关中盆地地下环境氮污染机理与地下水质安全评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下环境氮污染对生态环境安全和人体健康构成了潜在的危险,一直是环境和水文地质领域研究的热点和难点问题。本文以关中盆地为典型研究区,以包气带和浅层地下水为研究对象,以“三氮”的迁移转化为主线,以资料收集、原位试验、室内实验、理论分析和数值模拟为手段,开展了地下环境氮污染机理和水质安全评价研究,取得如下主要研究成果:
     (1)研究区包气带和浅层地下水中“三氮”普遍存在,硝态氮的含量明显高于铵态氮和亚硝态氮的含量。在浅层地下水中硝态氮污染程度相对较重,呈面状分布,而铵态氮和亚硝态氮污染较轻,以点状存在。人类活动释放的氮负荷直接影响地下环境的氮污染程度,包气带岩性、厚度、地层结构和含水层的水力传输性能及其环境要素决定地下环境中“三氮”的存在形态和迁移转化规律。
     (2)在系统分析氮化物行为特征的基础上,研究了铵态氮吸附/解吸的动力学过程。通过铵态氮等温吸附/解吸实验表明,黄土等温吸附/解吸方程符合Langmuir模型,解吸滞后性最强;粉质粘土和粉砂等温吸附/解吸模式符合Henry模型,解吸滞后性较强;而细砂等温吸附方程符合Langmuir模型,等温解吸模式符合Henry模型,解吸滞后性最弱。这些结论与前人的成果具有一致性,也充分表明了黄土包气带对铵态氮迁移的阻滞能力强,粉质粘土和粉砂包气带次之,细砂包气带的阻滞能力最弱。
     (3)硝化/反硝化作用实验表明,铵态氮硝化动力学过程划分为缓慢阶段、快速阶段和衰减阶段,硝态氮反硝化过程包含反硝化阶段和弱硝化阶段,反硝化率为22.13%-70.23%,即在包气带原生环境(缺少人为添加营养液)中,硝态氮不能完全生物降解,使大部分硝态氮流失进入地下水中,为地下水硝态氮污染提供了物源。
     (4)通过混合实验和密封浸泡实验初步证明,混合稀释作用并不降低硝态氮的总量;化学还原和生物反硝化是硝态氮总量减少的重要途径,其中以化学还原为主,生物反硝化为辅。硝态氮的自然转化率为25.7-39.9%,即含水层的自净能力较差,因此造成了硝态氮的积累。亚铁盐的添加强化了还原环境,使含水层中硝态氮的转化率提高2倍以上,这一研究可为地下水氮污染防治提供理论基础和技术支持。
     (5)通过原位试验,对“三氮”在黄土和砂性包气带中迁移转化规律进行了对比研究。利用包气带水分和溶质运移模型,得出植物根系吸收作用明显降低氮化物的残留值和最大迁移距离;玉米根系吸收作用强于小麦根系,二者的吸氮量占施氮量的41.3%;通过黄土、粉砂和细砂包气带输入浅层地下水的氮化物以硝态氮为主,硝态氮通量为铵态氮和亚硝态氮通量的104倍以上。依据质量守恒定律,建立了含水层硝态氮年积累估算的数学模型,确定了影响硝态氮年积累的阈值,研究成果补充完善了含水层中氮化物环境行为与归趋理论。
     (6)利用健康风险评价的理论和方法,开展了研究区浅层地下水氮污染健康风险评价,评价结果表明:浅层地下水中硝态氮对人体健康的慢性毒害指数较高,高风险区占研究区面积的78.2%,主要分布在农业活动强烈的灌区和人口居住密集、工业相对发达的城镇区;硝态氮含量在12.6-20mg/L间的地下水对人体健康也是高风险的,即传统意义上可以饮用的三类水对人体健康并不都是安全的。在重点城郊区(西安地区),开展了地下水质健康风险综合评价,指出硝态氮为地下水中应优先治理的物质。在此基础上,提出了基于健康风险的地下水质安全管理程序和保障措施,为地下水资源管理和保护提供了技术支持。
The nitride pollution has posed a potential danger on the ecological environment and human health, which is always a hot and difficult science problem in the study region of environmental science and hydrogeology. The nitride pollution mechanism and the safety of water quality in the vadose zone and shallow groundwater of the typical study area in Guanzhong Basin were studied. The data collection, in situ test, lab experimentations, numerical simulation and theoretical analysis were used to research the migration and transformation and fate of "three nitrogen". Through these works, some main research results were obtained, as follows:
     (1) The "Three Nitrogen" exists generally in vadose zone and shallow groundwater in study region. The nitrate content was significantly higher than the content of ammonium nitrogen and nitrite. The nitrate presents the face-shaped pollution form in shallow groundwater, and the ammonium nitrogen and nitrite present point pollution form. The human activity is the excitation factor of nitrogen pollution in ground environment. The vadose zone lithology and thickness, stratum construction, the hydraulic condition of aquifer and environment factor are the critical factors of "Three Nitrogen" existence form and migration and transformation in ground environment.
     (2) According to the systematic analysis of the nitride geochemical behavior, the ammonium nitrogen adsorption/desorption process was studied. The ammonium nitrogen adsorption/desorption experiments results show:The loess isothermal adsorption/desorption equations are consistent with Langmuir adsorption kinetics models, and the loess desorption hysteresis is the strongest. The silty clay and silt isothermal adsorption/desorption equations accords with the Henry model, and the silty clay and silt desorption hysteresis are stronger than fine sand. The fine sand isothermal adsorption equations is consistent with the Langmuir adsorption kinetics models and the isothermal desorption equations is consistent with Henry model, and the fine sand desorption hysteresis are the weakest. So, the loess vadose zone has the strongest hysteresis for the ammonium nitrogen, the silty clay and silt vadose zone has stronger hysteresis, but the fine sand vadose zone has the weakest hysteresis.
     (3) The nitrification and denitrification experiments show:the ammonium nitrogen nitrification kinetics is divided into the slow phase, fast phase and decay phase (denitrification phase), and the nitrate denitrification process consist of the denitrification phase and the weak nitrification phase. The Nitrate denitrification rate is 22.13%-70.23%, which means the nitrate can not be completely biodegradable in the native soil environment (lack of man-added nutrient solution). So, the more nitrate go into the groundwater, which supply abundant substance for the nitride pollution of the groundwater.
     (4) The mixture and sealed soak experiment approved that the mixture dilution cannot decrease the content of nitrate, and the chemical reduction and biological denitrification are the important paths to decrease the content of nitrate, that the nitrate natural degradation is dominated by chemical reduction, and supplemented by biological denitrification. The nitrate natural degradation rate is 25.7-39.9% in aquifer. The self-purification capacity of aquifer is bad and the nitrate is easy accumulating in the aquifer. The research proves the artificial strengthen chemical reduction (add the ferrous iron salt) is more than two times higher than the original ecological degradation. This study result can provide a theoretical basis and technical support for groundwater nitrogen pollution prevention and control.
     (5) Through the in situ testing, the migration and transformation rule of "Three Nitrogen" in loess and sand vadose zone was studied. According to the vadose zone soil moisture and solute transport model, the plant root water uptake and nitrogen absorption reduces the residual value of nitride and maximum migration distance was studied. The corn root water uptake and nitrogen absorption was stronger than that of wheat roots, nitrogen absorption of wheat and corn root accounted for 41.3% of the total nitrogen. Nitrate flux, correspondingly through the loess, silt and fine sand vadose zone to the shallow groundwater, the nitrate is a difference of 104 times from the input flux of ammonium nitrogen and nitrite. A mathematical model based on conservation of mass is set up to estimate nitrate accumulation in the aquifer, and compute the threshold influencing the annual nitrate accumulation; The research complement the nitride environmental behavior and fate theory in aquifer.
     (6) At last, the groundwater health risk assessment in study region was evaluated, the assessment results shows that the nitrate non-carcinogenic chronic toxic index for people health is higher in study region shallow groundwater. The high risk region is occupied 78.2% in study area, which distribute chiefly in the irrigation area and town with dense-residence, advanced-industry. The groundwater containing 12.6-20mg/L nitrate has high risk to people health. Through groundwater health risk assessment in Xi'an region, the author analysis put forward that the nitrate is the priority remediation matter. For, the safety management program and safeguard measures of underground water quality based on health risk, is proposed initially to put forward a new model for managing and protecting the groundwater resource.
引文
[1]墨林.地下水超采引发生态问题[J].中国减灾.2004,(7):37-38
    [2]Fetter, C.W.. Contaminant Hydrogeology[M]. Prentice-Hall, Englewood Cliffs, NJ.1999
    [3]李炳华,陈鸿汉,何江涛,等.长江三角洲某地区浅层地下水单环芳烃污染特征及其原因分析[J].中国地质.2006,33(5):1124-1130
    [4]李政红,张胜,毕二平,等.某储油库地下水有机污染健康风险评价[J].地球学报.2010,31(2):258-262
    [5]陈鸿汉,何江涛,刘菲,等.太湖流域某地区浅层地下水有机污染特征[J].地质通报.2005,24(8):735-739
    [6]郭秀红,陈玺,黄冠星,等.珠江三角洲地区浅层地下水中有机氯农药的污染特征[J].环境化学.2006,25(6):798-799
    [7]Thabo Thayalakumaran, Keith L. Bristow, Philip B. Charlesworth,Thorsten Fass. Geochemical conditions in groundwater systems:Implications for the attenuation of agricultural nitrate[J]. Agricultural water management.95(2008):103-115
    [8]Lee YW. Risk assessment and risk management for nitrate-contaminated groundwater supplies[M]. Unpublished PhDdissertation. University of Nebraska, Lincoln, Nebraska,1992.
    [9]Wolfe AH, Patz JA. Reactive nitrogen and human health:acute and long-term implications[J]. Ambio.2002;31(2):120-125.
    [10]DeSimone L, Howes B. N transport and transformations in a shallow aquifer receiving wastewater discharge:a mass balance approach[J]. Water Resour Res.1998;34(2):271-285.
    [11]Chowdary VM, Rao NH, Sarma PBS. Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects[J]. Agric Water Manag. 2005;75:194-225
    [12]姜桂华,王文科,杨晓婷,等.关中盆地地下水硝酸盐污染分析及防治对策[J].水资源保护.2002,68(2):6-8.
    [13]胡田田,李生秀.土壤剖面中的起始NO3--N可靠的土壤氮素供应指标[J].干旱地区农业研究.1993,(11):74-82
    [14]袁新民,等.施入磷肥对土壤NO3--N累积的影响[J].植物营养与肥料学报.2000,6(4):397-403.
    [15]Kraus H H. The European Parliament and EC Environment Policy, Working Paper W-2.Luxembourg:European Parliament,1993.12
    [16]Goss M J, Barry D A J, Rudolph D L. Contamination in Ontario farmstead domestic wells and its association with agriculture:1. Results from drinking water wells[J]. Journal of Contaminant Hydrology, 1998,32(3-4):267-293
    [17]Jennings G D, Sneed R E, Hufman R E, et al. Nitrate and pesticide occurance in North Carolina Wells[A]. In; Josephs. ed. International Summer Meeting of the American Society of Agricultural Engineers[C]. Michigan, Frankfort.1991
    [18]Coata J L, Massone H, Martinez D, et al. Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone[J]. Agricultural Water Management.2002,(57):33-47.
    [19]Thorburn P J, Biggs J S, Weier K L, et al. Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia[J]. Agricultue, Ecosystems and Enviornment,2003. (94):49-58
    [20]Babiker I S, Kato K, Ohta K, al. As-ssmcnt of groundwater contamination by nitrate leaching from intensive vegetable cuhivation using geographical information system[J]. Environment International. 2004,29(8):1009-1017
    [21]Overgaard K. Trends in nitrate pollution of groundwater in Denmark[J]. Nordic Hydrology.1989, 15(4-5):177-184
    [22]Spalding R F, Exner M E. Occurrence of nitrate in groundwater-A review[J]. Journal of Environmental Quality.1993,22(3):392-402
    [23]刘宏斌,李志宏,张云贵,等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报.2006,43(3):405-413
    [24]张明泉,高洪宣,吴克俭.兰州马滩水源地NO3-污染环境条件分析[J].环境科学.1990,11(5):79-82.
    [25]刘宏斌,张云贵,李志宏,等.北京市平原农区深层地下水硝态氮污染状况研究[J].土壤学报.2005,42(3):411-418
    [26]金赞芳,王飞儿,陈英旭,等.城市地下水硝酸盐污染及其成因分析[J].土壤学报.2004,41(2):252-258
    [27]梁秀娟,肖长来,盛洪勋,等.吉林市地下水中“三氮”迁移转化规律[J].吉林大学学报(地球科学版).2007,37(2):335-340,345
    [28]叶许春,张世涛,宋学良,等.昆明盆地浅层地下水氮的分布及污染机理[J].水土保持学报.2007,21(4):185-200
    [29]邢光熹,施书莲,杜丽娟,等.苏州地区水体氮污染状况[J].土壤学报.2001,38(4):540-546
    [30]Kendall C, McDonnell J J. Isotope Tracers in Catchment Hydrology[M]. Amsterdam:Elsevier Science.1998,519-576.
    [31]Heaton T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:A review[J]. Chem Geol.1986,59(1):87-102
    [32]Wassenaar L I. Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3[J]. Appl Geochem.1995,10(4):391-405
    [33]Silva S R, Ging P B, Lee R W, et al. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments [J]. Environ Forensics.2002,3(2):125-130
    [34]Ian D.Clark,Peter Fritz. Environmental isotopes in hydrogeology[M]. Lewis Publishers.1999
    [35]Kreitler, C.W. Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas[J]. J. Hydrol.1979,(42),147-170
    [36]Kaplan, N., Magaritz, M. A nitrogen-isotope study of the sources of nitrate contamination in groundwater of the leistocene coastal plain aquifer, Israel[J]. Water Resour. Res.1986,(20):131-155
    [37]Oren, O., Yechieli, Y., Bo hlke, J.K., Dody, A. Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley, Israel[J]. J. Hydrol.2004,(290):312-328.
    [38]杨琰,蔡鹤生,刘存富,等.NO3-中N和O同位素新技术在岩溶地区地下水氮污染研究中的应用—以河南林州食管癌高发区研究为例[J].中国岩溶.2004,23(3):206-212
    [39]吴登定,姜月华,贾军远,等.运用氮、氧同位素技术判别常州地区地下水氮污染源[J].水文地质工程地质.2006,33(3):11-15
    [40]Ralph L. Seiler. Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater[J]. Applied Geochemistry.2005, (20):1626-1636
    [41]孙铁珩,李培军,周启星,等.土壤污染形成机理与修复技术[M].北京:科学出版社.2005
    [42]D.Barraclough,M.J.Hyden,G.P.Davies. Fate of fertilizer nitrogen applied to grassland. I.Field leaching results[J]. Journal of Soil Science.1983,34:483-497
    [43]S.E.Allaire-Leung,L.Wu,J.P.Mitchell,et al. Nitrate leaching and soil nitrate content as affected by irrigation uniformity in a carrot field[J]. Agricultural Water Management.2001,(48):37-50
    [44]洪华生,黄金良,曹文志,等.九龙江流域农业非点源污染机理与控制研究[M].北京:科学出版社.2008
    [45]张宗祜、张光辉、任福弘,等.区域地下水演化过程及其与相邻圈层的相互作用[M].北京:地质出版社.2006
    [46]L.C.Burns,R.J.Stevens,R.J.Laughlin. Production of nitrite in soil by simultaneous nitrification and denitrification[J]. Soil Biol.Biochem.1996,28(4-5):606-616
    [47]Q.R.Shen,W.Ran,Z.H.Cao. Mechanisms of nitrite accumulation occurring in soil nitrification[J]. Chemosphere.2003,(50):747-753
    [48]R.J.Stevens,R.J.Laughlin,J.P.Malone. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol[J].Biochem.1998,30(8-9):1119-1126
    [49]翟丽华,刘鸿亮,徐红灯,等.浙江某农场土壤和沟渠沉积物对铵态氮的吸附研究[J].环境科学.2007,28(8):1770-1773
    [50]张胜,张翠云,叶思源,等.包气带土体无机氮的吸附与微生物作用影响试验方法[J].地球学报.2003,24(2):187-192
    [51]董悦安,沈照理,钟佐燊.菜田施肥(化肥)对地下水氮污染影响的实验研究[J].地球科学 ——中国地质大学学报.1999,24(1):101-104
    [52]董悦安,沈照理,钟佐燊.粗粒包气带结构对地下水氮污染影响的模拟实验研究[J].环境科学学报.1999,19(6):610-613
    [53]董悦安,沈照理.农田区地下水氮污染和氮转化的实验研究[J].北京师范大学学报(自然科学版).2001,37(2):199-204
    [54]董悦安.农田区地下水的氮污染和氮转化[D].北京:中国地质大学.1997
    [55]邓建才,陈效民,卢信,等.封丘地区主要土壤中硝态氮运移规律研究[J].农业环境科学学报.2005,24(1):128-133
    [56]阮晓红,王超,朱亮.氮在饱和土壤层中迁移转化特征研究[J].河海大学学报.1996,24(2):51-55
    [57]杨维,郭毓,王泳,等.铵态氮污染地下水的动态实验研究[J].沈阳建筑大学学报(自然科学版).2007,23(5):826-831
    [58]李志萍,陈肖刚.长期排污河对地下水影响的试验研究[M].郑州:黄河水利出版社.2006
    [59]孙大志,李绪谦,潘晓峰.铵态氮在土壤中的吸附/解吸动力学行为的研究[J].环境科学与技术.2007,30(8):16-18,111
    [60]吴敦敖,樊哲文.含氮化学物在地下水中的转化与积累研究[J].勘查科学技术.1992, (2):1-6
    [61]于乃绣,李宽良,韦满春,等.三氮迁移转化过程中的质量不守恒问题及其数值模拟方法途径[J].成都地质学院学报.1993,20(3):108-112
    [62]罗泽娇,靳孟贵.地下水三氮污染的研究进展[J].水文地质工程地质.2002,29(4):65-69
    [63]Frissel. M. J., G. J. Kolenbrander, I. Shvytov, et al. Systematic comparison of the models described[A]. M. J. Frissel and J. A. Van Veen. Simulation of nitrogen behavior in soil2plant systems [C]. Pudoc,Wageningen, The Netherlands.1981.
    [64]Nielsen, D. R.,J. W. Biggar, and P. J. Wierenga. Nitrogen transport processes in soil [A]. F. J. Stevenson,Nitrogen in agricultural soils [C]. Madison,American Society of Agronomy.1982.
    [65]Tanji,K. K. Modeling of the soil nitrogen cycle [A],F. J. Stevenson, Nitrogen in Agricultural soils [C]. Madison,American Society of Agronomy.1982:721-722.
    [66]Willigen, P. de and J. J. Neeteson. Comparison of some simulation models for the nitrogen cycle in the soil [J]. Fertilizer Research.1985,8:157-171.
    [67]黄元仿,李韵珠,陆锦文.土壤—作物系统中氮素行为的模拟[A],李韵珠等,土壤水和养分的有效利用[C].北京:北京农业大学出版社.1994:179-194.
    [68]高如泰.黄淮海平原农田土壤水氮行为模拟与管理分析[D].中国农业大学.2005
    [69]崔剑波,庄季屏.田间非饱和流条件下土壤硝态氮运移的模拟[J].应用生态学报.1997,8(1):49-54.
    [70]刘培斌,丁跃元,张瑜芳.田间一维饱和—非饱和土壤中氮素运移与转化的动力学模式研究[J].土壤学报.2000,37(4):490-498.
    [71]Sposito G, Jury W A, Gupta V K. Fundamental problems in the stochastic convection—dispersion model of solute transport in aquifers and field soils[J]. Water Resour. Res.1986, (22):77-88.
    [72]任理,袁福生,张福锁.冬小麦生长条件下土壤硝态氮淋洗的传递函数模拟和预报[J].生态学报.2004,24(10):2281-2288
    [73]任理,刘兆光,马军花,等.考虑残留氮对非稳定流场硝态氮淋失贡献的传递函数模型Ⅰ.地中渗透计验证[J].水利学报.2003,34(11):13-20
    [74]刘翔,刘兆昌,朱琨.氮对地下水的污染预测模型[J].环境科学.1991,12(6):8-11
    [75]张春辉,裴元生.铵态氮在大厚度包气带土层中迁移转化的数学模拟[J].甘肃环境研究与监测.2001,14(1):3-5,8
    [76]王铁军,郑西来,崔俊芳.莱西地区施肥对地下水硝酸盐污染的过程[J].中国海洋大学学报.2006,36(2):307-312
    [77]姜桂华,王文科,杨胜科.“三氮”在黄土非饱和带迁移转化原位试验及数值模拟[J].吉林大学学报(地球科学版).2004,34(4):571-575
    [78]姜桂华,王文科.关中盆地包气带氮迁移转化数值模拟及预测[J].西北大学学报(自然科学版).2007,37(5):825-829
    [79]李翔,王文科,杨胜科,等.马兰黄土中与三氮有关的微生物的分布及其反硝化能力[J].环境污染与防治.2006,28(6):411-415
    [80]李永涛.渭河水入渗机理及污染对地下水的原位试验与仿真模拟研究[D].长安大学.2003
    [81]王小丹.关中盆地氮对浅层地下水污染的数值模拟与预警研究[D].长安大学.2008
    [82]Cheng-Shin Jang, Chen-Wuing Liu. Contamination potential of nitrogen compounds in the heterogeneous aquifers of the Choushui River alluvial fan, Taiwan[J]. Journal of Contaminant Hydrology.2005, (79):135-155
    [83]程东会.北京城近郊区地下水硝态氮和总硬度水文地球化学过程及数值模拟[D].中国地质大学(北京).2007
    [84]Q.Z.Geng,G.G.Irard,E.Ledoux. Modeling of nitrogen cycle and nitrate transfer inregional hydrogeologic systems[J]. Groundwater.1996,34(2):293-304
    [85]杨天行,王运国.水环境中三氮转化的动力学规律及其在环境评价中的应用[J].吉林地质.1990,(2):13-28
    [86]Stefan Krause, Joerg Jacobs, Anja Voss, et al. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain[J]. Science of the Total Environment.2008,(389):149-164
    [87]Vorlop K.D.,Tacke T. Erste schritte auf dem Weg zur edelmetall-katalysierten nitrat-and nitrit-Entfernung aus Trinkwasser[J]. Chem Ing.Tech.1989, (61):836-845
    [88]Prusse U.,Vorlop K.D. Supported bimetallic palladium catalysts for water-phase nitrate reduction[J]. Journal of Molecular Catalysis A:Chemical.2001, (173):313-328
    [89]Luk G.K. Experiment Investigation on the Chemical Reduction of Nitrate from Ground-water[J]. Advances in Environment Research.2002, (6):441-453
    [90]Zawaideh L.L.,Zhang T.C. The effects of pH and addition of an organic buffer(HEPES) on nitrate transformation in FeO-water systems[J]. Wat.Sci.Tech..1998,38(7):107-115
    [91]Chalermchai Ruangchainikom, Chih-Hsiang Liaob, Jin Anotai,et al. Characteristics of nitrate reduction by zero-valent iron powder in the recirculated and CO2-bubbled system[J]. Water Research.2006,(40):195-204
    [92]康海彦.纳米铁系金属复合材料去除地下水中硝酸盐污染的研究[D].南开大学.2007
    [93]Mohseni B.A.,Elliott D.J. Groundwater denitrification with alternative carbon sources[J]. Wat.Sci.Tech.1998,38(6):237-243
    [94]Robertson W.D.,Blowes D.W.,Ptacek C.J.,et al. Long-term performance of in situ reactive barriers for nitrate remediation[J]. GroundWater.2000,38(5):689-695
    [95]Bate H.K.,R.F. Spalding.Aquifer denitrification as interpreted from in situ microcosm experiments[J]. Environ.Qual..1998, (27):174-182
    [96]赵林,闫博,谭欣.硝酸盐污染含水层修复的微生物方法实验研究[J].环境科学学报.2004,24(3):504-507
    [97]张胜,张云,张凤娥,等.地下水NO3-污染的微生物修复实验研究[J].水文地质工程地质.2005,32(2):25-30
    [98]张云,张胜,刘长礼,等.氮污染地下水的原位修复试验研究[J].中国给水排水.2007,23(11):8-12
    [99]张胜,张云,张凤娥,等.地下水NO3-污染的原位微生态修复技术试验研究[J].农业环境科学学报.2004,23(6):1223-1227
    [100]张胜,张云,张翠云,等.河北平原地下水NO3-污染的原位微生态修复[J].地质通报.2006,25(5):609-615
    [101]姜桂华,徐凌云.包气带人工微生物反硝化除氮实验研究[J].长春地质学院学报.1997,27(4):435-439
    [102]张胜,张云,张凤娥,等.包气带土体NO3-污染的微生态修复实验研究[J].地质通报.2004,23(11):1109-1112
    [103]赵林,魏连伟,林学钰.不同状态下包气带除氮及阻止氮污染能力的实验研究[J].环境科学学报.2001,21(2):162-166
    [104]张云,张胜,张凤娥,等.耕层以下包气带中氮素蓄积的原位修复治理[J].农业环境科学学 报.2004,23(6):1217-1222
    [105]陕西省地质调查院.关中盆地地下水资源评价报告[R].2002.12
    [106]陕西省地质局第一水文地质队.陕西省关中盆地水文地质图系说明书[R].1979
    [107]陕西省国土资源厅.陕西省地下水资源评价[R].2002.12
    [108]陕西省地质环境监测总站.西安市环境水文地质图集[R].1990
    [109]姜桂华,王文科,杨泽元.关中盆地潜水含水层脆弱性评价[J].西北农林科技大学学报.2004,32(10):111-115
    [110]王文科,王雁林,段磊,等.关中盆地地下水环境演化与可再生维持途径[M].郑州:黄河水利出版社.2006
    [111]王文科,孔金玲,段磊,等.黄河流域河水与地下水转化关系研究[J].中国科学(E).2004,34(增刊):23-33
    [112]陕西省水利厅.2007年陕西省水利统计年鉴[R].西安,2008
    [113]汪东云.关中盆地河水水化学特征及其对地下水化学成分的形成作用[J].水文地质工程地质,1981,(57):11-1
    [114]孙熠,王文科,刘国东,等.关中盆地浅层地下水水化学场演化规律研究[J].西南民族大学学报(自然科学版).2005,31(6):874-879
    [115]妙颖.关中盆地典型土壤中“三氮”迁移转化规律的研究[D].长安大学,2006
    [116]姜桂华.关中盆地地下水脆弱性研究[D].长安大学,2002
    [117]张瑜芳,张蔚榛,沈荣开,等.排水农田中氮素转化运移和流失[M].武汉:中国地质大学出版社.1997:37-42
    [118]李翔.关中盆地马兰黄土中三氮转化及相关微生物关系实验研究[D].长安大学.2003
    [119]陕西省咸阳市环境保护局.陕西省咸阳市饮用水水源地环境现状调查报告[R].2006.11
    [120]陕西省农业厅.农业统计资料摘要[R].1991-2001
    [121]康银红,马耀光,王巧焕·灌溉条件下包气带黄土层中NO3--N的深部迁移[J].干旱地区农业研究.2006,24(6):147-151
    [122]仇立慧,黄春长,周忠学.古代西安地下水污染及其对城市发展的影响[J].西北大学学报(自然科学版).2007,37(2):326-329
    [123]陕西省地质环境监测总站.西安市区地下水动态[R].1997
    [124]林年丰,林昌静,钟佐燊,等.环境水文地质学[M].北京:地质出版社.1997:37-42
    [125]杨维,王恩德,李勇,等.浑河冲洪积扇中下游地下水中氮转化与水文地球化学特征的研究[J].水文地质工程地质.2005,32(2):39-41
    [126]陕西省地质环境监测总站.咸阳市区地下水动态[R].1997
    [127]田春生,李云峰,郑书彦,等.关中盆地环境水文地质问题[M].西安:陕西科学技术出版社.1995
    [128]陕西省环境保护局.陕西省环境统计年报[R].2005
    [129]姜桂华,王文科,乔晓英,等.关中盆地地下水特殊脆弱性及其评价[J].吉林大学学报(地球科学版).2009,39(6):1106-1110,1116
    [130]Ju Daeyoung,Thomas M.Young. The influence of natural organic matter rigidity on the sorption,desorption,and competitive displacement rates of 1,2-dichlorobenzene [J]. Environmental Science and Technology.2005,39(20):7956-7963.
    [131]王红旗,刘新会,李国学,等.土壤环境学[M].北京:高等教育出版社.2007:192-195
    [132]Hoque M.E.,Richard M.Wilkins,Angela Kennedy,et al.. Sorption behaviour of oxadiazon in tropical rice soils [J]. Water Science and Technology.2007,56(1):115-121.
    [133]Sthapit L.,C.S.P.Ojha,U.Glawe. Sorption characteristics of the soft Bangkok clay[J]. Lowland Technology International.2005,7(2):69-73.
    [134]Vejsada J.,E.Jelinek,Z.Randa,et al. Sorption of Cesium on smectite-rich clays from the Bohemian Massif(Czech Republic)and their mixtures with sand [J]. Applied Radiation and Isotopes.2005,62(1):91-96.
    [135]忤彦卿.多孔介质污染物迁移动力学[M].上海:上海交通大学出版社.2007:90-93
    [136]Rosenfeld J K. Ammonium adsorption in nearshore anoxic sediments [J]. Limnology and Oceanography.1979,24:356-364
    [137]刘敏,侯立军,许世远,等.长江口潮滩表层沉积物对NH4+-N的吸附特征[J].海洋学报.2005,27(5):60-65
    [138]Boatman C D, Murray J W. Modeling Exchangeable NH4+Adsorption in Marine Sediments: Process and Controls of Adsorption [J]. Limnology and Oceanography.1984,27:99-110
    [139]刘培桐,薛纪渝,李华东,等.环境学概论[M].北京:高等教育出版社.2005
    [140]杨胜科,王文科,李翔,等.沸石去除地下水中铵态氮的影响因素分析及作用机理探讨[J].西安工程学院学报.2000,22(3):69-72
    [141]韩选利,骆永富,李国强,等.普通化学[M].西安:陕西科学技术出版社.1997
    [142]张劲强,董元华.诺氟沙星的土壤吸附热力学与动力学研究[J].土壤学报.2008,45(5):978-985
    [143]Li H T, Jiao Y C, Xu M C, et al. Thermodynamics aspect of tannin sorption on polymeric adsorbents [J]. Polymer.2004,45 (1):181-188
    [144]Huang J G, Xu M C, Shi Z Q, et al. Synthesis and adsorption property of two polymeric adsorbents with pendent ether bonds [J]. Chinese Chemical Letters.2003,14 (9):914-916.
    [145]周芸,周菊峰,陶李明,等.丁二酰亚胺基修饰的吸附树脂对苯胺的吸附热力学性能[J].环境科学研究.2009,22(5):521-525
    [146]周志华,肖化云,刘丛强.土壤氮素生物地球化学循环的研究现状与进展[J].地球与环 境.2004,32(3-4):21-26
    [147]李振高,俞慎.土壤硝化-反硝化作用研究进展[J].土壤.1997,(6):281-286
    [148]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社.1999
    [149]马文漪,杨柳燕.环境微生物工程[M].南京:南京大学出版社.2001[150]Colbourn P, Harper, I W. Denitrification in drained and undrained arable soils [J]. Journal of soil science.1987,38:531-539
    [151]王焰新.地下水污染与防治[M].北京:高等教育出版社.2007:288-294
    [152]杨维,王泳,郭毓,等.地下水中铁锰对氮转化影响的实验研究[J].沈阳建筑大学学报(自然科学版).2008,24(2):286-290
    [153]Yi-Ming Chen, Chi-Wang Li, Shiao-Shing Chen. Fluidized zero valent iron bed reactor for nitrate removal[J]. Chemosphere.2005, (59):753-759
    [154]金赞芳,李文腾,潘志彦等.地下水硝酸盐去除方法[J].水处理技术.2006,32(8):34-37.
    [155]Cheng S.F.,Huang C.Y,Liu J.Y. Study of different methods for enhancing the nitrate removal efficiency of a zero-valent metal process[J]. Water Sci.Technol.2006,53(1):81-87.
    [156]唐次来.Fe0还原黄土高原地下水中NO3-污染的模拟研究[D].西北农林科技大学,2007
    [157]IPCC. Climate Change, the supplementary report to the IPCC Scientific Assessment[R]. 1992:35-37
    [158]Bouwman A. F. The role of soils and land use in the greenhouse effect[C].//Background paper of the international conference "Soil and the Greenhouse Effect". Wageningen. The Netherlands:Int Soil Ref And Into Cnt,1989.14-18
    [159]Mosier A R, Kroeze C. A new approach to estimate emissions of nitrous oxide from agriculture and its implications for the global N2O budget[J]. Global Change News Letter, Sweden:IGBP.1998.(34): 8-13
    [160]母国宏,白红英,刘连杰.水热条件对黄土性小麦田N2O排放特征的影响[J].农业环境科学学报.2007,26(4):1561-1567
    [161]John D Toth. Richard H Fox.Nitrate losses from a corn—alfalfa rotation:Lysimeter measurement of nitrate leaching[J]. J Environ Qual.1998,27:1027-1033
    [162]Power J F, Wiese R, Flowerday. Managing nitrogen for water quality lessons from management systems evaluation area[J]. J Environ Qual.2000,29:355-366.
    [163]毕经伟,张佳宝,陈效民,等.农田土壤中土壤水渗漏与硝态氮淋失的模拟研究[J].灌溉排水学报.2003,22(6):23-26
    [164]wallach, R. and Steenhuis, TS. Model for non-reactive solute transport in structured soils with continuous preferential flow paths [J]. Soil SCi. Soc. Am.1998,62:881-886.
    [165]任理,袁福生,张福锁.土壤中硝态氮淋洗的传递函数模拟和预报[J].水利学报.2001,4:21-28.
    [166]许迪.典型经验根系吸水函数的田间模拟检验及评价[J].农业工程学报.1997,13(3):37-42
    [167]李秧秧.土壤-植物系统水分关系的试验研究[D].中科院水利部水土保持研究所,2001
    [168]孟江丽,董新光,周金龙,等HYDRUS模型在干旱区灌溉与土壤盐化关系研究中的应用[J].新疆农业大学学报.2004,27(1):45-49
    [169]Simunek J, M Sejna, M Th Vall Genuchten. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[M]. California; U S Salinity Laboratory Agricultural Research Service, U S Department of Agriculture, Riverside,1998.
    [170]赵秉强,张福锁,李增嘉,等.间套作条件下作物根系数量与活性的空间分布及变化规律研究Ⅱ.间作早春玉米根系数量与活性的空间分布及变化规律[J].作物学报.2001,27(6):974-979
    [171]翟广华.小麦播种深度要掌握[J].河南科技报http://www.hnws.agri.gov.cn/nyjs/main. asp?id=21313&lanmu=1
    [172]Ritchie J T, Godwin D. Chapter 3:Soil Water Balance[R]. In CERES Wheat 2.0
    [173]李俊良,朱建华,张晓晟,等.保护地番茄养分利用及土壤氮素淋失[J].应用与环境生物学报.2001,7(2):126-129.
    [174]彭星辉,谢晓阳,纪雄辉.淹水稻田氮素淋溶损失及其控制[J].湖南农业科学.2006,(5):58-61.
    [175]付玉芹,雷玉平,郑力,等.不同施氮水平下深层土壤硝态氮淋失特征研究[J].中国农学通报.2006,22(6):245-247
    [176]石玉,于振文.施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响[J].生态学报.2006,26(11):3661-3669
    [177]袁锋明,陈子明,姚造华,等.北京地区潮土表层中NO3--N的转化积累及其淋洗损失[J].土壤学报.1995,32(4):388-398
    [178]薛滨,姚书春,王苏民,等.长江中下游不同类型湖泊沉积物营养盐蓄积变化过程及其原因分析[J].第四纪研究.2007,27(1):122-127
    [179]Tony J Vyn, Ken J Janovicek, Murry H, et al. Soil nitrate accumulation and corn response to preceding small-grain fertilization and cover crops[J]. Agron. J..1999,(91):17-24
    [180]石福臣,李瑞利,王绍强,等.三江平原典型湿地土壤剖面有机碳及全氮分布与积累特征[J].应用生态学报.2007,18(7):1425-1431
    [181]World Health Organization and UNICEF 2006. MDG Drinking Water and Sanitation Target: The Urban and Rural Challenge of the Decade[R], MDG Assessment Report,2006.
    [182]杨龙,贺光华.农村饮水安全问题[J].水利规划与设计.2006,(3):1-3
    [183]U. S. EPA. Risk assessment guidance for superfund volume I human health evaluation manual(Part A)[R]. EPA/541/1-89/002, December 1989
    [184]Kentel E, Aral M M.2D Monte Carlo versus 2D Fuzzy Monte Carlo health risk assessment[J]. Stochastic Environmental Research and Risk Assessment.2005,19(1):86-96
    [185]陈炼钢,陈敏建,丰华丽.基于健康风险的水源地水质安全评价[J].水利学报.2008,39(2):235-239,244
    [186]李政红,毕二平,张胜,等.地下水污染健康风险评价方法[J].南水北调与水利科技.2008,6(6):47-51
    [187]钱家忠,李如忠,汪家权,等.城市供水水源地水质健康风险评价[J].水利学报.2004,35(8):90-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700