具有抗肿瘤活性薯蓣皂素衍生物的合成及作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甾体皂苷以其良好的生物活性,尤其是抗肿瘤活性获得了广泛的关注。由于皂苷在植物中的含量较低,并且分离纯化过程相对复杂,因此近年来以廉价易得的皂苷元为起始原料,通过对皂苷分子中的糖链和(或)皂苷元的结构改造,定向的半合成了大量的皂苷衍生物,同时也得到了若干具有良好抗肿瘤应用前景的候选化合物。
     本文首先对甾体皂苷进行了概述,根据皂苷元的结构不同可以分成螺甾皂苷、呋甾皂苷和胆甾皂苷三种,并指出了他们存在化学上实现简单相互转化的可能;随后又综述了薯蓣皂素这一在自然界中分布最为广泛的螺甾皂苷元的抗肿瘤作用及其衍生物的研究进展。由于甾体皂苷的抗肿瘤活性是皂苷元和糖链两个部分协同作用的结果,因此本文的第一部分工作是以薯蓣皂素为原料,探讨简便的制备天然活性呋甾皂苷的方法,为甾体皂苷类化合物从苷元上进行结构改造提供更加简便的途径;第二部分工作是对薯蓣皂素进行糖苷化反应,获得一系列非天然的新型螺甾皂苷化合物,以探讨糖链对螺甾皂苷的抗肿瘤活性的影响;第三部分工作是对薯蓣皂素氨基葡萄糖苷分子中的氨基进行抗肿瘤活性基团的修饰,以探讨糖链上的结构修饰对螺甾皂苷的抗肿瘤活性的影响。
     针对两种重要的天然抗肿瘤呋甾皂苷methyl protodioscin和icogenin的合成过程繁琐、不利于衍生物制备的缺点,本文发展了用三氟化硼-乙醚/醋酐高效打开螺甾烷E-环的方法,并以薯蓣皂素为起始原料,通过该E-环开环反应联合脱保护后的E-环自动合环的方法构建了呋甾皂苷的F-环开链结构,以7步反应、24%总收率优化制备得到了天然产物methyl protodioscin;并在反应过程中发现通过控制水解条件,该E-环开环反应可用于高效的合成胆甾烷、22-OH和22-OMe呋甾烷。在后续的实验中,又发展了用三氟化硼-乙醚/三氟乙酸酐/冰醋酸高效打开螺甾烷F-环的方法。通过该F-环开环反应,以薯蓣皂素为起始原料,以3步反应简便的合成了methyl protodioscin和icogenin的苷元——甲基原薯蓣皂素;在验证了该方法对糖苷键的兼容性后,应用该方法成功实现了对天然呋甾皂苷icogenin的高效合成。
     针对糖链结构的变化对薯蓣皂素糖苷分子抗肿瘤活性影响的研究,本文将一种常见于具有抗肿瘤作用的三萜皂苷中的二糖模块,即a-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl模块,引入到薯蓣皂素的3-位羟基,并将6种不同的糖分子分别引入该二糖模块中的阿拉伯糖4-位羟基或鼠李糖4-位羟基,得到了6个线状糖链衍生物和6个分支状糖链衍生物。这12个化合物的体外细胞毒活性筛选结果表明,化合物65对A549细胞具有较强的抑制活性。继而,通过细胞形态学观察、特异性染色、DNA片段化、流式细胞术以及蛋白免疫印迹法等方法,具体证明了该化合物是通过死亡受体途径诱导A549细胞发生凋亡从而抑制A549细胞的活力。
     对于已知皂苷结构中的糖链用其他基团进行修饰也是一种常见的皂苷衍生化方法。根据文献调研发现,薯蓣皂素氨基葡萄糖苷分子中的氨基取代基会对该化合物的抗肿瘤作用产生重要影响,据此本论文设计并合成了氨基取代基为肉桂酰基、脲和缩氨基硫脲的三个系列、共36个新型薯蓣皂素氨基葡萄糖苷衍生物。结合它们对多种肿瘤细胞的体外细胞毒活性测试结果,总结了该类化合物的构效关系,发现当取代基为肉桂酰基时其活性明显优于取代基为脲和缩氨基硫脲的活性;肉桂酰基衍生物中苯环上取代基的取代位置、数量和电性都能显著影响该化合物的活性和选择性。初步研究了其中一个活性较好的化合物91c对人外周血单核细胞的毒性和抑制MCF-7细胞活力的作用机制。研究结果表明,化合物91c对人外周血单核细胞具有一定毒性;而其抑制MCF-7细胞活力的初步机制是诱导MCF-7细胞发生凋亡,而不是程序性坏死或自噬。
Steroidal saponins draw much attention due to their diverse biological activities, especially their excellent anti-tumor activity. Due to the low content in plants and the complexity in isolation and purification, abundant saponin derivatives were semi-synthesized via modifications on the sugar chain and/or the aglycon of saponin molecular starting from commercially available aglycon, meanwhile several candidates bearing good anti-tumor property were obtained.
     First, we summarized that steroidal saponin can be subdivided into spirostanol saponin, furostanol saponin and cholesteric saponin, and the possibility of a concise chemical conversion was figured out. Then derivative preparation and anti-tumor activity of diosgenin, which is the most widespreading spirostanol aglycon in nature, were reviewed generally. The anti-tumor activity of steroidal saponin resulted from the collaboration of its aglycon and sugar moiety, therefore this paper should be divided into three parts. In the first part, the simple preparation of natural furostanol saponin from diosgenin was developed, which provided an easier method to modify the aglycon of steroidal saponin. The second part was related to the glycosylation of diosgenin, yielding a series of unnatural steroidal saponin, to discuss the influence of sugar moiety on its parent's anti-tumor activity. In the third part, several bioactive groups were introduced into the amino group of diosgenyl glucosaminide, which showed that modification on the sugar moiety could affect the anti-tumor activity of steroidal saponin.
     The total synthesis of the two important furostanol saponin methyl protodioscin and icogenin was firstly reviewed, and their inefficiency was figured out. Therefore, we have developed a highly efficient E-ring opening reaction of spirostanol saponin by BF3-Et2O/Ac2O. Starting from diosgenin and applying this E-ring opening reaction, methyl protodioscin was synthesized in seven steps with a total yield of24%. During the synthesis of methyl protodioscin, we found that this E-ring opening reaction could be applied for the efficient synthesis of cholestane,22-OH furostan and22-OMe furostan. Consequently, we have also developed a direct F-ring opening reaction of spirostanol saponin by BF3-Et2O/TFA-HOAc. Applying this F-ring opening reaction, methyl protodiosgenin, which is the mutual aglycon of methyl protodioscin and icogenin, was prepared in three steps starting from diosgenin. After stability of glycosidic bond under the F-ring opening reaction condition was confirmed, icogenin was synthesized concisely starting from diosgenin by this F-ring opening reaction.
     A common disaccharide moiety from cytotoxic triterpenoidal saponin, namely a-L-rhamnopyranosyl-(1→2)-a-L-arabinopyranosyl was introduced to the3-OH of diosgenin, and glycosylation of the4-OH in both arabinose residue and rhamnose residue using six sugar donors provided six derivatives with branched sugar chain and six derivatives with linear sugar chain. In the in vitro cytotoxicity screening, compound65was found to have a strong inhibition on A549cells, and this compound was demonstrated to induce apoptosis in A549cells via extrinsic pathway through cell morphology observation, cell staining, DNA fragmentation assay, flow cytometric analysis and western blot.
     It is a common derivation of saponin by modifying its sugar moiety with bioactive groups. The substituents on the amino groups of diosgenyl glucosaminides could affect their anti-tumor effect significantly according to the previou research. According to this conclusion, three series of diosgenyl glucosaminides bearing cinnamoyl, urea and thiosemicarbazone groups on their amino groups were designed and synthesized, giving thirty-four saponin derivatives. The structure-activity relationships were summarized after the in vitro cytotoxicity screening, and we found that cinnamoyl groups were preferred comparing to the urea and thiosemicarbazone group, meanwhile the amount, position and style of substituent on the benzene ring in the cinnamoyl group could affect the anti-tumor activity and selectivity of its parent significantly. The toxicity on PBMC and mechanism inhibiting MCF-7cells of compound91c were studied. Compound91c show toxicity on PBMC, and the action mechanism research of compound91indicated that this compound induces apoptosis in MCF-7cells, but autophagy and necroptosis did not occur in the treated MCF-7cells.
引文
[1]Schreiber K R, H. Jurine, a novel type of steroidal saponin with (25S)-3β-amino-5α-furostane-22a.26-diol O(26)-β-D-glucopyranoside structure from solarium paniculatum L. Tetrahedron Letters 1966,7(48),5997-6002.
    [2]Deng S, Yu B, Lou Y, Hui Y. First Total Synthesis of an Exceptionally Potent Antitumor Saponin, OSW-1. The Journal of organic chemistry 1999,64(1),202-208.
    [3]Yu W, Jin Z. Total synthesis of the anticancer natural product OSW-1. Journal of the American Chemical Society 2002,124(23),6576-6583.
    [4]Zhou Y, Garcia-Prieto C, Carney D A, Xu R H, Pelicano H, Kang Y, Yu W, Lou C, Kondo S, Liu J, Harris D M, Estrov Z, Keating M J, Jin Z, Huang P. OSW-1:a natural compound with potent anticancer activity and a novel mechanism of action. Journal of the National Cancer Institute 2005,97(23),1781-1785.
    [5]Xue J, Liu P, Pan Y, Guo Z. A total synthesis of OSW-1. The Journal of organic chemistry 2008,75(1),157-161.
    [6]Hernandez J C, Leon F, Quintana J, Estevez F, Bermejo J. Icogenin, a new cytotoxic steroidal saponin isolated from Dracaena draco. Bioorganic & medicinal chemistry 2004,72(16),4423-4429.
    [7]Hou S, Xu P, Zhou L, Yu D, Lei P. Synthesis and antitumor activity of icogenin and its analogue. Bioorganic & medicinal chemistry letters 2006,76(9),2454-2458.
    [8]Cheng M S, Wang Q L, Tian Q, Song H Y, Liu Y X, Li Q, Xu X, Miao H D, Yao X S, Yang Z. Total synthesis of methyl protodioscin:a potent agent with antitumor activity. The Journal of organic chemistry; 2003,68(9), 3658-3662.
    [9]Guo C, LaCour T G, Fuchs P L. On the relationship of OSW-1 to the cephalostatins. Bioorganic & medicinal chemistry letters 1999,9(3),419-424.
    [10]Ma X, Yu B, Hui Y, Xiao D, Ding J. Synthesis of glycosides bearing the disaccharide of OSW-1 or its 1-->4-linked analogue and their antitumor activities. Carbohydrate research 2000,529(3),495-505.
    [11]Ma X, Yu B, Hui Y, Miao Z, Ding J. Synthesis of OSW-1 analogues and a dimer and their antitumor activities. Bioorganic & medicinal chemistry letters 2001,77(16),2153-2156.
    [12]Ma X, Yu B, Hui Y, Miao Z, Ding J. Synthesis of steroidal glycosides bearing the disaccharide moiety of OSW-1 and their antitumor activities. Carbohydrate research 2001,334(2),159-164.
    [13]Deng L, Wu H, Yu B, Jiang M, Wu J. Synthesis of OSW-1 analogs with modified side chains and their antitumor activities. Bioorganic & medicinal chemistry letters 2004,14(11),2781-2785.
    [14]Morzycki J W, Wojtkielewicz A, Wolczynski S. Synthesis of analogues of a potent antitumor saponin OSW-1. Bioorganic& medicinal chemistry letters 2004,74(12),3323-3326.
    [15]Shi B, Wu H, Yu B, Wu J.23-oxa-analogues of OSW-1:efficient synthesis and extremely potent antitumor activity. Angew Chem Int Ed Engl 2004,43(33),4324-4327.
    [16]Tschamber T, Adam S, Matsuya Y, Masuda S, Ohsawa N, Maruyama S, Kamoshita K, Nemoto H, Eustache J. OSW-1 analogues:modification of the carbohydrate moiety. Bioorganic & medicinal chemistry letters 2007, 17(18),5101-5106.
    [17]Wojtkielewicz A, Dlugosz M, Maj J, Morzycki J W, Nowakowski M, Renkiewicz J, Strnad M, Swaczynova J, Wilczewska A Z, Wojcik J. New analogues of the potent cytotoxic saponin OSW-1. Journal of medicinal chemistry 2007,50(15),3667-3673.
    [18]Kang Y, Lou C, Ahmed K B. Huang P, Jin Z. Synthesis of biotinylated OSW-1. Bioorganic & medicinal chemistry letters 2009,79(17),5166-5168.
    [19]Kasai H, Tsubuki M, Shimada K, Nambara T, Honda T. Analyses of biologically active steroids:antitumor active OSW-1 and cardiotonic marinobufotoxin, by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight tandem mass spectrometry. Chemical & pharmaceutical bulletin 2009,57(9),948-956.
    [20]Su F Q, Li H Y, Zhang Y, Hou S J, Lei P S, Chen X G. [Effect of icogenin on and its mechanism in anti-metastasis of pancreatic cancer BxPC3 cells]. Yao xue xue bao=Acta pharmaceutica Sinica 2009,44(5), 456-461.
    [21]Wang H, Su F, Zhou L, Chen X, Lei P. Synthesis and cytotoxicities of icogenin analogues with disaccharide residues. Bioorganic & medicinal chemistry letters 2009,19(10),2796-2800.
    [22]Guan Y, Zheng D, Zhou L, Wang H, Yan Z, Wang N, Chang H, She P, Lei P. Synthesis of 5(6)-dihydro-OSW-1 analogs bearing three kinds of disaccharides linking at 15-hydroxy and their antitumor activities. Bioorganic & medicinal chemistry letters 2011,27(10),2921-2924.
    [23]Maj J, Morzycki J W, Rarova L, Oklest'kova J, Strnad M. Wojtkielewicz A. Synthesis and biological activity of 22-deoxo-23-oxa analogues of saponin OSW-1. Journal of medicinal chemistry 2011.54(9),3298-3305.
    [24]Zheng D, Guan Y, Chen X, Xu Y, Lei P. Synthesis of cholestane saponins as mimics of OSW-1 and their cytotoxic activities. Bioorganic & medicinal chemistry letters 2011,21(11),3257-3260.
    [25]Guan Y Y, Zheng D, Yan Z, Wang N, Lei P S. Synthesis and antitumor activity of 5,6-dihydro-17-hydroxy icogenin analogs. European journal of medicinal chemistry 2012,51,200-205.
    [26]李辉,倪晋仁.薯蓣皂甙元的研究进展.精细化工2010(01),60-65.
    [27]Hu K, Yao X. Protodioscin (NSC-698 796):its spectrum of cytotoxicity against sixty human cancer cell lines in an anticancer drug screen panel. Planta medica 2002,68(4),297-301.
    [28]Hou R, Zhou Q L, Wang B X, Tashiro S, Onodera S, Ikejima T. Diosgenin induces apoptosis in HeLa cells via activation of caspase pathway. Acta pharmacologica Sinica 2004,25(8),1077-1082.
    [29]霍锐,周秋丽,王本祥,王敏伟,田代真一,小野寺敏,池岛乔.薯蓣苷元诱导人黑素瘤细胞A375-S2凋亡依赖半胱天冬酶和MAPK途径.中国药理学与毒理学杂志2003(04),270-275.
    [30]张文秀.薯蓣皂苷元对人宫颈癌细胞增殖的影响.中国现代医生2011(26),5-7.
    [31]王丽娟,王岩,陈声武,马吉胜,付勤,王本祥.薯蓣皂苷元体内、外的抗肿瘤作用.中国中药杂志2002(10),60-62.
    [32]李晶华,历艳志,张沐新,宋宇,王本祥,周秋丽.薯蓣皂苷元对HL-60细胞增殖及细胞周期的影响.吉林农业大学学报2003(05),533-535.
    [33]洪振强,林建华.薯蓣皂苷配基对人骨肉瘤U-20S细胞的生长抑制作用.福建医药杂志2004(02),103-104.
    [34]Lee M S, Yuet-Wa J C, Kong S K, Yu B, Eng-Choon V O, Nai-Ching H W, Chung-Wai T M, Fung K P. Effects of polyphyllin D, a steroidal saponin in Paris polyphylla, in growth inhibition of human breast cancer cells and in xenograft. Cancer biology & therapy 2005,4(11),1248-1254.
    [35]Shishodia S, Aggarwal B B. Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. Oncogene 2006,25(10),1463-1473.
    [36]苏赞妍,霍木兰.薯蓣皂甙元诱导人卵巢癌细胞系HO-8910凋亡及对Survivin基因表达的影响.中国医师杂志2006(09),1161-1163.
    [37]Raju J, Bird R P. Diosgenin, a naturally occurring steroid [corrected] saponin suppresses 3-hydroxy-3-methylglutaryl CoA reductase expression and induces apoptosis in HCT-116 human colon carcinoma cells. Cancer letters 2007,255(2),194-204.
    [38]洪振强,张俐,王和鸣,吴广文.薯蓣皂苷元诱导人骨肉瘤U-20S细胞凋亡的透射电镜观察.福建中医药2009(04),39-41.
    [39]Liagre. Cyclooxygenase-2 and 5-lipoxygenase pathways in diosgenin-induced apoptosis in HT-29 and HCT-116 colon cancer cells. International journal of oncology 2010,36(5).
    [40]何忠梅,白冰,金颖,祝洪艳,阚俊明,宋宇.薯蓣皂苷元对人胃癌SGC-7901细胞体外作用的研究.中国实验诊断学2010(12),1903-1905.
    [41]刘喜娟,谭宇蕙,吴映雅,张广献,周瑶,刘晶晶,杜标炎,刘军明.薯蓣皂苷元对大鼠肝癌细胞CBRH7919的抑制及凋亡诱导作用.中国现代医学杂志2010(07),980-983.
    [42]Beit-Yannai E, Ben-Shabat S, Goldschmidt N, Chapagain B P, Liu R H, Wiesman Z. Antiproliferative activity of steroidal saponins from Balanites aegyptiaca—An in vitro study. Phytochemistry Letters 2011,4(1),43-47.
    [43]Tong Q Y, Qing Y, Shu D, He Y, Zhao Y L, Li Y, Wang Z L, Zhang S Y, Xing Z H, Xu C, Wei Y Q, Huang W, Wu X H. Deltonin, a steroidal saponin, inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis and antiangiogenesis. Cellular physiology and biochemistry:international journal of experimental cellular physiology, biochemistry, and pharmacology 2011,27(3-4),233-242.
    [44]何忠梅,张显涛,王铁成.薯蓣皂苷元诱导人胃低分化粘液腺癌MGC-803细胞凋亡依赖caspase-3途径.中国实验诊断学2011(11),1813-1815.
    [45]李志芳,宁宗,周燕.薯蓣皂苷对K562细胞的细胞毒作用及对DNA影响的研究.广西医学2012(03),272-274.
    [46]付永锋,樊廷俊.Bcl-2家族蛋白与细胞凋亡.生物化学与生物物理学报2002(04),389-394.
    [47]杨连君. bcl-2,bax与肿瘤细胞凋亡.中国肿瘤生物治疗杂志2003(03),232-234.
    [48]郎海滨.Bcl-2家族蛋白与线粒体凋亡路径研究进展.国外医学(卫生学分册)2004(02),88-91.
    [49]孟祥东,严云勤.BCL-2家族与线粒体对细胞凋亡的调控.细胞与分子免疫学杂志2005(S1),77-79.
    [50]柳向军,张令强,刘小林,贺福初.细胞凋亡中的Bcl-2家族蛋白及其BH3结构域的功能研究.生物化学与生物物理进展2006(03),221-225.
    [51]周桔,罗荣保,汤长发,瞿树林.Bcl-2蛋白家族和p53基因在细胞凋亡中的调控效应.中国组织工程研究与临床康复2007(10),1950-1952.
    [52]Wang L, Sloper D T, Addo S N, Tian D, Slaton J W, Xing C. WL-276, an antagonist against Bcl-2 proteins, overcomes drug resistance and suppresses prostate tumor growth. Cancer research 2008,68(11),4377-4383.
    [53]李捷萌,陈彦青,刘荣国.线粒体凋亡途径与Bel-2家族蛋白研究进展.医学综述2008(04),489-490.
    [54]王彤,刘存志,刘玉珍,于建春,韩景献.bcl-2/bax基因调控机体细胞凋亡的机制研究进展.中国老年学杂志2008(16),1658-1660.
    [55]孔晓霞,博士,吉林大学,2009.
    [56]Zhang Z, Yang H, Wu G, Li Z, Song T, Li X Q. Probing the difference between BH3 groove of Mcl-1 and Bcl-2 protein:Implications for dual inhibitors design. European journal of medicinal chemistry 2011,46(9), 3909-3916.
    [57]Zhou H, Aguilar A, Chen J, Bai L, Liu L, Meagher J L, Yang C Y, McEachem D, Cong X, Stuckey J A, Wang S. Structure-based design of potent Bcl-2/Bcl-xL inhibitors with strong in vivo antitumor activity. Journal of medicinal chemistry 2012,55(13),6149-6161.
    [581 Zhou H, Chen J, Meagher J L, Yang C Y, Aguilar A, Liu L, Bai L, Cong X, Cai Q, Fang X, Stuckey J A, Wang S. Design of Bcl-2 and Bcl-xL inhibitors with subnanomolar binding affinities based upon a new scaffold. Journal of medicinal chemistry 2012,55(10),4664-4682.
    [591 Zhou H, Chen J, Meagher J L, Yang C Y, Aguilar A, Liu L, Bai L, Cong X, Cai Q, Fang X, Stuckey J A, Wang S. Correction to Design of Bcl-2 and Bcl-xL Inhibitors with Subnanomolar Binding Affinities Based upon a New Scaffold. Journal of medicinal chemistry 2012,55(12),5987.
    [60]Liu M J, Wang Z, Ju Y, Wong R N, Wu Q Y. Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer chemotherapy and pharmacology 2005,55(1),79-90.
    [611 Trouillas P, Corbiere C, Liagre B, Duroux J L, Beneytout J L. Structure-function relationship for saponin effects on cell cycle arrest and apoptosis in the human 1547 osteosarcoma cells:a molecular modelling approach of natural molecules structurally close to diosgenin. Bioorganic & medicinal chemistry 2005,13(4), 1141-1149.
    [62]Leger D Y, Liagre B, Beneytout J L. Role of MAPKs and NF-kappaB in diosgenin-induced megakaryocytic differentiation and subsequent apoptosis in HEL cells. International journal of oncology 2006,28(1),201-207.
    [63]Wang Y, Che C M, Chiu J F, He Q Y. Dioscin (saponin)-induced generation of reactive oxygen species through mitochondria dysfunction:a proteomic-based study. Journal of proleome research 2007,6(12), 4703-4710.
    [64]耿倩,曾春玲,傅微微,范举正.薯蓣皂苷元衍生物的制备及其抗肿瘤活性.华西药学杂志2009(05).475-478.
    [65]傅微微,吴亚克,范举正.抗肿瘤薯蓣皂苷元衍生物的设计与合成(Ⅰ).华西药学杂志2010(06),658-663.
    [66]曾春玲,耿倩,吴亚克,范举正.薯蓣皂苷元抗肿瘤衍生物的设计和合成(Ⅱ).华西药学杂志2011(05),423-428.
    [67]蒋红平,吴亚克,郑微,曾春玲,傅微微,范举正.薯蓣皂苷元衍生物抗肿瘤的构效关系研究.药学学报2011(05),539-547.
    [68]郑微,蒋红平,吴亚克,范举正.薯蓣皂苷元抗肿瘤衍生物的设计与合成(Ⅲ).华西药学杂志2011(02),107-111.
    [69]丁晓勇,何谷,蒋红平,万剑飞,范举正.薯蓣皂营元抗肿瘤衍生物的设计、合成与抗肿瘤活性.药学学报2012(04),479-485.
    [70]吴亚克,何谷,傅微微,郑微,曾春玲,范举正.薯蓣皂苷元衍生物的抗肿瘤活性研究.华西药学杂志2012(01),22-24.
    [71]Kawano K S, K.; Sato, H. A bitter principle of Asparagus:Isolation and structure of furostanol saponin in Asparagus storage root. Agric Biol Chem 1975,39(10),1999-2002.
    [72]Xu Q C; Liu, Y; Liu, J.; He, C. X.; Yan, M. C.; Cheng, M. S. an improved synthesis of methyl protodioscin: tautomerization and direct access to the 3-O-substituted kryptogenin. Chemistry Letters 2008,57(7),780-781.
    [73]Fernandez-Herrera M A, Lopez-Munoz H, Hernandez-Vazquez J M, Lopez-Davila M, Escobar-Sanchez M L, Sanchez-Sanchez L, Pinto B M, Sandoval-Ramirez J. Synthesis of 26-hydroxy-22-oxocholestanic frameworks from diosgenin and hecogenin and their in vitro antiproliferative and apoptotic activity on human cervical cancer CaSki cells. Bioorganic & medicinal chemistry 2010,18(1),2474-2484.
    [74]Fernandez-Herrera M A, Lopez-Munoz H. Hernandez-Vazquez J M, Lopez-Davila M, Mohan S, Escobar-Sanchez M L, Sanchez-Sanchez L, Pinto B M, Sandoval-Ramirez J. Synthesis and biological evaluation of the glycoside (25R)-3beta,16beta-diacetoxy-22-oxocholest-5-en-26-yl beta-d-glucopyranoside:a selective anticancer agent in cervicouterine cell lines. European journal of medicinal chemistry 2011,46(9),3877-3886.
    [75]Vinas-Bravo O, Martinez-Pascual R, Vega-Baez J L, Gomez-Calvario V, Sandoval-Ramirez J, Montiel-Smith S, Meza-Reyes S, Lopez-De Rosas A, Martinez-Montiel M, Reyes M, Ruiz J A. Rapid conversion of spirostans into furostan skeletons at room temperature. Steroids 2012,77(1-2),59-66.
    [76]Li C, Yu B, Liu M, Hui Y. Synthesis of diosgenyl alpha-L-rhamnopyranosyl-(1-->2)-[beta-D- glucopyranosyl-(1-->3)]-beta-D-glucopyranoside (gracillin) and related saponins. Carbohydrate research 1998,306(1-2),189-195.
    [77]Deng S, Yu B, Hui Y, Yu H, Han X. Synthesis of three diosgenyl saponins:dioscin, polyphyllin D, and balanitin 7. Carbohydrate research 1999,317(1-4),53-62.
    [78]Li M, Han X, Yu B. Synthesis of monomethylated dioscin derivatives and their antitumor activities. Carbohydrate research 2003,338(2),117-121.
    [79]Li W, Qiu Z, Wang Y, Zhang Y, Li M, Yu J, Zhang L, Zhu Z, Yu B. Synthesis, cytotoxicity, and hemolytic activity of 6'-O-substituted dioscin derivatives. Carbohydrate research 2007,342(18),2705-2715.
    [80]Hernandez J C, Leon F, Brouard 1, Torres F, Rubio S, Quintana J, Estevez F, Bermejo J. Synthesis of novel spirostanic saponins and their cytotoxic activity. Bioorganic & medicinal chemistry 2008,16(4),2063-2076.
    [81]Gao J, Li X, Gu G, Sun B, Cui M, Ji M, Lou H X. Efficient synthesis of trisaccharide saponins and their tumor cell killing effects through oncotic necrosis. Bioorganic & medicinal chemistry letters 2011,21(2), 622-627.
    [82]Fang M, Gu L, Gu G, Fang J. Facile Synthesis and Antitumor Activities of Timosaponin AII1 and Its Analogs. Journal of Carbohydrate Chemistry 2012,31(3),187-202.
    [83]Mimaki Y, Kuroda M, Asano T, Sashida Y. Triterpene saponins and lignans from the roots of Pulsatilla chinensis and their cytotoxic activity against HL-60 cells. Journal of natural products 1999,62(9),1279-1283.
    [84]Park H J, Kwon S H, Lee J H, Lee K H, Miyamoto K, Lee K T. Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hederagenin monodesmosides. Planta medica 2001,67(2),118-121.
    [85]Barthomeuf C, Debiton E, Mshvildadze V, Kemertelidze E, Balansard G. In vitro activity of hederacolchisid Al compared with other saponins from Hedera colchica against proliferation of human carcinoma and melanoma cells. Planta medica 2002,68(8),672-675.
    [86]Jung H J, Lee C O, Lee K T, Choi J, Park H J. Structure-activity relationship of oleanane disaccharides isolated from Akebia quinata versus cytotoxicity against cancer cells and NO inhibition. Biological & pharmaceutical bulletin 2004,27(5).744-747.
    [87]Kerr J F, Wyllie A H, Currie A R. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 1972,26(4),239-257.
    [88]李清,金英花.抗肿瘤药物联合作用诱导细胞调亡的研究进展,中国生物制品杂志2011(09),1112-1115.
    [89]Nagata S. Apoptotic DN A fragmentation. Experimental cell research 2000,256(1),12-18.
    [90]Tumane R G, Pingle S K, Jawade A A, Nath N N. An overview of caspase:Apoptotic protein for silicosis. Indian journal of occupational and environmental medicine 2010,14(2),31-38.
    [91]Wlodkowic D, Telford W, Skommer J, Darzynkiewicz Z. Apoptosis and beyond:cytometry in studies of programmed cell death. Methods in cell biology 2011,103,55-98.
    [92]Jourdain A, Martinou J C. Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. The international journal of biochemistry & cell biology 2009,41(10),1884-1889.
    [93]Keshet Y, Seger R. The MAP kinase signaling cascades:a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010,661,3-38.
    [94]Abdel-Kader M, Hoch J, Berger J M, Evans R. Miller J S, Wisse J H, Mamber S W, Dalton J M. Kingston D G. Two bioactive saponins from Albizia subdimidiata from the Suriname rainforest. Journal of natural products 2001,64(4),536-539.
    [95]Seo Y, Hoch J, Abdel-Kader M, Malone S, Derveld I, Adams H, Werkhoven M C, Wisse J H, Mamber S W, Dalton J M, Kingston D G. Bioactive saponins from Acacia tenuifolia from the suriname rainforest. Journal of natural products 2002,65(2),170-174.
    [96]Bednarczyk D, Kaca W. Myszka H, Serwecinska L, Smiatacz Z. Zaborowski A. The synthesis of diosgenyl 2-amino-2-deoxy-beta-D-glucopyranoside hydrochloride. Carbohydrate research 2000,328(3),249-252.
    [97]Myszka H. Bednarczyk D, Najder M, Kaca W. Synthesis and induction of apoptosis in B cell chronic leukemia by diosgenyl 2-amino-2-deoxy-beta-D-glucopyranoside hydrochloride and its derivatives. Carbohydrate research 2003,335(2),133-141.
    [98]Kaskiw M J, Tassotto M L, Th'ng J, Jiang Z H. Synthesis and cytotoxic activity of diosgenyl saponin analogues. Bioorganic & medicinal chemistry 2008,16(6),3209-3217.
    [99]Kaskiw M J, Tassotto M L, Mok M, Tokar S L, Pycko R, Th'ng J, Jiang Z H. Structural analogues of diosgenyl saponins:synthesis and anticancer activity. Bioorganic & medicinal chemistry 2009,17(22),7670-7679.
    [100]Hu K, Yang Z H, Pan S S, Xu H J, Ren J. Synthesis and antitumor activity of liquiritigenin thiosemicarbazone derivatives. European journal of medicinal chemistry 2010,45(8),3453-3458.
    [101]Levine B, Klionsky D J. Development by self-digestion:molecular mechanisms and biological functions of autophagy. Developmental cell 2004,6(4).463-477.
    [102]Gunther C, Neumann H, Neurath M F, Becker C. Apoptosis, necrosis and necroptosis:cell death regulation in the intestinal epithelium. Gut 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700