AZ91D镁合金在硫酸镍镀液中化学镀镍工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于镁合金具有质轻、高导热性、高的比强度和比刚度、抗电磁干扰、抗震和易于回收等优点,现已被广泛应用于航空航天工业、汽车行业、光学仪器、电讯、音响材料等领域。但其耐蚀性差是制约其应用的主要原因之一。
     本文综述了镁合金防护方法及化学镀镍的研究进展,并以AZ91D镁合金为实验材料,研究了NiSO_4化学镀镍的工艺条件、工艺流程,以及镀液pH值、施镀温度、主盐NiSO_4、还原剂NaH_2PO_2、配合剂柠檬酸等因素对化学镀镍的影响;利用卧式金相显微镜(HMM)、等离子体原子发射光谱仪(ICP-AES)、X射线衍射仪(XRD)、显微硬度仪(MHT)等技术测试了镀层的性能。研究结果表明:
     (1) 通过对镁合金化学镀镍酸洗、活化、浸锌、镀铜和化学镀镍的研究,得到了最佳的配方,确定化学镀镍的工艺流程为:超声波清洗→酸洗→活化→浸锌→活化液退除→二次浸锌→化学镀镍→钝化(各步间水洗)。
     (2) 在pH值为3.0~7.0、温度为70℃-95℃范围内进行化学镀镍,得到镀液最佳酸度为4.0,最佳施镀温度为95℃。随着主盐NiSO_4和还原剂NaH_2PO_2浓度的增加,沉积速率先增加后减少,在浓度分别为25g·dm~(-3)和30g·dm~(-3)时沉积速率达最大值。随着配合剂柠檬酸浓度的增加,沉积速率减小,镀层厚度减少,镀层的耐蚀性能降低。延长镀镍时间有助于提高其耐蚀性,镀镍时间一般采用1~2h。在化学镀镍过程中施加超声波能细化晶粒,能使颗粒分散均匀,从而改善镀层的均镀能力,提高镀层的耐蚀性。
     (3) 通过正交试验进一步确定了镁合金化学镀镍的最佳实验条件。在此条件下得到的镀层的磷含量为7.9%,为非晶体结构,镀层硬度为640HV,镀层与基体间结合力强,耐蚀性比镁合金明显提高了。
     (4) 实验发现在工艺施镀温度下镁合金基体不会受到NiSO_4主盐配制的镀液的腐蚀,并从热力学和化学动力学的角度分析了镁合金化学镀镍的机理。
     (5) 采用EDTA配合滴定法和间接碘量法分别测定化学镀镍镀液中Ni~(2+)和H_2PO_2~-浓度,通过PdCl_2试验及镀液稳定常数来评定镀液的使用寿命。
     研究的以NiSO_4为主盐配制的镀液比以NiCO_3·2Ni(OH)_2·4H_2O为主盐镀液镀镍工艺价格低廉,镀层质量优良,在生产中具有实际意义。
Magnesium alloys have many advantages such as lightness, good thermal conductivity, high strength to weight ratio and impact strength, ability to dampen electromagnetism and shock waves and being reclaimed easily, so they have been widely used in many fields such as aerospace, automobile, optics apparatus, telecommunication, acoustics materials and so on. However poor corrosion resistance is one of main causes to restrict their applications.
    Recent advances in corrosion control measures and electroless nickel plating of magnesium alloys were reviewed in this thesis. The condition and flow of eletroless nickel plating technology on magnesium alloy AZ91D as well as the main influencing factors of bath pH, plating temperature, main salt of nickel sulfate, reducing agent sodium hypophosphite, complexing agent citric acid and so forth were studied. Techniques, such as horizontal metallographic microscopy (HMM), inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), microhardness tester (MHT) and so on, were employed to determine the properties of the coating. The results are indicated as follows:
    (1) The formulations of acid pickling, activation, immersing zinc, copper plating and electroless nickel plating in electroless nickel plating process on magnesium alloys were studied. The optimal formulations were gained as well as the operation sequence of electroless nickel plating, i.e. ultrasonic degreasing, acid pickling, activation, immersing zinc, stripping in activation solution, then the second immersing zinc, electroless nickel plating , finally passivation treatment(water rinse with each other).
    (2) Electroless nickel plating was investigated at the plating temperature from 70 C to 95 C and the pH from 3.0 to 7.0. It showed that the optimal pH value and plating temperature were 4.0 and 95 C respectively. The deposition rate increased at first and decreased subsequently with the increasing concentrations of main salt nickel sulfate and reducing agent sodium hypophosphite. The deposition rate reached the maximum when the concentrations of nickel sulfate and sodium hypophosphite were 25 g dm-3 and 30 g-dm3 respectively. The deposition rate and the coating thickness decreased with the increasing concentration of complexing agent citric acid, and therefore the corrosion resistance of the coating became worse. Prolonging the plating time could improve the corrosion resistance of the coating. The plating time was usually 1 to 2
    
    
    
    hours. When ultrasonic was performed during electroless nickel plating, it could diminish and disperse uniformly the grain, improving the uniformity and the corrosion resistance of the coating accordingly.
    (3) The optimal condition of eletroless nickel plating on magnesium alloys was obtained by the orthogonal test. The phosphorus content of the coating gained under this condition was 7.9% and the coating was non-crystal. The Vickers microhardness value of it was 640. The specimen showed good adhesion and better corrosion resistance than magnesium alloys.
    (4) Magnesium alloys substrate was not corroded in the bath of nickel sulfate at plating temperature. The reaction mechanism of electroless nickel plating on magnesium alloys was described based on the principles of thermodynamics and chemical dynamics.
    (5) The concentrations of nickel ion and hypophosphite in the electroless nickel bath were determined with the methods of the EDTA complexing titration and indirect iodimetry respectively. The life-span of bath could be evaluated by palladium chloride test and determination of steady constant of the bath.
    Investigation results showed that the coating obtained in the bath of nickel sulfate is better than that in the bath of basic nickel carbonate. Meanwhile, the cost of nickel sulfate is lower. So the plating process of nickel sulfate has more practical significance in the production.
引文
[1] Polmear I J. Recent developments in light alloys, Materials Transactions JIM, 1996, 37(1): 12-31
    [2] 余琨,黎文献,李松瑞等.含稀土镁合金的研究与开发.特种铸造及有色合金,2001(1):41-43
    [3] 曾荣昌,柯伟,徐永波等.Mg合金的最新发展及应用前景.金属学报,2001,37(7):673-685
    [4] 王祝堂.镁与汽车.轻合金加工技术,1994,22(6):2-8
    [5] 李晓敏.压铸镁合金在汽车中的应用及其发展前景.世界有色金属,2001(9):16-18
    [6] 吕宜振,王渠东,曾小勤等.镁合金在汽车上的应用现状.汽车技术,1999(8):28-31
    [7] 刘长瑞,王伯健,胡裕邦.镁合金材料在电子行业中的开发应用前景.镁铝通讯,2001(2):53-55
    [8] 刘正.镁合金压铸及其铸件低周疲劳行为与裂纹扩展的研究:[博士学位论文].沈阳:中国科学院金属研究所,2001,15-17
    [9] 罗黎.国内外镁生产状况分析及对我国镁工业生产的看法.有色冶炼,1998(6):109-112
    [10] 田震.金属镁生产技术现状及发展.海湖盐与化工,2002,31(3):11-13
    [11] 吴秀铭.中国镁工业50年.世界有色金属,T(246):75-77
    [12] Polmear I J. Magnesium alloys and application. Mater. Sci. & Tech., 1994, 10:1-14
    [13] 尹守义.国外镁合金的新发展.世界有色金属,1994(7):9-11
    [14] 张永忠,张奎,樊建中等.压铸镁合金及其在汽车工业中的应用.特种铸造及有色合金,1999(3):54-56
    [15] 李玉兰,刘江,彭晓东.镁合金压铸件在汽车上的应用.特种铸造及有色合金,1999(增刊)(1):120-122
    [16] 文斯雄.镁合金零件局部的抗蚀保护.电镀与精饰,1999,21(5):31-32
    [17] 曾小勤,王渠东,吕宜振等.镁合金的应用新进展.铸造,1998(11):39-43
    [18] Ambat R, Aung N N, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science, 2000, 42: 1433-1455
    [19] 姚美意,周邦新.镁合金耐蚀表面处理的研究进展.材料保护,2001,34(10):19-21
    [20] Song G L, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1999, 1(1): 11-33
    
    
    [21] Maker G L, Kruger J. Corrosion studies of rapidly solidified magnesium alloys. Journal of the Eletrochemical Society, 1990, 137(2): 414-421
    [22] 王益志.杂质对高纯镁合金耐蚀性的影响.铸造,2001,50(2):61-65
    [23] 吴振宁,李培杰,刘树勋等.镁合金腐蚀问题研究现状.铸造,2001,50(10):583-586
    [24] Pourbiax M. Atlas of electrochemical equilibria in aqueous solutions. Houston: National Association of Corrosion Engineers, 1974, 141
    [25] Stippich F, Vera E, Wolf G K, et al. Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by ion beam-assisted evaporation. Surrface and Coatings Technology, 1998, 103-104:29-35
    [26] Luo A. Renaud J, Nakatsugawa I, et al. Magnesium castings for aktomotive applications. JOM, 1995, 47(7): 28-31
    [27] Subramanian R, Sircar S, Mazumder J. Laser cladding of zirconium on magnesium for improved corrosion properties. Journal of Materials Science, 1991, 26(4): 951-956
    [28] Shigematsu I, Nakamura M, Saitou N, et al. Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating. Journal of Materials Science Letters, 2000, 19(6): 473-475
    [29] Sharma A K. Chromate conversion coatings for magnesium-lithium alloys. Metal Finishing, 1989, 87(2): 73-74
    [30] Joesten L S. Process for applying a coating to a magnesium alloy product. US. 5683522, 1997, 1997-11-04
    [31] Lvar J, Walter M, Albright D. Characteristics and applications of magnesium in automotive design. Warrendale Pa.: Society of Automotive Engineers, 1997, 7
    [32] Shikata N, Kondou Y, Nishikawa Y, et al. Surface-treated article of magnesium or magnesium alloys, method of surface preparation and method of coating. WO. 9947729, 1999-09-23
    [33] Tomlinson C E. Conversion coatings for metal surfaces. US. 5380374, 1995-1-10
    [34] 周婉秋,单大勇,韩恩厚等.镁合金无铬化学转化膜的耐蚀性研究.材料保护,2002,35(2):12-14
    [35] 曾爱平,薛颖,钱宇峰等.镁合金的化学表面处理.腐蚀与防护,2000,21(2):55-56
    [36] 李淑华,程金生,尹玉军等.微弧氧化过程中电流和电压变化规律的探讨.特种铸造及有色合金,2001(3):4-5
    [37] Busk R S. Magnesium products design. N Y: Marcel Dekker Inc., 1987, 517-534
    
    
    [38] Emley E F. Principles of magnesium technology. Headington Hill Hall, Oxford: Pergamon Press Ltd, 1966, 670-705
    [39] Zhang Y J, Yan C W, Wang F H, et al. Study on the environmentally friendly anodizing of AZ91D magnesium alloy. Surface and Coatings Technology, 2002, 161:36-43
    [40] Sharma A K, Rani R U, Bhojaraj H, et al. Galvanic black anodizing on Mg-Li alloys. Journal of Applied Electrochemistry, 1993, 23(5): 500-507
    [41] Sharma A K, Rani R U, Giri K. Studies on anodization of magnesium alloy for thermal control application. Metal Finishing, 1997, 95(3): 43-51
    [42] 张永君,严川伟,楼翰一等.Mg及其合金的阳极氧化技术进展.腐蚀科学与防护技术,2001,13(4):214-217
    [43] 郭兴伍,丁文江.镁合金阳极氧化的研究与发展现状.材料保护,2002,35(2):1-3
    [44] 张永君,严川伟,楼翰一等.镁及镁合金阳极氧化工艺综述.材料保护,2001,34(9):24-26
    [45] 来永春,陈如意,邓志威等.微弧氧化技术在纺织工业中的应用.腐蚀科学与防腐技术,1998,10(1):49-52
    [46] 李淑华,尹玉军,程金生等.微弧氧化技术与材料表面陶瓷化.特种铸造及有色合金,2001(1):36-37
    [47] 薛文彬,邓志威,来永春等.有色金属表面微弧氧化技术评述.金属热处理,2000,25(1):1-3
    [48] 邓志威,薛文彬,汪新福等.铝合金表面微弧氧化技术[J].材料保护,1996,29(2):15-16
    [49] 薛文彬,来永春,邓志威等.镁合金微等离子体氧化膜的特性.材料科学与工艺,1997,5(2):89-92
    [50] 薛文彬,邓志威,来永春等.ZM5镁合金微弧氧化膜的生长规律.金属热处理学报,1998,19(3):42-45
    [51] 薛文彬,邓志威,张通知等.铸造镁合金微弧氧化机理.稀有金属材料与工程,1999,28(6):353-356
    [52] Zozulin A J, Bartak D E. Anodized coatings for magnesium alloys. Metal Finishing, 1994. 92(3): 39-43
    [53] 刘凤岭,骆更新,毛立信.微弧氧化与表面陶瓷化.材料保护,1998.3,31(3):22-24
    [54] Makar G L, Kruger J. Corrosion of magnesium. International Materials Reviews, 1993, 38(3): 138-152
    
    
    [55]文斯雄.点接触固体薄膜保护剂在镁合金抗蚀中的应用.腐蚀与防护,1999,20(8):371-372
    [56]刘新宽,向阳辉,王渠东等.镁合金的防蚀处理.腐蚀科学与防护技术,2001,13(4):211-213
    [57]Xiang Y H, Hu W B, Liu X K, et al. A study on surface state during the pretreatment of electroless nickel plating on magnesium alloys. Trans. IMF, 2001, 79(1): 27-29
    [58]戴长松,吴宜勇,王殿龙,胡信国.镁及镁合金的化学镀镍.兵器材料科学与工程,1997,20(4):35-38
    [59]薛方勤,韩夏云,郭忠诚.镁及镁合金表面化学镀Ni-P合金新工艺.材料保护,2002,35(9):33-34
    [60]韩夏云,郭忠诚,龙晋明等.镁及镁合金表面镀锌工艺.材料保护,2002,35(11):31-33
    [61]曾华梁,吴仲达,陈钧武等.电镀工艺手册(第二版).北京:机械工业出版社,1997.29-30/177-181/563
    [62]胡文彬,向阳辉,刘新宽等.镁合金化学镀镍预处理过程表面状况的研究.中国腐蚀与防护学报,2001,21(6):340-344
    [63]Olsen A L, Halvorsen S T. Method for the electrolytical metal coating of magnesium articles. EP. 0030305, 1981-06-17
    [64]Olsen A L. Plating of magnesium high pressure die casting. Trans. IMF, 1980, 58(2): 29-32
    [65]蒋永锋,翟春泉,郭兴伍等.镁合金浸锌及膜层彩化工艺.材料保护,2003,36(3):30-31
    [66]向阳辉,胡文彬,沈彬等.镁合金直接化学镀镍活化表面状态对镀速的影响.电镀与环保,2000,21(2):21-23
    [67]Xiang Y H, Hu W B, Liu X K, et al. Initial deposition mechanism of electroless nickel plating on magnesium alloys. Trans. IMF, 2001, 79(1): 30-32
    [68]叶宏,孙智富,张鹏等.镁合金化学镀镍研究.材料保护,2003,36(3):27-29
    [69]Delong H K. Plating on magnesium. Metal Finishing Guidebook, 1978, 76(1): 175-183
    [70]韩夏云,薛方勤,郭忠诚等.前处理在镁及镁合金表面强化中的应用.电镀与环保,2002,22(4):18-20
    [71]刘新宽,向阳辉,胡文彬等.镁合金化学镀镍磷研究.宇航材料工艺,2001,31(4):21-25
    [72]曹文博,任晨星,关绍康等.镁合金化学镀镍.磷合金的研究进展.水利电力
    
    机械,2003,25(4):28-31
    [73]霍宏伟,李瑛,王福会.AZ91D镁合金化学镀镍.中国腐蚀与防腐学报,2002,22(1):14-17
    [74]ASTM B480-88, Standard guide for preparation of magnesium and magnesium alloys for electroplating
    [75]班春燕,张禄廷,陈立佳等.含复合络合剂的化学镀合金工艺.表面技术,1999,28(3):9-11
    [76]刘新宽,向阳辉,胡文彬等.镁合金化学镀镍溶液的老化.中国有色金属学报,2003,13(4):1046-1050
    [77]Dennis J K, Wan M M K Y Y, Wake S J. Plating on magnesium alloy diecastings. Trans. IMF, 1985, 63(2): 74-80
    [78]叶宏,冯燕熹,王希山.镁合金化学镀镍工艺研究.表面技术,2002,31(6):32-33
    [79]Fairweather W A. Electroless nickel plating of magnesium[J]. Trans. IMF, 1997, 75(3): 113-117
    [80]向阳辉,胡文彬,沈彬等.镁合金直接化学镀镍的初始沉积机制.上海交通大学学报,2000,34(12):1638-1640
    [81]刘新宽,向阳辉,胡文彬等.镁合金化学镀镍层的结合机理.中国腐蚀与防腐学报,2002,22(4):233-236
    [82]Sharma A K, Suresh M R, Bhojraj H, et al. Eletroless nickel plating on magnesium alloy. Metal Finishing, 1998, 96(3): 10-18
    [83]向阳辉,刘新宽,胡文彬等.镁合金化学镀镍的磷含量控制.电镀与环保,2001,21(2):25-27
    [84]李晓东,张海.镁合金Ni-P镀技术研究.轻工业加工技术,2003,31(1):28-30
    [85]刘永健,王印培.化学镀镍工艺对镀层耐蚀耐磨性的影响.腐蚀与防护,2001,22(7):293-295
    [86]姜晓霞,沈伟.化学镀镍理论及实践.北京:国防工业出版社,2000,8-20/26-32/204-210
    [87]李立明,胡文彬,罗守福等.难度基材化学镀镍.电镀与环保,2002,22(3):13-17
    [88]王孝镕,顾慰中.化学镀镍磷合金工艺研究.电镀与涂饰,1999,18(2):43-46
    [89]刘彦明.对化学镀镍机理的新看法.电镀与环保,1999,19(2):12-14
    [90]武汉嘉鹏电子有限公司.http://jiapeng.363.net/jsyo.htm,2002-03-13
    [91]Dennis J K,Such T E.孙大梁,张玉华,苏效轼译.镀镍和镀铬新技术.北京:科学技术文献出版社,1990,418-423
    [92]刘汝涛,高灿柱,杨景和等.影响化学镀镍稳定性因素的研究.表面技术,2001,30(1):10-12
    
    
    [93]武汉大学.分析化学(第三版).北京:高等教育出版社,1995,538-539
    [94]Bayes M, Ellis R, House R. The effect of bath pH and operating temperature on the composition of electroless nickel deposits. Trans. IMF, 1993, 71 (2): 62-64
    [95]唐春华.化学镀镍工艺的选择与应用.腐蚀与防护,2001,22(7):297-302
    [96]李惠琪,李惠东,吴玉萍等.低温超声波化学镀镍层的组织结构与性能.中国有色金属学报,1998,8(4):573-578
    [97]上海市科学技术交流站.正交试验设计法.上海:上海人民出版社,1975,4-23
    [98]傅献彩,沈文霞,姚天扬.物理化学(第四版).北京:高等教育出版社,1990,726-734
    [99]武汉大学.分析化学实验(第三版).北京:高等教育出版社,1994,141-169
    [100]戴长松,吴宜勇,王殿龙等.化学镀镍液稳定性的综合评价.电镀与环保,1997,17(4):9-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700