用Box-Behnken中心组合试验和响应面分析方法对主要影响因素加以优化,得到了二次响应曲面模型以及优化的水平值。结果表明PPFS混凝去除COD的最优因素条件为:nPO_4~(3-)/nFe~(3+)为0.28,B为18.76%,投加量为77.57 mg/L,在此条件下,COD去除率平均值为75.98%。对TP的最适因素条件为:nPO_4~(3-)/nFe~(3+)为0.36,B为18.26%,投加量为71.37 mg/L,在此条件下,TP去除率平均值为93.64%。通过回归分析,COD和TP模型拟合性良好,但COD的相关性低于TP,这主要是由于混凝实验和COD测定,特别是低浓度的COD值测定时产生的误差所致。此外,还与PFS处理城镇生活污水相比的效果进行的对比,结果表明PPFS的除浊、COD、TP效果好于PFS,且污水处理后pH值也较稳定。PPFS的用于生活污水处理时,存在电中和、吸附架桥、网捕等多种的作用,但絮凝效果最好时以吸附架桥作用为主。
     (5)选用TOC的去除率和在紫外波长为254nm处的吸光度作为有机物去除的总体指标,选用6种邻苯二甲酸酯类化合物以及15种多环芳烃类化合物为细化指标,考察了PPFS对嘉陵江水的实际去除效果。从TOC和UV254的测定结果看,PPFS对嘉陵江水中的有机物有一定的去除作用。通过对PAEs和PAHs类物质的检测结果来看,PPFS对这两类有机物的去除效果较为显著。通过响应面法对影响混凝效果的因素进行优化,得到了二次响应曲面模型以及优化的水平值。得到的TOC二次响应曲面模型拟合性好, PPFS混凝去除TOC的优化因素条件为: nPO_4~(3-)/nFe~(3+)为0.30,B为28.54%,投加量为16.35mg/L,得到TOC的去除率平均值为21.71%。。PPFS的用于嘉陵江水的处理时,絮凝效果最好时以吸附架桥作用为主。
Currently, flocculation has already become an inportent part of water treatment process. The core technology of flocculation process was the development of flocculants. It was the characteristics of flocculant which determined not only the flocculation effect but also the overall water treatment effect. The floc and precipitation produced by interaction between flocculant and colloidal particles and suspended matter contained in aqueous solutes were the key to remove various contaminants in water through flocculation. Development of new high quality flocculant was an important task of water treatment to improve the coagulant effect in water treatment, to reduce costs and to explore new application area. At present, one of water environment status was the continuous decrease of water resources, two issues were significant in water science, one of which was the limited water supply, and the other of which was the problem of wastewater. To be specific, the volume of wastewater was increasing dramatically with more and more kinds of pollutants and increasing complexity of the composition. Therefore, the difficulty of further treatment was increasing. Because the traditional flocculant could not meet the requirements of flocculation technology any longer, new research and development of flocculants has already been one of the important research topics.
     Because PO_4~(3-) played an important role to increased accumulation of Polymeric Ferric Sulfate (referred to as PFS), a certain quantity of PO_4~(3-) was introduced into the preparation of PFS and the Polymeric Phosphate Ferric Sulfate (referred to PPFS) and a new type of multi-core highly charged intermediate complex was produced. Compared to traditional inorganic flocculants, it possessed such characteristics as faster floc formation, higher particle density, higher settlement rate and higher removal rate of TP. In addition, it had numerous advantages such as safety, no secondary pollution, high efficiency, low consumption, low cost, high added value, adaptation to a wide range temperature and pH value. It could be used to replace expensive organic polymer flocculant partially. Nowadays, PPFS is a kind of inorganic polymer iron flocculants which has excellent prospects for development and application, which could be used in the treatment of a variety of industrial wastewater, sewage and drinking water.
     The main contents and conclusions in this study were as following:
     (1) By one factor analysis of PPFS preparation conditions, it was indicated that the product was most stable and the effect of flocculation was the best when the preparation temperature was 80℃, preparation time was 60min and the molar ratio nPO_4~(3-)/nFe~(3+) was 0.3 and B was 20%. On this basis mentioned above, the orthogonal was carried out with nPO_4~(3-)/nFe~(3+), B and preparation temperature as the three factors. The results showed that the treatment effect was the best when nPO_4~(3-)/nFe~(3+) was 0.3, B was 30% and the preparation temperature was 80℃.The B value obtained from the two experiments were different, indicating that there were certain interactions between preparation factors.
     (2) Stability of the PPFS was studied. Compared with the PFS, due to the introduction of PO_4~(3-), the form of Fe in the aggregate was changed and the hydrolysis ability of Fe was weakened, which made PPFS more stable.
     (3) Advantagous form of the hydrolysis process of PPFS was studied, and the changes in the structure, composition and surface topography of PPFS after the introduction of PO_4~(3-) was investigated. Through timed spectrophotometry of Fe-ferron complexation, it was showed that the amount of Fea and Fec in Polymeric Phosphate Ferric Sulfate (PPFS) flocculants were the important factors in the three, while Feb was the transition states and the amount of Feb was small which had no significant effect. Play good flocculation mainly high polymer which exists with the forms of Fec. The Ultraviolet-visible spectrum showed that main forms of iron were Fe5(OH)96+、Fe5(OH)87+、Fe5(OH)78+、Fe6(OH)126+、Fe7(OH)129+和Fe7(OH)1110+ in PPFS. Compared with the UV absorption spectra of PFS, a new absorption peak of PPFS generated at the 450nm, indicating that the introduction of phosphate changed the form of iron in PFS, [Fex (OH)y]2H2PO_4(6x-2y-1)+、[Fex (OH)y]2HPO_4(3x-y-1)+、[Fe_x (OH)_y]_2PO_4~((6x-2y-3)+) and other macromolecular complexes might be generated, the specific structure of which should be studied furtherly. The high-polymeric of PPFS was more when nPO_4~(3-)/nFe~(3+) was 0.3 and B * was 0.2. Infrared spectra showed that PPFS had similar characteristic absorption peak at 3400cm-1 and 1640cm-1, but peak area and the wave number were changed, which could be considered as elements of the-OH stretching vibration and the combination of H-OH bending vibration of water molecules. The peak shape changed more obviously in the wave number of 900 ~ 1200cm-1 and these peaks might be Fe-OH-Fe or Fe-PO_4 vibration, indicating that the polymer reaction occurred between the coexistence of iron ions in PFS and PO_4~(3-), and Fe-PO_4 was formed after PFS being combined with PO_4~(3-) . X-ray diffraction analysis showed that the forms of iron in PPFS were mainly Fe4.67(SO_4)6(OH)2·20H_2O, FeHSO_4·4H_2O, Na_2HPO_4·2H_2O and so on. XRD analysis showed that a new phase of phosphate iron polymer was formed after the introduction of PO_4~(3-). It was also indicated that PPFS was a new inorganic polymer composite flocculant based on the synthesis of PFS. SEM characterization showed that a large number of side chains on the surface of PFS polymer were formed because of the introduction of PO_4~(3-), which gave excellent role of bridging to PPFS and enhanced flocculation performance dramatically.
     (4) Using PPFS in the treatment of urban domestic wastewater and it was found that it showed good removal effect for SS, COD and TP, among which, removal of TP was the most significant. The main influence factors for treatment of urban sewage by PPFS based on one-factor experiments with removal rate of COD and TP in sewage as the measurable indicators, were nPO_4~(3-)/nFe~(3+)、Band dosage. Through Box-Behnken experiment design and Response Surface Analysis (RSA), optimization grouping of these 3 main influence factors was realized; a quadratic response surface model and optimum level values were obtained. It was found that the optimization grouping of the main influence factors for the removal of COD were as following: nPO_4~(3-)/nFe~(3+) being 0.28,B being 18.76% and dosage being 77.57mg/L, and under the optimum conditions, the removal rate of COD was 75.98%. The optimization grouping of the main influence factors for the removal of TP were as following: nPO_4~(3-)/nFe~(3+) being 0.36,B being 18.26% and dosage being 7.37mg/L, and under the optimum conditions, the removal rate of TP was 93.64%.A regression analysis was utilized to evaluate the fitness of the model. However, the relevance of COD was lower than that of TP, which was mainly due to the error of flocculation experiments and COD determination, especially in low concentrations of COD. In addition, comparing the effects of urban sewage treatment by PFS and PPFS, the results showed that the removal effects of turbidity, COD and TP by PPFS were better than that by PFS, and the pH value of the former was also more stable. Flocculation was realized by the effects of adsorption and bridging comprehensive role when treating sewage by PPFS.
     (5) Through experiments of treating micro-polluted water by PPFS, taking TOC removal and UV absorbance at a wavelength of 254nm as general indicators of organic matter removal, and six kinds of PAEs and 15 kinds of PAHs compounds as refinement indicators, application of PPFS was studied thoroughly.. The results of TOC removal and UV254 showed it had a certain remove effect in organic compounds of micro-polluted water by PPFS. The results of PAEs and PAHs showed that there was a more significant removal effect of these two types of organics by PPFS. The main influence factors for the treatment of micro-polluted water by PPFS based on one-factor experiments with removal rate of TOC in water as the measurable indicator were nPO_4~(3-)/nFe~(3+)、Band dosage. Through Box-Behnken experiment design and Response Surface Analysis (RSA), optimization grouping of these 3 main influence factors was realized; a quadratic response surface model and optimum level values were obtained. It was found that the optimization grouping of the main influence factors to TOC were as following: nPO_4~(3-)/nFe~(3+) being 0.30,B being 28.54% and dosage being 16.35mg/L, and under the optimum conditions, the removal rate of TOC was 21.71%.A regression analysis was utilized to evaluate the fitness of the model. Flocculation was realized by the effects of adsorption and bridging comprehensive role when treating sewage by PPFS.
引文
[1]甘萍.浅析我国水资源污染状况及处理技术[J].江西化工,2006,4:82~83.
    [2]高廷耀,陈洪斌,夏四清,周增炎.我国水污染控制的思考[J].给水排水,2006,32(5):9~13.
    [3]李丽华,郭黄金.我国流域水污染研究综述[J].中国环境管理干部学院学报,2008,18(2):73~76.
    [4]夏军,刘孟雨,贾绍凤,宋献方,罗毅,张士峰.华北地区水资源及水安全问题的思考与研究[J].自然资源学报,2004,19(5):550~560.
    [5]水体污染控制与治理重大专项领导小组.国家科技重大专项:水体污染控制与治理实施方案.2008,12:1~3.
    [6]水利部.2007年中国水资源公报.2008,5~7.
    [7]李继清,张玉山,李安强,纪昌明.水资源系统安全研究现状及发展趋势[J].中国水利,2007,5:11~13.
    [8]邱志群,舒为群,曹佳.我国水中有机物及部分持久性有机物污染现状[J].癌变畸变突变,2007,19(3):188~193.
    [9] Zheng Huaili, Sun Xiuping, He Qiang, Liang Kun, Zhang Peng. Synthesis and trapping properties of dithiocarbamate macromolecule heavy-metal flocculants[J].Journal of Applied Polymer Science ,2008,110(4):2464~2466.
    [10] Yang Fang, Li Gang), He Yangang, Ren FengXia, Wang Guixiang.Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer[J]. Carbohydrate Polymers,2009,1(78):60~69.
    [11] Beltrán-Heredia J, Sanchez Martin J. Municipal wastewater treatment by modeled tannin occupant agent[J].Desalination,2009,1(249):353~358.
    [12] Wang Yuanfang, Gao Baoyu, Yue Qinyan, Zhan Xiao, Si Xiaohui, Li Chunxiao. Flocculation performance of epichlorohydrin dimethylamine polyamine in treating dyeing wastewater[J]. Journal of Environmental Management ,2009,2(91):423~431.
    [13] Liu HL,Cheng FQ,Wang DS. Interaction of ozone and organic matterin coagulation with inorgan occulant-PACl: Role of organic components[J].Desalination,2009,2,(249):596~601.
    [14] Anastasakis k,Kalderis D,Diamadopoulos E. Flocculation behavior of mallow and okra mucilagein treating wastewater[J].Desalination,2009,2(249):786~791.
    [15] Pal S,Ghosh S, Sen G, Jha U, Singh RP. Cationic tamarind kernel polysaccharide(CatTKP):Anovel polymeric . occulant for the treatment of textile industry wastewater[J].International Journal of Biological Macromolecules,2009,5(45):518~523.
    [16] Simon S,Pairo B,Villai M, D'Abzac P, Van Hullebusch E, Lens P, Guibaud G. Evaluation of size exclusion chromatography (SEC) for the characterization extracellular polymeric substances(EPS) in anaerobic granular sludges[J]. Bioresource Technology,2009,24(100):6258~6268.
    [17]刘宗源.饮用水处理中强化混凝去除有机物的试验研究[D].重庆:重庆大学,2002:10~11.
    [18]林喜燕,于瑞莲,胡恭任.环境激素对水生动物干扰效应及机制研究进展[J].环境科学与技术,2009,9(32):98~104.
    [19]郭志顺.三峡库区重庆段典型持久性有机污染物的污染状况分析[D].重庆:重庆大学,2006:42~43.
    [20]熊毅.长江三峡库区城市给水厂典型持久性有机污染物研究[D].重庆:重庆大学,2005:64~65.
    [21]宋力.混凝剂在水处理中的应用与展望[J].工业水处理,2010,36(6):4~7.
    [22] Donald RF Harleman. An innovative approach to urban wastewater treatment in the developing world[J].Water 21,2001,(6):44~48.
    [23] Denny S Parker.The future of chemically enhanced primary treatment: evolutiong not revolution[J].Water 21,2001,(6):49~53.
    [24]栾兆坤,张锦华,孔凡铭.韩德来适于城镇污水处理的强化混凝工艺[J].中国给水排水,2002,18(1):30~33.
    [25]朱宝霞,李久义,栾兆坤.城市污水混凝强化一级处理的机理探讨[J].给水排水,2001,27(7):10~14.
    [26]刘华超,王龙.混凝法强化城市污水一级处理技术的应用研究[J].环境科学与技术,2004,27:97~99.
    [27]邱慎初.化学强化一级处理(CEPT)技术[J].中国给水排水,2000,16(1):26~29.
    [28] Tiehm A,Herwig V,Neis U.Particle size analysis for improved sedimentation and filtration in wastewater treatment[J].Wat Sci Tech,1999,39(8):99~106.
    [29] Odegaard H,Karlsson I.Chemical wastewater treatment-value for money.In:Chemical Water and Wastewater Treat-ment(Ⅲ)[M].Berlin: Springer Verlag, 1994.
    [30] Odegaard H, SkrovsethAF. An evaluation of performance and process stability of different processes for small wastewater treatment plants[J].Wat Sci Tech,1995,35(6):119~127.
    [31]栾兆坤,汤鸿霄.我国无机高分子混凝剂产业现状与规划[J].工业水处理, 2000,16 (11): 1~6.
    [32]王曙光,栾兆坤,宫小燕.CEPT技术处理污染河水的研究[J].中国给水排水,2001,17(4):16~18.
    [33]李帅,边炳鑫,周正.磁场对活性污泥脱水性能的影响[J].环境科学研究,2007,20 (3):119~123.
    [34]李颖,叶芬霞.化学解耦联剂对活性污泥产率的控制作用[J].环境科学研究,2006,19(3):88~90.
    [35]吴幼权,郑怀礼,张鹏,焦世珺,杨铀.复合混凝剂CAM-CPAM的制备及污泥脱水性能研究.环境科学研究,2009,22(5):535~539.
    [36] Zhang Shao-hui,Zheng Ping,Hua Yumei.Nitrogen removal from sludge dewatering effluent through anaerobic ammonia oxidation process[J].J Environ Sci,2005,17(3):1030-1033.
    [37]郑怀礼,李凌春,蔚阳,唐雪,杨铀,张胜涛.阳离子聚丙烯酰胺污泥脱水混凝剂制备合成研究[J].化工进展,2008,27(4):564~568.
    [38]高健磊,闫怡新,吴建平,万耀强.城市污水处理厂污泥脱水性能研究[J] .环境科学与技术,2008,31(2):108~111,131.
    [39]车小琼,孙庆申,赵凯.甲壳素和壳聚糖作为天然生物高分子材料的研究进展[J].高分子通报,2008(2):45~49.
    [40]李增新,王国明,王彤,孟韵.凹凸棒石负载壳聚糖吸附废水中Cr(Ⅵ)的研究[J].安全与环境学报,2008,8(3):52~55.
    [41] Shuichi A., Hiraku O.,Yoshiharu M.Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds[J].International Journal of Pharmaceutics, 2007, 330:138-145.
    [42] Ai Hui, Wang Furong, Yang Qiusheng,Zhu Fen, Lei, Chaoliang. Preparation and biological activities of chitosan from the larvae of housefly,Musca domestica[J].Carbohydrate Polymers, 2008, 72: 419 ~ 423.
    [43] Liu Jianghua, Wang Qin, Wang Aiqin. Synthesis and characterization of chitosan-g-poly (acrylic acid)/sodium humate superabsorbent [J].Carbohydrate Polymers, 2007, 70:166~173.
    [44] Hu Changlai, Li Ben, Guo Ruili, Wu Hong, Jiang Zhongyi.Pervaporation performance of chitosan-poly (acrylic acid) polyelectrolyte complex membranes for dehydration of ethylene glycol aqueous solution[J].Separation and Purification Technology,2007,55:327-334.
    [45] Northcott K.A., Snape I, Scales P.J., Scales, P.J.. Dewatering behaviour of water treatment sludges associated with contaminated site remediation in Antarctica[J].Chemical Engineering Science,2005,60:6835-6843.
    [46] Roussy J, Van Vooren M, Dempsey BA, Guibal E.Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions [J].Water Res, 2005, 39(14): 3247 ~ 3258.
    [47] Maria Tomaszewska, Sylwia Mozia, Antoni W. Morawski. Removal of organic matter by coagulation enhanced with adsorption on PAC[J].Desalination,2004,6(1):79~87.
    [48] Nasser A, Weinberg D, Dinoor N. Removal of hepatitis a virus (HAV) poliovirus and MS2 coliphage by coagulation and highrate filtration[J]. Wat. Sci.Tech, 1995, 31(5-6): 63~68.
    [49]张艮林.多核复合混凝剂及其组合技术的理论与应用研究[D].昆明:昆明理工大学, 2006:1~9.
    [50]刘立华.新型聚合铁基无机-有机复合混凝剂性能的研究[D].长沙:中南大学博士学位论文, 2004:17~18.
    [51]田宝珍,汤鸿霄.含磷酸盐的三氯化铁水解溶液的化学特征.环境化学,1995,14(4): 229~337.
    [52]陈平.混凝剂的开发进展[J].污染防治技术,2009,19(1):20~22.
    [53] Cohen J.M., Hannah S.A.In the 3rd water quality and treatment(Eds:Hill M.),NewYOrk,1971,66~122.
    [54]张光华主编.水处理化学品制备与应用[M].中国石化出版社,2003.
    [55]袁宗宣,郑怀礼,舒型武.混凝科学与技术的进展[J].重庆大学学报, 2001(2):143-147.
    [56]贺晓唯,毕诗文,朱龙,门贺,文卫华,赵美娟.可溶性聚硅酸铝铁的制备及其在废水处理中的应用[J].分子科学学报,2006,22(3):200-205.
    [57]郑怀礼,刘克万.无机高分子复合混凝剂的研究进展及发展趋势[J].水处理技术,2004,33(6):315~18.
    [58]马忠英.我国混凝剂聚合硫酸铁生产技术发展现状[J].内蒙古石油化工,2007,8:300~302.
    [59]程金平,郑敏,张兰英,刘松,王海晶,郑松志,达布雷.微生物混凝活性研究[J].世界地质,2000,19(1):98~100.
    [60]李琼,肖锦,肖晶.接枝共聚型天然高分子混凝剂的性能及应用研究[J].工业水处理1997,17(4):27~29.
    [61]王杰,肖锦,詹怀宇.两性高分子混凝剂的制备及其应用研究[J].环境化学2001,20(2):185~190.
    [62]王杰,肖锦,詹怀宇.两性高分子混凝剂对造纸混合污泥的混凝脱水性能的研究[J].环境污染治理技术与设备,2001,2(1):34~37.
    [63]周国平,罗士平,孙英.接枝羧基淀粉的制备与应用[J].江苏石油化工学院学报,2002,14(1):13~15.
    [64]张世军,李思健.芋艿淀粉丙烯酰胺接枝共聚物的合成及其对酒糟废水的处理[J].环境保护,2000,5:45~46.
    [65]袁毅桦,赖兴华,陈纯馨,黄淑贤.壳聚糖对印染废水的混凝作用和脱色效果[J]..应用化学,2000,17(2):217~218.
    [66]陈津端,罗道成,刘能铸,王海桥.用改性壳聚糖对城市未达标排放污水进行再处理[J].湖南工程学院学报(自然科学版),2002,12(2):61~64.
    [67]冯玉杰,金永新,孙晓君,蔡伟民;岳国军.壳聚糖季铵盐处理玉米酒精清糟液的研究[J].环境污染与防治,2002,24(3):129~131.
    [68]张育新,康勇.混凝剂的研究现状及发展趋势[J].化工进展,2002,21(11):799~804.
    [69]张本兰.新型高效、无毒水处理剂-微生物混凝剂的开发与应用[J].工业水处理.1996,16(1):7~8.
    [70] D.D.ldcCollister .Toxicology of acrylamide.Toxicology and Applied Pharmacology[J]. 1964. 6: 172~181.
    [71]杨翠香,陈婉蓉.MTT法检侧丙烯酞胺对神经细胞的毒性作用[J].上海铁道大学学报.1998,19(1,2):8~10.
    [72]柴晓莉.微生物混凝产生菌的培养条件[J].环境污染与防治,2001,25(2):61-73.
    [73]吴涓,倪晓宇.生物混凝剂的混凝活性及失活动力学的研究[J].中国环境科学,2008,28(12):1088~1093.
    [74]何宁,李寅,陈坚,李清彪.生物混凝剂的最新研究进展及其应用[J].微生物学通报,2005,32(2):104~108.
    [75]马放,张惠文,李大鹏,魏利,侯宁.以稻草秸秆为底物制取复合型生物混凝剂的研究[J].中国环境科学,2009,29(2):196~200.
    [76]程金平,郑敏,张兰英.微生物混凝剂产生菌的筛选及产混凝剂的周期研究[J].环境科学与技术,2001,2:12~15.
    [77] Junji Nakamura. Modes of Flocculation of yeast cells with flocculants Produced by Aspergillums Sojae Ajtoo[J]. Agri Biol Chem,1976,40(8):1565~1571.
    [78]陶明煊,吕丽爽.微生物混凝剂应用现状[J].环境监测管理与技术,2005,17(2):14~15.
    [79]白京生.微生物混凝剂的研究发展及应用[J].天津化工,2005,19(3):12~14.
    [80] Wei JC, Gao BY, Yue QY Wang Y, Lu L. Performance and mechanism of polyferric-quaternary ammonium salt composite flocculants in treating high organic matter and high alkalinity surface water[J]. Journal of Hazardous Materials, 2009, 165 (1-3):789-795.
    [81] Joo D J, Shin W S, Choi J H, Choi S J, Kim M C, Han M H, Ha T W, Kim Y H. Decolonization of reactive dyes using inorganic coagulants and synthetic polymer[J]. Dyes and pigments, 2007, 73(1):59-64.
    [82] Moussas P A, Zouboulis A I. A study on the properties and coagulation behaviour of modified inorganic polymeric coagulant-Polyferric silicate sulphate[J]. Separation and purification technology, 2008, 63(2):475-483.
    [83] Masse, Lucie; Masse, Daniel I. The effect of environmental and process parameters on flocculation treatment of high dry matter swine manure with polymers[J]. Bioresour Technol, 2010, 101 (16): 6304~6308.
    [84] Noppakundilograt S, Nanakorn P, Sonjaipanich K, Seetapan N, Kiatkamjornwong S. Synthesis and Characterization of acrylamide based aluminum flocculant for turbidity reduction in wastewater[J]. Journal of Applied Polymer Science, 2009,114(4):2564~2575.
    [85] Yang Zhaohui, Huang Jing, Zeng Guangming, Ruan Min, Zhou Changsheng; Li Lu, Rong Zonggen. Optimization of flocculation conditions for kaolin suspension using the composite flocculant of MBFGA1 and PAC by response surface methodology[J]. Bioresour Technol 2009, 100(18): 4233~4239.
    [86]陆柱,蔡兰坤,陈中兴,黄光团.水处理剂[M].化学工业出版社.2002.
    [87]李伟英.“混凝”新释义及混凝技术[J].工业用水与废水,2001,32(2):39~42.
    [88]栾兆坤,李科,雷鹏举.微混凝-深床过滤理论与应用的研究.环境化学,1997,16(6):590.
    [89] Amirtharajah A, Asce M, Tuusler SL. Destabilization of particles by Turbulent Mixing[J]. J. Envir Engeg Div-ASCE, 1986, 112:1085~1092.
    [90] AWWA Coagulation Committee Report: Coagulation as An Integrated Water Treatment Process. J.Am Water Works Assoc,1989,81(10):72~74.
    [91]杨智宽,韦进宝.污染控制化学[M].武汉:武汉大学出版社,1998.
    [92]王绍文,姜安玺,孙喆.混凝动力学的涡旋理论探讨[J].中国给水排水(上,下),1991, 7(1):4,7(4):8.
    [93]方建勇,陈坚,胡毅,廖连招.台湾浅滩及其邻近海域沉降颗粒物及混凝体类型研究[J].热带海洋学报,2010,9(4):48~55.
    [94] Wiesner AD, Katz LE,Chen CC. The impact of ionic strength and background electrolyte on pH measurements in metal ion adsorption experiments [J]. J. Colloid Interface Sci. 2006, 301(1): 329~332.
    [95]汤鸿霄.无机高分子絮凝剂的几点新认识[J].工业水处理,1997,17(4):1~5.
    [96] Smith R W. Nonequilibrium systems in natural water chemistry [J].ACS, Advance in chemistries, 1971, 106:250~256.
    [97] Akitt J.W,Greenwood W.N.27Al NMR studies of acidic solutious of aluminum salt [J].Chem.soc,1969:803~807.
    [98] Iler R.K.The chemistry of silica[J].John Wiley&sons.Inc,1979:312~439.
    [99]郑怀礼,谢礼国,高旭,谭红芳,杨波,吉方英.以TEOS为硅源的聚硅硫酸铁制备与除藻性能[J].土木建筑与环境工程,2009,31(6)102~106.
    [99] Benschoten J.E.V, Edzawald K. Chemical Aspects of Coagulation Using Aluminum Salts[J].Water Resch,1990, 24(12):1519~1523.
    [100]汤鸿霄.无机高分子混凝剂的基础研究[J].环境化学,1990,9(3):1~10.
    [101]高宝玉,岳钦艳,王占生,汤鸿霄.PASC的形态分布及转化规律[J].环境化学,2000,19(1):1~7.
    [102] Jiang J.Q., Grahamn N.J.D. Observations of the Comparative Hydrolysis/Precipitation Behavior of Polyferric Sulphate and Ferric Sulphate[J].Wat.Res,1998,32(3):93~97.
    [103]王东升,汤鸿霄,奕兆坤.含硅酸盐水解Fe(Ⅲ)溶液的形态分析方法-Fe-Ferron与β-Silicomolybdate法相结合[J].环境化学,1998,17(3):225~230.
    [104]张雅景,高迎新,张昱,杨敏,王东升,杜翠凤.激光光散射技术用于Fenton反应中Fe(Ⅲ)水解过程的研究[J].环境化学,2005,24(5):361~364.
    [105]孙根行,沈一丁,苏鹏娟,程飞,铝、铁聚合机理初探[J] .环境化学,2010,29(4):599~603.
    [106] Bottero J Yetal. Partial Hydrolysis of Ferric Chloride Salt [J].Langmuir, 1991, 7(5):1365~1366.
    [107]卢佳.不同拓扑空间下聚合氯化铁-腐殖酸(PFC-HA)絮体的分形维数及其动态变化特征[D].北京林业大学,2008.5:1~3.
    [108] Rajat K Chakrabort,JosepH FAtkinson,JohnE Van Bensehoten. Charaeterization of Alum floc by image analysis[J].Evinron Sci Teehnol,2000,34:3969~3976.
    [109]金鹏康,王晓昌.天然有机物的混凝特性研究[J].西安建筑科技大学学报(自然科学版),2000,32(2):155~159.
    [110] J.Gregory. Thedensity of Particle aggregates[J]. Wat.Sci.Teeh.,1997,36(4):l~2.
    [111] Mandelbrot B B. The fractal geometry ofnature[M]. New York:W H Freeman and Company, 1982:1~60.
    [112] Li D, Ganczarczyk J. Fractal geometry of particle aggregates generated in water and wastewater treatment processes [J].EnvironmentalScience and Technology, 1989,23 (11): 1385 ~ 1389.
    [113] Gregory J. Optical monitoring of particle aggregates. Journal of Environmental [J].Sciences-China, 2009, 21(1):2~7.
    [114] Voegelin A, Kaegi R, Frommer J, Vantelon D, Hug S.J. Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy. Geochimicaet cosmochimica acte. 2010, 74(1):164~186.
    [115]阮复昌,郑冀鲁,莫炳禄,范娟,邓颂九.聚合硫酸铁的合成试验[J].化工学报,2001,52(1):24~27.
    [116]刘峙嵘,王旭,韩国芹.聚合磷硫酸铁的合成研究[J].工业水处理1999,19(1):19~20.
    [117]金一萍.聚合磷硫酸铁的制备及对污水处理的研究[J].宜春学院学报,2006,28(4):50~51.
    [118]方胜强,徐玉萍.聚合磷硫酸铁的制备及其性能研究[J].四川化工2006,9(2):46~48.
    [119]石太宏,王靖文,郭蔼仪,汤兵.新型混凝剂PPFS的制备及其混凝性能研究[J].中国环境科学,2001,21(2): 161 -164.
    [120]王光辉,魏晓,雷国元.聚磷硫酸铁混凝去除微污染水中藻类生物研究[J].华中科技大学学报(城市科学版),2005,22(3):57~60.
    [121] Grazio S, Markulincic B, Nemcic T, Grubisic F, Matijievic V, Skala H, Kasun B, Koprivnjak V, Trgovec I. Effect of interferential current and therapeutic ultrasound on pain and lumbar spine range of motion in patients with chronic low back pain[J]. Proceedings of the 7TH mediterranean congress of physical and rehabilitation medicine,2008,18~21.
    [122] Kalis EJJ, Weng LP, Dousma F, Temminghoff EJM, Van Riemsdijk WH.Measuring free metal ion concentrations in situ in natural waters using the Donnan Membrane Technique[J]. Environmental science & technology,2006, 40(3) : 955~961.
    [123] Zhang ZQ, Lin B, Xia SQ, Wang XJ, Yang AM. Production and application of a novel bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source[J]. Journal of environmental sciences-China,2007 19 (6 ) :667-673.
    [124] Jiao Shijun, Zheng Huaili, Cheng Rong Deng Xiaoli, Deng Linli, JI Fangying. Characterization and coagulation performance of polymeric phosphate ferric sulfate on eutrophic water[J]. Journal of Central South University of Technology, 2009, 16(s1): 345~350.
    [125]伍钧,薛永亮,杨刚,张大忠.PSAF-CTS复合混凝剂形貌结构特征研究[J].环境工程学报,2010,4(6):1331~1335.
    [126] Gao Yinxin, Wang Dongsheng, Zhang Yu, Yang Min. Characterization of hydrolyzed Fe(III) species produced in Fenton's reaction[J]. Environmental Technology, 2009,30 (14): 1585.
    [127]张琼,许兆义.乙酸对聚硅酸混凝剂形态分布及转化规律的影响[J].北京科技大学学报,2005,27(4):78~84.
    [128] Tang H X, Luan Z K. The differences of behaviour and coagulating mechanism between inorganic polymer flocculants and traditional coagulants[J]. In:Hahn H H, Hoffman E,Odegaard H ed. Chemical water and Wastewater Treatment:Ⅳ.Springer-Verlag, 1996, 20(5):83~93.
    [129]郑怀礼,彭德军,黄小红,刘宏.聚合硫酸铁混凝剂的混凝形态光谱研究[J].光谱学与光谱分析,2007,27(12):2480~2484.
    [130]郑怀礼,谢礼国,高朝勇,孙秀萍,杨铀,唐雪.红外光谱法及单晶X衍射法研究Fe(Ⅲ)水解形态分布[J].光谱学与光谱分析,2009,29(2):540~543.
    [131]田宝珍,汤鸿霄.聚合铁的红外光谱和电导特征[J].环境化学,1990,9(6):70~76.
    [132] Gersberg R.M., B.V. Elkins, S.E.Lyon.CR.Goldman. Role of Aquatic Plants in WasteWater treatment by artificial wetlands[J].Wat.Res.,1986,20:363~368.
    [133] P.Griffin. Strategy for sustainable wastewater treatment at small treatment works [J]. Water Environ Manag.J., 2000,13(6):441~446.
    [134] Harleman,D.R.F The case of using chemically enhanced Primary treatment in a new cleanup plau for Boston Harbor[J] Boston soeiety of Civil Engineers section /ASCE.1991,6(1):69~84.
    [135] Odegaard H. Skrovseth AF. An evaluation of performance and proeess stability of different proeesses for small waster treatment plants[J].Wat.Sci.Tech.,1995,35(6):119~127.
    [136] Landa H.Ceyella A.,Jimenez B.Pertieale size distribution in an effluent from advanced primary treatment and its removed during filtration[J].Wat.Environ Teeh.,1997,9(4):36~40.
    [137] Donald KF Harleman. An innovative approach to urban wastewater treatment in the developing world[J].Wate,2001,21(6):44~48.
    [138]郑怀礼,王白雪,熊文强,彭德军,龙腾锐,刘宏.PAFS-PDMDAAC复合絮凝剂的除磷效果研究[J].中国给水排水,2006,22(19):50~52.
    [139]马青山,贾瑟,孙丽珉.絮凝化学和絮凝剂[M].中国环境科学出版社,1988.
    [140] Z. Mayerhoff,I. Robert,T. Franco.Purification of xylose reductase from Candida mogii in aqueous two-phase systems,Biochemistry Engineering Journal.2004,18 (3):217~223.
    [141] Z. Wen,Z. Liao,Z. Chen.Production of cellulase by trichoderma reesei from dairy manure,Bioresource Technology,2005,96:491~ 499.
    [142] R.H. Myers,D.C. Montgomery.Response surface methodology:process and product optimization using designed experiments,2th,John Wiley and Sons,USA,2002
    [143] M. Muthukumar,D. Sargunmani,N. Selvakumar,J.V. Rao.Optimisation of ozone treatment for colour and COD removal of acid dye ef?uent using central composite design experiment,Dyes and Pigments,2004,63:127~134.
    [144] Q.K. Beg,V. Sahai,R. Gupta.Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor,Process Biochemistry,2003,39:203~209
    [145] N. Aktas,I.H. Boyaci,M. Mutlu,A. Tanyolac.Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RSM), Bioresourse Technology,2006, 97:2252~2259.
    [146] Z.M. Zhang, H.L. Zheng.Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology [J]. Journal of Hazardous Materials. 2009, 172:1388-1393.
    [147] I.H. Cho,K.D. Zoh.Photocatalytic degradation of azo dye (Reactive Red120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design[J].Dyes and Pigments,2007,75:533~543.
    [148] Perez-Feas Cristina, Barciela-Alonso maria carmen, Sedes-Diza Antia, et al. Phthalates determination in pharmaceutical formulae used in parenteral nutrition by LC-ES-MS: importance in public health[J]. Anal Bioanal Chem, 2010, 397(2): 529~535.
    [149] GhisariM, Bonefeld-Jorgen E C. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions[J]. Toxicology Letters, 2009,189(1): 67~77.
    [150] Madej Katarzyna, Koscielniak Pawel.Review of analytical methods for identification and determination of PAHs and tricyclic antidepressants[J]. Critical reviews in analytical chemistry,2008, 38(2):50~66.
    [151]魏复盛.水和废水监测分析方法[M].北京市:中国环境科学出版社,2002:236~239.
    [152]周兰.水中天然有机物的混凝特性研究[D].西安建筑科技大学,2001,3:19~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700