基于氯离子渗透的混凝土结构耐久性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构常因氯离子侵蚀引起钢筋锈蚀,进而使结构性能退化、承载能力降低、甚至破坏。为此,不得不花费大量的资金和自然资源进行维修甚至重建,对国家造成了巨大的经济损失和严重的社会影响。本文针对氯离子侵蚀下混凝土结构的耐久性问题,以混凝土中钢筋初始锈蚀耐久性寿命为主线,从混凝土中氯离子浓度分布预测的数值模拟方法、混凝土中氯离子浓度预测数值模型、混凝土结构耐久性寿命预测的概率方法三个方面进行了以下的研究工作:
     利用混凝土中非稳态热传导能量守恒微分方程与基于Fick定律的混凝土中氯离子非稳态扩散质量守恒微分方程的相似性,通过对方程中各参数的合理等效,提出了一种基于ANSYS软件热分析模块的预测混凝土中氯离子浓度二维分布的有限元数值模拟方法,并通过与解析解的对比验证了该方法的有效性。运用该方法研究了扩散系数、扩散时间、表面氯离子浓度、构件的截面尺寸、钢筋的存在、钢筋直径大小、钢筋间距大小对混凝土中氯离子二维扩散的影响规律。
     基于上述有限元数值模拟方法,通过引入各种参数修正氯离子扩散系数,建立了考虑多种因素影响下的氯离子在混凝土中扩散的数值模型,并对模型中各参数进行了详细的讨论,给出了各参数的取值规律。运用该数值模型对一工程实例进行了模拟,通过模拟值与试验值的对比,验证了模型的实用性。
     基于上述数值模型,以钢筋表面的氯离子浓度达到临界浓度作为耐久性寿命终结的标志,考虑到基准氯离子扩散系数、保护层厚度、表面氯离子浓度和临界氯离子浓度的随机性,基于ANSYS软件概率分析模块建立了基于可靠度的混凝土结构耐久性寿命期望值及耐久性失效概率计算的数值方法。运用该方法分析了各参数的统计特征对耐久性寿命的影响规律。
Concrete structures often causes the corrosion of steel bar due to erosion of chloride ion, thus the structural behavior is degenerated and the carrying capacity is reduced and even the structure is destroyed. In this connection, it is a must to spend a lot of money and natural resources on maintenance and reconstruction. Thus huge economic loss and sever social influence are caused to the state. This paper performs the following research work with focus on the problem of durability of the concrete structures if eroded by chloride ion by taking the initial corrosion durability life of steel bars in concrete as the mainline from three perspectives of numerical simulation method for predicting chloride ion concentration distribution in concrete, numerical model of predicting chloride ion concentration in concrete as well as probabilistic method for predicting durability life of the concrete structure:
     By utilizing the similarity of differential equation for unsteady state heat conduction & energy conservation in concrete with differential equation for unsteady state diffusion & mass conservation of chloride ions in concrete based on Fick’s law and having rational equivalence of each parameter of the equations, propose a finite element numerical simulation method for predicting two-dimensional distribution of chloride ion in concrete based on the thermal analysis module in ANSYS and verify the effectiveness of this method through comparison to the analytic solutions. Study the influence law of diffusion coefficient, diffusion time, chloride ion concentration on the surface, sectional dimension of the constructional element, existence, diameter and space of steel bars on the two-dimensional diffusion of chloride ion in concrete.
     Revise diffusion coefficients of chloride ion by introducing various parameters based on the foregoing finite element numerical simulation method, establish the numerical module of chloride ion diffusion in concrete under the influence of many factors, discuss the parameters of the module in great detail and give law of taking value for each parameters. Simulate an engineering case by application of the numerical model and verify the practicability of the model through comparison of the simulation value to the experimental value.
     Based on the foregoing numerical model with the critical concentration that the chloride ion concentration on the surface of the steel bar as the symbol of the termination of durability life and in view the randomness of standard diffusion coefficient of chloride ion, thickness of the protective layer chloride ion concentration on the surface and the critical concentration of chloride ion, based on the PDS in ANSYS establish reliability-based numerical method for calculating the expected value of durability life of the concrete structure and failure probability of durability, then analyze the influence law of the statistical characteristic of each parameter on durability life by application of this method.
引文
[1]李清富,赵国藩,王恒栋.混凝土结构的耐久性预评估[J].混凝土,1995,Nol:54-56.
    [2]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [3]陈肇元著.土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社, 2003.
    [4]洪定海著.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社, 1998.
    [5]卢木.混凝土耐久性研究现状与研究方向[J].工业建筑,1997,27(5):1-4.
    [6]陈肇元.土建结构工程的安全性与耐久性—现状、问题与对策[R].中国工程院土木水利与建筑学部,工程结构的安全性与耐久性研究咨询项目组.
    [7]罗福午著.建筑结构缺陷事故的分析与防止[M].北京:清华大学出版社, 1996.
    [8]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江:浙江大学学报(工学版),2002,36(4):371-380.
    [9]日本土木工程学会编,张富春译.混凝土构筑物的维护、修补与拆除[M].北京:中国建筑工业出版社, 1990.
    [10]万德友.我国铁路桥梁病害浅析与对策[R].中国铁道学会桥梁病害诊断与剩余寿命评估学术讨论会,大连,1995.
    [11]王涛,朴香兰,朱慎林著.高等传递过程原理[M].北京:化学工业出版社, 2005.
    [12]张奕.氯离子在混凝土中的输运机理研究[D].浙江:浙江大学,2008.
    [13] Gonzalez J A,Feliu S,Rodriguez P,etal. Some question on the corrosion of steel in concrete part1:when,how and how much steel corrodes[J]. Materials and Structures, 1996(29):40-46.
    [14]洪乃丰.混凝土中钢筋腐蚀与防护技术(1)—氯盐与钢筋锈蚀破坏[J].工业建筑,1999,29(10):60-63.
    [15] A.M.P Simpoes,M.G.S Ferreira,M.F.. Montemor chloride-induced corrosion on reinforcing steel:from the fundamentals to the monitoring techniques[J]. Cement and Concrete Composites, 2003(25):491-502.
    [16] Collepardi M.,etal. Penetration of chloride ions into cement pastes and concrete[J]. American Ceramic Society, 1972:55.
    [17] Maage M. Service life model for concrete structures exposed to marine environment-Initiation period[J]. ACI Material Journal, 1996, 93(6): 602-608.
    [18] Schupack Morris, Suarez Mario G.. Some recent corrosion embrittlemen failures of prestressing systems in the United States[J]. PCI Journal, 1998(2):38-55.
    [19] Steinar H.. Assessment and prediction of service life for marine structures:A tool for performance based requirement[J]. Belin: World Publishing Corporation, 1999: 8-17.
    [20] T.Luping,L.O.Nillsson. Chloride binding capacity and binding isotherm of OPC pastes and mortars[J]. Cement and Concrete Research, 1993,23(2):247-253.
    [21] Chee Burm Shin, Eun KyumKim. Modeling of chloride ion ingress in coastal concrete[J]. PCI Journal, 2002(32)5:757-762.
    [22] Stephen L A, Dwayne A J, Matthew A M, et al. Predicting the service life of concrete structures: an environmental methodology[J]. ACI Structural Journal, 1998, 95(2): 205-214.
    [23] Onyejekwe O,Reddy N. A numerical approach to the study of chloride ion penetration into concrete[J]. Magazine of Concrete Research, 2000,52(4):243-250.
    [24] Castro P,De Rincon O T, Pazini E J. Interpretation of chloride profiles from concrete exposed to tropical marine environments[J]. Cement and Concrete Research, 2001,31(4):529-537.
    [25]余红发,孙伟,鄢良慧,麻海燕.混凝土使用寿命预测方法的研究Ⅰ—理论模型[J].北京:硅酸盐学报,2002,30(6):686-689.
    [26]吴瑾,吴胜兴.海洋环境下混凝土中钢筋表面氯离子浓度的随机模型[J].河海大学学报,2004,32(1):38-41.
    [27]施养杭,罗刚.含多种因素的氯离子侵入混凝土的有限差分计算模型[J].工业建筑,2004,34(5):7-10.
    [28] Liang M T,Wang K L,Liang C H. Service life prediction of reinforced concrete structures[J]. Cement and Concrete Research, 1999,29(9):1411-1418.
    [29] Liu Y,Weyers R E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures[J]. ACI Materials Journal, 1998,95(6):765-681.
    [30] Cady P.D. and Weyers R.E. Deterioration rates of concrete bridge decks[J]. Journal of Transportation Engineering, 1984,10(1):34-45.
    [31]王仁超,朱琳,李振富.混凝土氯离子综合机制扩散模型及敏感性研究[J].哈尔滨工业大学学报, 2004, 36(6):824-828.
    [32] Bazant Z P. Physical model for steel corrosion in sea structures[J]. Journal of Structural Engineering, 1979, 105(6): 1137-1153.
    [33] Boddy A, Bentz D P, Thomas M D A, Hooton R D. An overview and sensitivity study of a multimechanistic chloride transport model[J]. Cement and Concrete Research, 1999,29(7):827-837.
    [34] Nagesh M, Bhattacharjee B. Modeling of chloride diffusion in concrete and determination of diffusion coefficients[J]. ACI Materials Journal, 1998, 95(2):113-120.
    [35] Roberts M B, Atkins C, Hogg V, Middleton C. A proposed empirical corrosion model for reinforced concrete[J]. Proceedings of the Institution of Civil Engineers-structures and Buildings, 2000, 140(1):1-11.
    [36] Bamforth P B. The derivation of input data for modeling chloride ingress from eight year UK coastal exposure trials[J]. Magazine of Concrete Research, 1999, 51(2):89-96.
    [37] Liam K C, Roy S K, Northwood D O. Chloride ingress measurements and corrosion potential mapping study of a 24-year-old reinforced concrete jetty structure in a tropical marine environment[J]. Magazine of Concrete Research, 1992, 44:205-215.
    [38]徐波.基于材料细观结构的混凝土数值模拟与性能分析[D].浙江:浙江大学,2008.
    [39] Saeed Moaveni著,王崧,刘丽娟,董春敏等译.有限元分析—ANSYS理论与应用(第三版)[M].北京:电子工业出版社,2008.
    [40]姜任秋.快速瞬态热质扩散过程非经典效应研究[D].哈尔滨:哈尔滨工程大学,2002.
    [41]尚晓江,丘峰,赵海峰等著. ANSYS结构有限元高级分析方法与范例应用(第二版)[M].北京:中国水利水电出版社,2008.
    [42]康国政,阚前华,张娟著.大型有限元程序的原理、结构与使用(第二版)[M].成都:西南交通大学出版社,2008.
    [43]余红发,孙伟,麻海燕.混凝土氯离子扩散理论模型的研究Ⅰ—基于无限大体的非稳态齐次与非齐次扩散问题[J].南京航空航天大学学报, 2009, 41(2):824-828.
    [44]王正林,龚纯,何倩著.精通MATLAB科学计算(第2版)[M].北京:电子工业出版社,2009.
    [45] Burden,R., and Faires, J.Numerical analysis, 4th edition, PWSKent publicshers, Boston, 1985:620-622.
    [46]冯乃谦,邢锋著.混凝土与混凝土结构的耐久性[M].北京:机械工业出版社, 2009.
    [47] Atkinson A., Hearne J.A., Mechanistic model for the durability of concrete barriers exposed to sulfate-bearing groundwater[J]. Materials Research Society Symosium Proceedings 176, 1990: 149-156.
    [48] Stephen L A, Dwayne A J, Matthew A M, et al. Predicting the service life of concrete marine structures: an environmental methodology[J]. ACI Structural Journal, 1998, 95(1): 27-36.
    [49]余红发,孙伟等.混凝土在多重因素作用下的氯离子扩散方程[J].上海:建筑材料学报,2002,5(3): 240-247.
    [50] Thomas, M.D.A and Bentz E.C, life-365: computer program for predicting the service oife and life-cycle costs of reinforced concrete exposed to chlorides, 2001, 12.
    [51] Dimitri V. Val. Factors affecting life-cycle cost analysis of RC structures in chloride contaminated environments[J]. Journal of infrastructure systems, ASCE, 2007, 13(2): 135-143.
    [52] Bamforth Phi, Price Bill. Predicting the risk of reinforcement corrosion in marine structures [J]. Concrete, 1994, 28(3): 6-9.
    [53]刘秉京著.混凝土结构耐久性设计[M].北京:人民交通出版社, 2007.
    [54]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].浙江:浙江大学,2008.
    [55]薛鹏飞.预应力混凝土连续刚构桥结构性能退化预测评估研究[D].浙江:浙江大学,2009.
    [56]刘芳.混凝土中氯离子浓度确定及耐蚀剂的作用[D].浙江:浙江大学,2006.
    [57] T.U.Mohammed, H.Hamada. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research, 2003, 33(3): 1487-1490.
    [58]施惠生,王琼.海工混凝土使用寿命预测研究[J].上海:建筑材料学报,2004,7(2): 161-167.
    [59]卫军,桂志华,王艺霖.混凝土中钢筋锈蚀速率的预测模型[J].武汉:武汉理工大学学报,2005,27(6): 45-47.
    [60] Mangat P S, Molloy B T. Prediction of long-term chloride concentration in concrete[J]. Materials and Structures, 1994, 27(4): 338-346.
    [61] Fluge F. Environmental loads on costal bridges[C] Proceedings from International Conference on repair of concrete structures. Norway, 1997.
    [62] Dunaszegi, Laszlo. High performance concrete in the confederation bridge[J]. Concrete International, 1998, 20(4): 66-68.
    [63]贾道祥.水泥主要特性对水泥与减水剂适应性影响的研究.北京:中国建筑科学研究院. 2002.
    [64]王军.荷载作用下钢筋混凝土结构耐久性分析方法研究[D].天津:天津大学,2008.
    [65] R. Alizadeh, P. Ghods. Effect of curing conditions on the service life design of RC struvtures in the persian gulf region[J]. Journal of Materials in Civil Engineering, ASCE, 2008, 1 (2): 2-8.
    [66] General Guidelines for Durability Design and Redesign, Duracrete, The European Union, February 2000.
    [67] A.costa, J.Appleton. Chloride penetration into concrete in marine environment part I: Main parameters affecting chloride penetration[J]. Materials and structures, 1999, 32: 252-259.
    [68]吴相豪,李丽.海港码头混凝土构件氯离子浓度预测模型[J].上海:上海海事大学学报,2006,27(1):17-20.
    [69] Saetta Anna V, Scotta Roberto V. Analysis of chloride diffusion into partially saturated concrete[J]. ACI Materials Journal, 1993(5): 441-451.
    [70]陈肇元,廉惠珍,李克非.混凝土结构耐久性设计与施工指南[s].中国土木工程学会标准.北京:中建筑工业出版社,2005.
    [71] Song, H-W., Lee, C-H., Ann, K.Y.. Factors influencing chloride transport in concrete structures exposed to marine environments[J]. Cement&Concrete Composites, 2007, 9(5).
    [72] Thomas M D A, Bamforth P B. Modelling chloride diffusion in concrete-effect of fly ash and slag[J]. Cement Concrete Research, 1999, 29(4): 487-495.
    [73]牛获涛著.混凝土结构耐久性与寿命预测[M].北京:科学出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700