面向情景感知计算的时空数据管理、查询、分析与相关算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
情景感知计算:情景感知计算作为一种新的计算形态,与普适计算、移动计算和智能计算密切相关。由于普适计算、协同计算、计算智能化和虚拟现实等前沿研究方向都可以归为情景感知计算,这使得情景感知计算具有广阔的研究前景与应用领域,成为了未来发展的重要方向。随着传感网、物联网、嵌入式系统、通信网络、分布式计算和移动计算等技术的发展,情景感知计算受到国内外专家学者和业界的广泛关注。与此同时,越来越多的情景感知应用也被开发出来。情景感知计算通过赋予系统感知周围环境的能力,来优化系统内部(调整自身行为、优化资源利用),简化用户与系统的交互,提升用户体验,使系统变得更加易用、智能和友好。
     情景信息与时空数据的契合:情景感知应用产生和积累了海量、动态、异构、无规律、分布在系统各处的情景信息。时空数据研究的最终目的是回答:“在何时(When)、何地(Where)、时空对象(Who或What)发生了什么样的变化(What)以及如何变化的(How)”,这与情景感知计算研究中的4W(Who、When、Where和What)非常契合。因此可以从时空特性角度,通过借鉴时空数据已有成果,来研究情景感知应用中的海量数据。
     情景信息生命周期:从情景信息生命周期角度来说,情景感知计算主要涉及情景信息的采集、管理和使用三个主要部分。情景信息的采集主要是通过用户界面分析/日志分析/数据语义分析或者传感器感知等方法。情景信息的管理主要包括情景的存储和处理两部分:(1)情景信息的存储是指根据情景信息的特征采取合适的表示方式来存储数据,并通过索引来保证有效的访问;(2)情景信息处理是通过将智能信息处理技术融入情景感知计算中,来获得更加准确、高级的情景信息。情景信息的使用则主要包括查询、分析等。本文深入研究面向情景感知计算的时空数据管理、查询、分析和相关算法,以期这些研究成果能对情景感知技术最终的推广起到重要的作用。
     研究内容:虽然情景感知计算和时空数据的研究已经取得一定成果,然而情景信息采集设备的数量和种类的越来越多,对用户隐私保护的越来越重视,对查询性能要求的越来越高,新的应用场景的引入,以及更深入智能洞察的需求,对本文的研究内容提出了更高的要求。本文主要对以下六个方面的内容进行了研究和讨论:
     (1)对情景感知计算和时空数据的研究现状进行了分析,简要回顾了情景感知计算和时空数据研究的发展过程,并详细分析了当前研究中存在的问题。(第1章)
     (2)对情景感知计算框架进行了研究,以达到有效地采集情景信息、屏蔽情景数据源的异构性、提高系统的可扩展性、保护用户隐私等目的。并以原型系统实现的方式验证了所提出OWS-MA框架(Open Web Service based Multi-Agent framework)的特性,该原型系统也用于实现、验证和展示后续提出的技术。(第2章)
     (3)通过分析情景感知应用中海量数据的时空特性,利用时态数据库、空间数据库、关系数据库和No SQL数据库技术,设计了适合情景感知应用的数据存储方案。并结合情景感知应用对时空查询种类的需求,提出了HSTI (Hybrid Spatial-Temporal Index)时空索引,提升了查询性能。(第3章)
     (4)由于存在多种位置采集策略,因此需要对于采集到的原始时空轨迹进行正确处理,以提高数据准确性。本文以时空轨迹匹配算法为例对时空数据处理进行了研究,所提出的DTW算法(a Dynamic Time Warping based algorithm for trajectory matching)能够有效地减弱多种位置采集策略的影响,提高数据准确性。(第4章)
     (5)源于情景感知计算中对群组集结点的实际需求,本文对群组最近邻查询进行了研究,针对查询对象移动、有障碍阻挡、位置信息不确定和隐私保护等新的应用场景,提出了基于区域的概率群组最近邻查询算法,并通过实验验证了所提出算法的有效性、高效性和可扩展性。(第5章)
     (6)对于特定应用领域(本文选择公共卫生领域-上海地区主要气象相关疾病预报服务)中的海量信息,通过分析多种情景信息之间关系,来发现其中蕴含的规律和知识。在这个应用实例中,在时间特性和空间特性之外,还考虑了气象因素和环境因素,定量地确定了气象因素与蚊虫密度、蚊虫活性之间关系。并通过具体应用实现和验证了本文所提出的情景感知计算框架和数据存储方案,以及在时空数据存储、处理、查询、分析方面提出的技术。(第6章)
     其中,每章研究工作的侧重点各不相同。第4章的时空轨迹研究侧重于讨论时间特性;第5章的时空查询算法侧重于讨论空间特性;第6章多情景数据分析中,在时间特性和空间特性之外,还考虑了气象因素和环境因素。
     主要创新点概括如下:
     (1)提出了OWS-MA情景感知计算框架,并通过原型系统实现的方式验证了所提出框架的特性。
     (2)设计了适合情景感知应用的数据存储方案,并通过所提出的HSTI索引技术提升了查询性能。
     (3)提出了基于DTW的时空轨迹匹配算法,并通过实验验证了算法的有效性,同时与IMHD和OWD算法相比,还增加了对时间顺序敏感、以及允许对时间维度进行一定程度放缩的特性。
     (4)提出了基于区域的概率群组最近邻查询算法,并通过实验验证了所提出查询算法的有效性,同时与PSPM和PMPM方法相比,降低了计算复杂度,提高了查询处理速度,并具有更好的可扩展性。
     (5)以公共卫生领域应用(虫媒传染病预防控制)为实例,将时空应用扩展到多属性的综合情景数据分析。通过深入地分析多种情景信息之间关系,定量地确定了气象因素与蚊虫密度、蚊虫活性之间的关系。并验证了本文所提出的情景感知计算框架和数据存储方案,以及在时空数据处理、查询和分析方面提出的技术。验证了本文中多属性综合情景数据分析的可行性与有效性。对该应用领域的信息化而言,也是首次重大突破。
Context Aware Computing:As a new computing form, context aware computing is closely related to pervasive computing, mobile computing and intelligent computing. Generally speaking, research frontiers such as pervasive computing, collaborative computing, intelligent computing and virtual reality are all context aware. This makes context aware computing a promising research area with vast applied prospects. With the developments of the Internet of things, sensor network, embedded system, communication network, distributed and mobile computing, context aware computing has drawn much attention from researchers both domestic and abroad. Meanwhile, more and more context aware applications have been developed. Through endowing the system the ability of sensing its surrounding environment, context aware computing optimizes the whole system (adjusting self behaviors, improving resource utilities), simplifies the interactions between the system and its users, improves users'experiences, makes the system intelligent, easy to use and user friendly.
     Context and spatial-temporal data:A huge amount of dynamic, heterogeneous, erratic and distributed data is generated and accumulated in context aware applications. Since time and space are the two basic components of these data, the achievements on spatial temporal data can be used in the research of these data. The researches on spatial temporal data aims to answer questions like "What has happened on it (him)? When, where and how does it happen?" These are quite similar with the4W (Who, When, Where and What) in context aware computing. Based on this reason, the researches on the huge amounts of data in context aware applications can be conducted from the spatial temporal characteristic perspective and combing the achievements on spatial temporal data research.
     The life circle of context:From the perspective of context life circle, context aware computing mainly involves context acquirement, management and usage. The context is acquired through analyzing user interfaces, logs, data semantic, physical and logic sensors. Storage and processing are the main parts of context management. In context storage, proper methods are used in representing, storing and indexing context. The integration of intelligent information processing technology and context aware computing provides more accurate and higher level information. Context usage is consisted of context query, analysis and etc. In this paper, researches on context awareness oriented spatial temporal data management, query processing, analysis and the related algorithms are conducted. The achievements will largely effect the application of context aware computing.
     Research scope:Although some progresses have been made on context aware computing and spatial temporal data, the new emerging context sensing devices, the emphasizing of user privacy, the higher requirement on query performance, and new emerging application scenarios make context aware computing a more challenging task. The research contents are summarized as follows:
     (1) The research statuses of context aware computing and spatial temporal data are surveyed. And through reviewing the history of context aware computing and spatial temporal data, existing problems are elaborated.(Chapter One)
     (2) Researches on context aware framework are conducted for effective acquiring contexts, masking heterogeneous data sources, improving the scalability, and protecting users'privacy. A prototype system is implemented to validate the proposed framework, it is also used in the implementations, validations and exhibitions of subsequent proposed methods.(Chapter Two)
     (3) Through the analysis of the characteristics of spatial temporal data, and the combination of existing achievements on temporal, spatial, relational and No SQL databases, a spatial temporal data management solution for context aware applications is designed. Based on the query requirements analysis of context aware applications, a spatial temporal index for context aware computing is proposed and validated to improve the query performance.(Chapter Three)
     (4) Since multiple location update strategies are existed, the sampled trajectories of one single object are not identical. A matching algorithm is required to distinguish the different samples of one trajectory from another trajectory. A dynamic time warping based trajectory matching algorithm is proposed. The proposed method can effectively attenuate the side effect of various location update strategies and improve date accuracy.(Chapter Four)
     (5) Since the rendezvous is a basic requirement in context aware computing, a thorough study of Group Nearest Neighbor query (GNN) is conducted. For emerging application scenarios, the Range based Probabilistic Group Nearest Neighbor query (RP-GNN) algorithm is proposed. Extensive experiments are conducted to validate the effectiveness, efficiency and scalability of the algorithm.(Chapter Five)
     (6) For the huge amount of data in some specified application domain (Such as public health. In this paper, searches are conducted based on the reasch project named Prediction System of Meteorology Related Diseases for Shanghai), analysis are conducted on the relationship among multiple context factors to discover the pattern and knowledge implied in the huge amount of data. Besides spatial and temporal characteristics, meteorological and environmental factors are also considered. The relationship between meteorological factors and mosquito density&activity is quantified. Meanwhile, the proposed context aware framework, data storage solution and methods on data acquiring, storing, processing and analysis are implemented and validated.(Chapter Six)
     The major contributions of our researches are summarized as follows:
     (1) The OWS-MA context aware framework is proposed and validated through the implementation of associated prototype system.
     (2) The design of data storage solution as well as the query performance improvement through the proposed HSTI spatial temporal index.
     (3) The Dynamic Time Warping base trajectory matching algorithm (DTW) is proposed. Its efficiency is validated through extensive experiments. Comparing with IMHD and OWD, DTW is also time sequence sensitive and time scaling tolerating.
     (4) The Range based Probabilistic Group Nearest Neighbor query (RP-GNN) algorithm is proposed. Its efficiency is validated through extensive experiments. RP-GNN reduces the computation complexity, speeds up the query processing, and acquires a better scalability.
     (5) The specific application (mosquito-borne infectious diseases prevention and control) is taken as a case study to extend the spatial temporal application into a multivariate data analysis. Through the comprehensive analysis of the relationship among multiple context factors, the relationship between meteorological factors and mosquito density&activity is quantified. Meanwhile, the proposed context aware framework, data storage solution and methods on data acquiring, storing, processing, and analysis are implemented and validated. The extension of spatial temporal application into a multivariate data analysis is feasible and effective. It is also an informatization breakthrough for mosquito-borne infectious diseases prevention and control
引文
[1]顾君忠.情景感知计算[J].华东师范大学学报(自然科学版),2009,(5):1-20.
    [2]DEY A K. Providing Architectural Support for Building Context-aware Applications [D]. Atlanta:Georgia Institute of Technology,2000. PHD Dissertation.
    [3]Gellersen H W, Schmidt A, Beigl M. Adding Some Smartness to Devices and Everyday Things [A]. Proceedings of the 3rd IEEE Workshop on Mobile Computing Systems and Applications [C].2000.3-10.
    [4]Gellersen H W, Schmidt A, Beigl M. Multi-sensor Context-awareness in Mobile Devices and Smart Artifacts [J]. Mobile Networks and Applications,2002, (5):341-351.
    [5]邵非.基于位置感知的移动信息服务若干关键技术研究[R].上海:华东师范大学,2011.博士学位论文.
    [6]Van L M, Ryan N. Educating the Digital Fieldwork Assistant [M]. Oxford:Archaeopress, 2002.
    [7]智慧的地球-百度百科[EB/OL].http://baike.baidu.com/view/2100683.htm.
    [8]Ismail H, David H, Larry S D. W4:Who? When? Where? What? A Real Time System for Detecting and Tracking People [A]. Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition [C].1998.222-227.
    [9]汤庸.时态数据库导论[M].北京:北京大学出版社,2004.
    [10]Michael Worboys. Event-oriented Approaches to Geographic Phenomena [J]. International Journal of Geographical Information Science,2005, (1):1-28.
    [11]郭菁,周洞汝,郭薇,胡志勇.空间数据库索引技术的研究[J].计算机应用研究,2003,(12):12-14.
    [12]谢炯.无缝时空的多域集成时空数据模型研究[D].浙江:浙江大学理学院,2005.博士学位论文.
    [13]Junzhong Gu, Liang He, Jing Yang, Zhao Lu. Location Aware Mobile Cooperation-Design and System [J]. International Journal of Signal Processing, Image Processing and Pattern Recognition,2009, (4):49-60.
    [14]Junliang Feng, Junzhong Gu, Zili Zhou. An Improved Ranking Aggregation Method for Meta-search Engine [A]. Proceedings of the 7th FTRA International Conference on Multimedia and Ubiquitous Engineering [C].2013. Accepted.
    [15]Jian Song, Liang He, Xin Lin. Improving the Accuracy of Tagging Recommender System by Using Classification [A]. Proceedings of the 12th International Conference on Advanced Communication Technology [C].2010,387-391.
    [16]Junzhong Gu. Middleware for Physical and Logical Context Awareness [A]. Signal Processing, Image Processing and Pattern Recognition, Communications in Computer and Information Science [C].2011.366-378.
    [17]Coulson G, Grace P. Towards a Component-based Middleware Architecture for Flexible and Reconfigurable Grid Computing [A]. Proceedings of 13th IEEE International Workshops on Enabling Technologies, Infrastructure for Collaborative Enterprises [C].2004.291-296.
    [18]Harry Chen. An Intelligent Broker Architecture for Pervasive Context-Aware Systems [D]. University of Maryland,2004. PhD thesis.
    [19]Blair G S, Andersen G. The Design and Implementation of OpenORB v2 [J]. IEEE DS Online, Special Issue on Reflective Middleware,2001, (6).
    [20]龚玺,裴韬,孙嘉,罗明.时空轨迹聚类方法研究进展[J].地理科学进展,2011,(5):522-534.
    [21]浙江省台风路径实时发布系统[EB/OL]. http://typhoon.zjwater.gov.cn/.
    [22]TimeDB[EB/OL]. http://www.timeconsult.com/Software/Software.html.
    [23]汤庸,刘海,郭欢,叶小平.TempDB:时态数据管理系统[J].计算机研究与发展,2010,(47):442-445.
    [24]Oracle Spatial-百度百科[EB/OL]. http://baike.baidu.com.cn/view/4761847.htm.
    [25]IBM Informix Spatial DataBlade [EB/OL]. http://www-01.ibm.com/software/data/informix/spatial/.
    [26]PostGIS-百度百科[EB/OL]. http://baike.baidu.com/view/1871110.htm.
    [27]Xiaofeng Tong, Jia Liu, Tao Wang, Yimin Zhang. Automatic Player Labeling, Tracking and Field Registration and Trajectory Mapping in Broadcast Soccer Video [J]. ACM Transactions on Intelligent Systems and Technology,2011,2(2):article 15.
    [28]Hu W, Li X, Tian G, Tian G, Maybank S. An Incremental DPMM-Based Method for Trajectory Clustering, Modeling, and Retrieval [J]. IEEE transactions on pattern analysis and machine intelligence,2013, (5):1051-1065.
    [29]Lopez-Mendez A, Casas J R. Model-based Recognition of Human Actions by Trajectory Matching in Phase Spaces [J]. Image and Vision Computing,2012, (30):808-816.
    [30]Khalid S. Incremental Indexing and Retrieval Mechanism for Scalable and Robust Shape Matching [J]. Multimedia systems,2012,18(4):319-336.
    [31]Zhao Z, Cui B, Cong G. Extracting Representative Motion Flows for Effective Video Retrieval [J]. Multimedia Tools and Applications,2012, (3):687-711.
    [32]Yang Y, Chen K. Temporal Data Clustering Via Weighted Clustering Ensemble with Different Representations [J]. IEEE Transactions on Knowledge and Data Engineering,2011, (2):307-320.
    [33]Lei C, Ozsu M T, Vincent O. Robust and Fast Similarity Search for Moving Object Trajectories [A]. Proceedings of the 2005 ACM SIGMOD international conference on Management of data [C].2005.491-502.
    [34]Seok-Lyong Lee, Seok-Ju Chun, Deok-Hwan Kim, Ju-Hong Lee, Chin-Wan Chung. Similarity Search for Multidimensional Data Sequences [A]. Proceedings of the 16th International Conference on Data Engineering [C].2000.599-608.
    [35]Nirvana M, Rolf A B. Aggregation and Comparison of Trajectories [A]. Proceedings of the 10th ACM international symposium on Advances in geographic information systems [C]. 2002.49-54.
    [36]Michail V, Gunopulos D, Gautam D. Rotation Invariant Distance Measures for Trajectories [A]. Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining [C].2004.707-712.
    [37]Michail V, George K, Dimitrios G. Discovering Similar Multidimensional Trajectories [A]. Proceedings of the 18th International Conference on Data Engineering [C].2002.673-684.
    [38]Yutaka Y, Jun-ichi A, Tetsuji S. Shape-based Similarity Query for Trajectory of Mobile Objects [J]. Mobile Data Management, Lecture Notes in Computer Science,2003, (2574): 63-77.
    [39]Yuan-Ko Huang, Chao-Chun Chen, Chiang Lee. Continuous K-Nearest Neighbor Query for Moving Objects with Uncertain Velocity [J]. Geoinformatica,2009, (13):1-25.
    [40]Jurca O, Michel S, Herrmann A. Continuous Query Evaluation over Distributed Sensor Networks [A].26th IEEE International Conference on Data Engineering (ICDE) [A].2010: 912-923.
    [41]Hui Z S, En T W, Arbee L P C. Continuous Probabilistic Skyline Queries over Uncertain Data Streams [J]. Database and Expert Systems Applications, Lecture Notes in Computer Science, 2010,(6261):105-121.
    [42]Yunjun Gao. Visible Reverse k-Nearest Neighbor Queries [A]. Proceedings of the 25th International Conference on Data Engineering [C].2009.1203-1206.
    [43]Yunjun Gao. Visible Reverse k-Nearest Neighbor Query Processing in Spatial Databases [J]. IEEE Transactions on Knowledge and Data Engineering, Volume,2009, (9):1314-1327.
    [44]Lyublena A, Christoph K, Dan O.10^(10^6) Worlds and Beyond:Efficient Representation and Processing of Incomplete Information [J]. The International Journal on Very Large Data Bases,2009, (5):1021-1040.
    [45]Reynold C, Dmitri V K, Sunil P. Querying Imprecise Data in Moving Object Environments [J]. IEEE Transactions on Knowledge and Data Engineering,2004, (9):1112-1127.
    [46]Charu C A, Philip S Y. A Survey of Uncertain Data Algorithms and Applications [J].IEEE Transactions on Knowledge and Data Engineering,2009, (5):609-623.
    [47]Bruce S E Chung, Wang-Chien Lee, Arbee L P Chen. Processing Probabilistic Spatio-Temporal Range Queries over Moving Objects with Uncertainty [A]. Proceedings of the 12th International Conference on Extending Database Technology:Advances in Database Technology [C].2009.60-71.
    [48]Yifei Chen, Xiaolin Qin, Liang Liu. Uncertain Distance-Based Range Queries over Uncertain Moving Objects [J]. Journal of Computer Science and Technology,2010,(5):982-998.
    [49]Donald Knuth. The Art of Computer Programming [M]. Addison-Wesley Educational Publishers Inc.,2005.
    [50]Roussopoulos N, Kelly S, Vincent F. Nearest Neighbor Queries [A]. Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data [C].1995.71-79.
    [51]Gao Y, Zheng B, Chen G. Continuous Nearest-neighbor Search in the Presence of Obstacles [J]. ACM Transactions on Database Systems (TODS),2011, (2):9.
    [52]Yunjun Gao. Continuous Obstructed Nearest Neighbor Queries in Spatial Databases [A]. Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data [C].2009.577-590.
    [53]Nutanong S, Tanin E, Zhang R. Incremental Evaluation of Visible Nearest Neighbor Queries [J]. IEEE Transactions on Knowledge and Data Engineering,2010, (5):665-681.
    [54]Haibo Hu. Range Nearest-neighbor Query [J]. IEEE Transactions on Knowledge and Data Engineering,2006, (1):78-91.
    [55]Korn F, Muthukrishnan S. Influence Sets Based on Reverse Nearest Neighbor Queries [A]. Proceedings of the 2000 ACM SIGMOD international conference on Management of Data [C].2000.201-212.
    [56]Yufei T, Dimitris P, X Lian. Multi-dimensional Reverse kNN Search [A]. Proceedings of the 32th International Conference on Very Large Databases [C].2006.121-163.
    [57]Xuemin Lin, Wei Wang, Wenjie Zhang, Jian Pei. Probabilistic Reverse Nearest Neighbor Queries on Uncertain Data [J]. IEEE Transactions on Knowledge and Data Engineering,2010, (4):550-564.
    [58]Cheema M A, Lin X, Wang W. Probabilistic Reverse Nearest Neighbor Queries on Uncertain Data [J]. IEEE Transactions on Knowledge and Data Engineering,2010, (4):550-564.
    [59]Dimitris P, Qiongmao S, Yufei T, Kyriakos M. Group Nearest Neighbor Queries [A]. Proceedings of the 20th International Conference on Data Engineering [C].2004.301-312.
    [60]Dimitris P, Yufei T, Kyriakos M, Chun K H. Aggregate Nearest Neighbor Queries in Spatial Databases [J]. ACM Transactions on Database Systems,2005, (2):529-576.
    [61]Xiang Lian, Lei Chen. Probabilistic Group Nearest Neighbor Queries in Uncertain Databases [J]. IEEE Transactions on Knowledge and Data Engineering,2008, (6):809-824.
    [62]Zhu L, Jing Y, Sun W. Voronoi-based Aggregate Nearest Neighbor Query Processing in Road Networks [A]. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems [C].2010.518-521.
    [63]Ke Deng, Shazia Sadiq. On Group Nearest Group Query Processing [J]. IEEE Transactions on Knowledge and Data Engineering,2012, (2):295-308.
    [64]Tanzima Hashem, Lars Kulik, Rui Zhang. Privacy Preserving Group Nearest Neighbor Queries [A]. Proceedings of the 13th International Conference on Extending Database Technology [C].2010.489-500.
    [65]Liang Zhu, Yinan Jing, Weiwei Sun, Dingding Mao, Peng Liu. Voronoi-Based Aggregate Nearest Neighbor Query [A]. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems [C].2010.518-521.
    [66]Stephan B, Donald K, Konrad S. The Skyline Operator [A]. Proceedings of the 17th International Conference on Data Engineering [C].2001.421-430.
    [67]Lee Y W, Lee K Y, Kim M H. Efficient Processing of Multiple Continuous Skyline Queries over a Data Stream [J]. Information Sciences,2012, (221):316-337.
    [68]Hsueh Y L, Zimmermann R, Ku W S. SkyEngine:Efficient Skyline Search Engine for Continuous Skyline Computations [A].27th IEEE International Conference on Data Engineering (ICDE) [C].2011.1316-1319.
    [69]Xin Lin, JianLiang Xu, Haibo Hu. Range-based Skyline Queries in Mobile Environments [J]. IEEE Transactions on Knowledge and Data Engineering,2013, (4):35-849.
    [70]Ding X, Jin H. Efficient and Progressive Algorithms for Distributed Skyline Queries over Uncertain Data [J]. IEEE Transactions on Knowledge and Data Engineering,2012, (8): 1448-1462.
    [71]Xin Lin, Jianliang Xu, Junzhong Gu. Continuous Skyline Queries with Integrity Assurance in Outsourced Spatial Databases [J]. Web-Age Information Management, Lecture Notes in Computer Science,2012, (7418):114-126.
    [72]Soliman M A, Ilyas I F, Chang K C. Top-k Query Processing in Uncertain Databases [A]. Proceedings of the 23rd International Conference on Data Engineering [C].2007.896-905.
    [73]Richard A J, Dean W W. Applied Multivariate Statistical Analysis [M]. Pearson,2007.
    [74]多元变量分析-维基百科[EB/OL]. http://zh.wikipedia.org/wiki/多元变量分析
    [75]周毅彬.冷培恩,曹辉,唐毅,刘俊,朱江.气温和降雨量对白纹伊蚊密度影响的研究[J].中华卫生杀虫药械,2010,(2):105-107.
    [76]景晓,李兆凰,霍新北,张世水,刘峰,宫学诗.影响骚扰阿蚊种群诱捕数量的环境气象因素分析与探讨[J].中华卫生杀虫药械,2005,(3):171-173.
    [77]赵瑶,刘泽军,曾晓芃,张勇,于传江,钱坤,薛素琴.北京市蚊虫密度与气象因素关系的研究[J].中国媒介生物学及控制杂志,2009,(1):11-14.
    [78]曲波,黄德生,郭海强,关鹏,周宝森.气象因素与两种虫媒传染病关系的探讨[J].中国媒介生物学及控制杂志,2005,(6):450-452.
    [79]闵继光,顾品强,顾正权,黄品贤,宋花玲.上海奉贤三带喙库蚊13年首次出现气象分析[J].中国媒介生物学及控制杂志,2003,(1):36-40.
    [80]奚国良.气象因素对蚊虫密度的影响研究[J].中国媒介生物学及控制杂志,2000,(1):24-26.
    [81]贾尚春,邹铮,徐伏牛.全球气候变暖对疟疾传播的潜在影响[J].中国寄生虫病防治杂志,2004,(1):63-64.
    [82]杨维芳,孙俊,徐燕,褚宏亮,刘大鹏,张爱军,徐庆,郑一平.三带喙库蚊发生量与气象因子相关性初步分析[J].中国媒介生物学及控制杂志,2010,(1):49-50.
    [83]曲波,郭海强,关鹏,周宝森,黄德生.气象因素对流行性乙型脑炎发病率影响的研究[J].中华流行病学杂志,2006,(2):179-179.
    [84]智能体-百度百科[EB/OL]. http://baike.baidu.com/view/525807.htm.
    [85]FIPA Agent Management Specification [EB/OL]. http://www.fipa.org/specs/fipa00023/SC00023K.html.
    [86]Junzhong Gu, Gong-Chao Chen. Design of Physical and Logical Context Aware Middleware [J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2012,(1):113-130.
    [87]Michael W, Nicholas R J. Intelligent Agents:Theory and Practice [J]. The Knowledge Engineering Review,1995, (2):115-152.
    [88]Aversa R, Di Martino B, Rak M. Cloud agency:A Mobile Agent Based Cloud System[A]. IEEE International Conference on Complex, Intelligent and Software Intensive Systems (C1S1S)[C].2010.132-137.
    [89]Galliers J R. A Theoretical Framework for Computer Models of Cooperative Dialogue, Acknowleging Multi-Agent Confilct [D]. UK:Open University, PhD thesis.
    [90]Ben-Naim J. Bonnefon J F, Herzig A. Computer-mediated Trust in Self-interested Expert Recommendations [J]. AI & society,2010, (4):413-422.
    [91]Stefania C, Leonardo M, Arianna T, Panagiota T. Dalica:Agent-Based Ambient Intelligence for Cultural-Heritage Scenarios [J]. IEEE Intelligent Systems,2008, (2):34-41.
    [92]Zhaohui Wu, Qing Wu, Hong Cheng, Gang Pan, Minde Zhao, Jie Sun. ScudWare:A Semantic and Adaptive Middleware Platform for Smart Vehicle Space [J]. IEEE Transactions on Intelligent Transportation Systems,2007, (1):121-132.
    [93]Yue Suo, Naoki Miyata, Toru Ishida, Yuanchun Shi. Open Smart Classroom:Extensible and Scalable Learning System in Smart Space Using Web Service Technology [J]. IEEE Transactions on Knowledge and Data Engineering,2009, (6):814-828.
    [94]面向服务架构-百度百科[EB/OL]. http://baike.baidu.com/view/453197.htm.
    [95]Web Services Architecture [EB/OL]. http://www.w3.org/TR/ws-arch/.
    [96]SCA服务构件架构[EB/OL]. http://tuscany.apache.org/sca.data/SCA_AssemblyModel_V100%E4%B8%AD%E6%96%87 %E7%89%88.pdf.
    [97]Kim D H, Ryu K H, Park C H. Design and Implementation of Spatiotemporai Database Query Processing System [J]. Journal of Systems and Software,2002, (60):37-49.
    [98]翟亮,李霖,唐新明.时空数据模型的研究[J].测绘与空间地理信息,2005,(4):14-16.
    [99]Yannis T, Michael V, Timos K S. Spatio-Temporal Indexing for Large Multimedia Applications [A]. Proceedings of the 3rd IEEE International Conference on Multimedia Computing and Systems [C].1996.441-448.
    [100]Yufei Tao, Dimitris P. Efficient Historical R-trees [A]. Proceedings of the 13th International Conference on Scientific and Statistical Database Management [C].2001.223-232.
    [101]Yufei Tao, Dimitris P. The MV3R-tree:a Spatio-temporal Access Method for Timestamp and Interval Queries [A]. Proceedings of the 27th International Conference on Very Large Databases[C].2001.431-440.
    [102]Saltenis S, Jensen C, Leutenegger S, Lopez M. Indexing the Positions of Continuously Moving Objects [A]. Proceedings of the 2000 ACM SIGMOD international conference on Management of data [C].2000.331-342.
    [103]Xia Y, Prabhakar S. Q+Rtree:Efficient Indexing for Moving Object Databases [A]. Proceedings of the 8th International Conference on Database System for Advanced Applications [C].2003.175-182.
    [104]丁治明,李肖南,余波.网络受限移动对象过去、现在及将来位置的索引[J].软件学报,2009,(12):3193-3204.
    [105]Yufei T, Dimitris P, Jimeng S. The TPR*-tree:An Optimized Spatio-temporal Access Method for Predictive Queries [A]. Proceedings of the 29th international conference on Very Large Data Bases [C].2003.790-801.
    [106]Gregory M H. Efficient Computation and Data Structures for Graphics [D]. NJ:Princeton University,1978. PhD Thesis.
    [107]Orenstein J A. Multidimensional Tries Used for Associative Searching [J]. Information Processing Letters.1982,(14):150-157.
    [108]Kedem G. The Quad-CIF tree:A Data Structure for Hierarchical on-line Algorithms [R]. New York:Computer Science Department of University of Rochester,1981.
    [109]Samet H, Weber R E. Using Quadtrees to Represent Polygonal Maps [A]. Proceedings of the Computer vision and pattern recognition [C].1983.127-132.
    [110]Jamel T, Ozgur U, Ouri W. A Quadtree Based Dynamic Attribute Indexing Method [J]. The Computer Journal,1998, (3):185-200.
    [111]Scott T L, Mario A L, Jeffrey E. STR:A Simple and Efficient Algorithm for R-Tree Packing [A]. Proceedings of the 13th International Conference on Data Engineering [C].1997. 497-506.
    [112]You J K, Patel J M. Performance Comparison of the R-tree and the Quadtree for kNN and Distance Join Queries [J]. IEEE Transactions on Knowledge and Data Engineering,2010, (7):1014-1027.
    [113]张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,(3):289-300.
    [114]周傲英,杨彬,金澈清,马强.基于位置的服务:架构与进展[J].计算机学报,2011,(7):1155-1171.
    [115]Yufei T, Papadias D. Performance Analysis of R*-Trees with Arbitrary Node Extents [J]. IEEE Transactions on Knowledge and Data Engineering,2004, (6):653-668.
    [116]Norbert B, Hans P K, Ralf S, Bernhard S. The R*-tree:an Efficient and Robust Access Method for Points and Rectangles [A]. Proceedings of the 1990 ACM SIGMOD international conference on Management of data [C].1990.322-331.
    [117]Jimeng S, Papadias D, Yufei T, Bin L. Querying about the Past, the Present, and the Future in Spatio-Temporal Databases [A]. Proceedings of the 20th International Conference on Data Engineering [C].2004.202-213.
    [118]http://www.rtreeportal.org/
    [119]Bin Lin, Jianwen Su. One Way Distance:For Shape Based Similarity Search of Moving Object Trajectories [J]. Geoinformatica,2008,(12):117-142.
    [120]Fei Shao, Junzhong Gu. IMHD-ST:an Algorithm for 3-Dimensional Spatial-Temporal Trajectory Matching [J]. China Communications,2010, (6):128-140.
    [121]William J R. Efficiently Locating Objects Using the Hausdorff Distance [J]. International Journal of Computer Vision,1997, (3):251-270.
    [122]Sanqiang Zhao, Yongsheng Gao. Textural Hausdorff Distance for Wider-Range Tolerance to Pose Variation and Misalignment in 2D [A]. Proceedings of the 22th IEEE Conference on Computer Vision and Pattern Recognition [C].2009.1629-1634.
    [123]Dubuisson M P, Jain A K. A Modified Hausdorff Distance for Object Matching [A]. Proceedings of the 12nd International Conference on Pattern Recognition [C].1994. 566-568.
    [124]Pesti P, Liu L, Bamba B. RoadTrack:Scaling Location'Updates for Mobile Clients on road Networks with Query Awareness [J]. Proceedings of the VLDB Endowment,2010,3(1-2): 1493-1504.
    [125]Pavel S. Dynamic Time Warping Algorithm Review [D]. Information and Computer Science Department, University of Hawaii at Manoa,2008.
    [126]http://weather.unisys.com/hurricane/index.html
    [127]Reynold C, Sunil P, Dmitri V K. Querying Imprecise Data in Moving Object Environments [A]. Proceedings of the 19th International Conference on Data Engineering [C].2003. 723-725.
    [128]Yufei T, Reynold C, Xiaokui X, Wang K N, Ben K, Sunil P. Indexing Multi-Dimensional Uncertain Data with Arbitrary Probability Density Functions [A]. Proceedings of the 31st international conference on Very large data bases [C].2005.922-933.
    [129]Peng Chen, Junzhong Gu, Xin Lin, Rong Tan. A Probabilistic Approach for Rendezvous Decisions with Uncertain Data [J]. Journal of Computational Information Systems,2011, (13):4668-4677.
    [130]林欣,李善平,杨朝晖.LBS中连续查询攻击算法及匿名性度量[J].软件学报,2009,(4):1058-1068.
    [131]Mark D B, Otfried C, Marc V K, Mark O. Computational Geometry:Algorithms and Applications [M]. Berlin Heidelberg:Springer-Verlag,2008.
    [132]余向华,徐毅,吴正可,薛大燕,管鸿巧.蚊媒传染病气象影响因素分析[J].中国媒介生物学及控制杂志,2008,(1):61-63.
    [133]王伟明,李菊林,周华云,曹俊,杨坤,顾亚萍,朱国鼎,刘耀宝.不同温度条件对中华按蚊发育的影响[J].中国血吸虫病防治杂志,2010,(3):260-263.
    [134]虫媒传染病-百度百科[EB/OL]. http://baike.baidu.com/view/418364.htm.
    [135]流行性乙型脑炎-百度百科[EB/OL]. http://baike.baidu.com/view/62013.htm?fromId=597467.
    [136]代培芳,赵俊英,刘美德.蚊虫密度的气象影响因素分析[J].中国媒介生物学及控制杂志,2011,(6):547-549.
    [137]杨维芳,孙俊,徐燕.三带喙库蚊发生量与气象因子相关性初步分析[J].中国媒介生物学及控制杂志,2010,(1):49-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700