香雪兰体外再生植株和杂种后代遗传、表观遗传多态性及花香成分分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对香雪兰3个品种进行了种间杂交的初步研究,共尝试了3个组合,选取14个杂交子代使用AFLP分子标记技术进行杂种鉴定,根据条带统计结果、聚类分析及主成份分析发现,子代全部是3个香雪兰品种的杂交后代,而且大部分都属于偏母本类型的杂种,子代AFLP扩增结果出现了亲本都没有的DNA条带,说明种间杂交产生了遗传变异。
     MSAP(Methylation Sensitive Amplified Polymorphism)技术检测了香雪兰亲本和杂交后代的甲基化水平,在荷白与荷粉杂交体系中用了16对引物,共产生了711条带,甲基化水平在14.09%-15.77%之间,荷粉与荷黄的杂交体系中,21对引物共扩增出619条带,甲基化水平为11.38%-12.75%,两者都是以内侧胞嘧啶全甲基化为主。进一步将MSAP数据分为甲基化敏感多态性(Methylation-Sensitive Polymorphism,MSP)和甲基化不敏感多态性(Methylation-Insensitive Polymorphism,MISP),与AFLP一样,对MSAP数据做了聚类和主成份分析,验证了杂种的真实性。
     尽管亲本向杂种的DNA甲基化模式的遗传传递主要遵循孟德尔的遗传方式,香雪兰种间杂交仍然可以导致杂种一代发生不同程度的DNA甲基化变异,在荷白与荷粉的杂交后代中,变异率为0.84%,荷粉与荷黄的杂交后代的变异率更低,仅为0.16%,杂种后代与亲本相比,主要表现为甲基化程度的降低。
     通过Mantel’s检测,分析了AFLP、MSP和MISP之间的相关性,发现MSP与MISP之间相关性极显著,在荷白和荷粉杂交体系中,AFLP与MSP和MISP之间具有相关性,但是不显著,在荷粉与荷黄的杂交体系中,则没有相关性。
     以幼花序和花序轴做为外植体,根据所用激素不同,香雪兰既可以通过直接体细胞胚胎发生途径由周缘细胞直接再生,还可以经过胚性愈伤组织间接再生。在直接体细胞发生途径中,最佳的激素配比是IAA:6-BA=2:1mg/L,幼花序的再生率为84%,花序轴的再生率为100%。在间接体细胞发生途径中,激素比例为6-BA:2,4-D为5:1mg/L时,愈伤组织再生的效率最高,其中幼花序为92.4%,花序轴为100%。当胚性愈伤组织转移到含有2mg/L IAA和3mg/L 6-BA的MS培养基上后,可以分化成完整的植株。
     AFLP和MSAP两种分子标记技术被用来检测再生植株的遗传和表观遗传稳定性,在直接体细胞再生途径中,20对引物在亲本和11个再生植株中共扩增出916条清晰条带,其中8条表现为多态性,比率为0.87%,在间接体细胞再生途径中,18对引物共扩增出1075条带,其中3条为多态性条带,比率为0.27%,与亲本相比,再生植株变异模式有两种,即再生植株新带的增加和亲本条带的消失。MSAP分析表明,组织培养可以导致CG和CNG两种模式的甲基化水平的变异,变异率在直接和间接途径中分别为1.1%和1.3%。
     以幼花序为外植体,在N6培养基上可以诱导黄原间接体细胞胚胎发生途径,SDS-PAGE技术检测这一形态发生过程中的可溶性蛋白变化,发现6种多肽与体细胞胚发育有关,分子量为45,53,55kD的多肽存在于胚性愈伤组织、球形胚、和胚芽鞘时期,83kD的多肽则存在于后两个时期,即胚芽鞘期和真叶期胚中,37kD的多肽存在于胚性愈伤组织和球形胚期胚状体中,35kD的多肽存在所有的时期当中。
     利用静态顶空的方法收集了6个香雪兰栽培品种及其中两个品种9个正反交F1代的花香成分,经过GC-MS分析后,共检测到43种花香成分,每个品种的花香成分在3-25个之间,主要成分都仅仅为2-4种,包括异戊二烯类物质和脂肪族衍生物,同时还有少量的含氮和含硫化合物。在所有的成分当中,沉香醇的含量最高,在亲本和子代的花香研究中发现,亲本主要花香成分可以稳定的遗传给后代,此外,研究还发现花瓣和雌蕊是香雪兰花香的主要释放部位。
     基于S?rensen’s相似指数,进行了非度量多维测度分析,结果表明,被测品种可以分为两类,同时本论文还讨论了香雪兰花香在授粉中的作用,主要表现在吸引蝴蝶、娥类和蜜蜂等昆虫方面的作用。
The experiment of interspecific hybridization had been conducted with 3 cultivars, a total of three combinations were tried, and the molecule identification of 14 offspring from the cross-combinations by AFLP showed that most offspring were real and mother-closed hybrids. In offsprings, most of the AFLP bands were inherited from had different from their parents but some bands were novel bands, which meaned that the offsprings not only inherited the characteristics of parents, but also had new variation.
     MSAP technique was used to detect the DNA methylation level of freesia parents and hybrids, in white Freesia hybridaⅡ×pink Freesia hybrida hybrid system, 16 primer pairs generated 711 sites, the DNA methylation level was between 14.09%-15.77%, in pink Freesia hybrida×yellow Freesia hybridaⅡhybrid system, 21 primer pairs generated 619 sites, and the DNA methylation level was between 11.38%-12.75%, CG methylation sites was the principal methylation pattern. Furthermore, the MSAP data were dissected into methylation-sensitive (MSP) and methylation -insensitive polymorphisms (MISP), cluster analysis and principal component analysis were also been done,and the results was similar to AFLP.
     Although in the majority of CCGG sites, DNA methylation showed Mendelian inheritance from parental lines to hybrids, alterations in methylation pattern were detected in some hybrids studied at certain frequencies, the variation ratio was 0.84% and 0.16% in white Freesia hybridaⅡ×pink Freesia hybrida hybrid system and in pink Freesia hybrida×yellow Freesia hybridaⅡrespectively. Compared with the mid-parent, DNA methylation level of most hybrid offspring was a little lower.
     We analyzed the various correlations of the AFLP and MSAP data including methylate sensitive polymorphism (MSP) and methylate insensitive polymorphism (MISP), the correlation of MSP and MISP was significant in both hybrid system, certain association between MSP and AFLP or MISP and AFLP was detected in white Freesia hybridaⅡ×pink Freesia hybrida hybrid system, but none of the correlations of them were detected in another hybrid system.
     For efficient regeneration of this flower from young inflorescence and rachillae in tetraploid, we developed a simple in vitro micropropagation protocol. Explants of Freesia hybrida can regenerate plantlets through somatic embryogenesis via two kinds of pathways, that is, directly from the epidermal cells or indirectly from an embryonic callus, depending on the exogenous plant growth regulators (PGRs) used in the culture media. In direct embryogenesis, when the explants were cultured on Murashige and Skoog (MS) medium supplemented with 2mg/L indole acetic acid (IAA) and 1mg/L 6-benzylaminopurine (6-BA), the induction rate was 84% for young inflorescence and 100% for rachillae. In indirect embryogenesis, embryonic calluses were formed when the culture medium contained 5 mg/L 6-BA and 1mg/L 2,4-dichlorophenoxy acetic acid (2,4-D), and the induction rate was 92.4% for young inflorescence and 100% for rachillae. After the embryonic calluses were transferred to the medium supplemented with 2mg/L IAA and 3mg/L 6-BA, they could develop into plantlets with roots.
     In assessing the two regeneration pathways in terms of genetic and epigenetic fidelity of the regenerants, two kinds of molecular markers [amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP)] were employed. The AFLP analysis used 20 primer pairs that yielded 916 scorable bands among the donor plant and 11 regenerants from direct embryogenesis, of which 8 (0.87%) were polymorphic. The regenerants from indirect embryogenesis had 1075 clear bands of which 3 (0.27%) were polymorphic scorable bands from 18 primer pairs. Moreover, the variant band patterns included two types, that is, loss-of-original and gain-of-novel bands. MSAP analysis revealed that tissue culturing of the flower induced DNA cytosine methylation alterations in both CG and CNG levels and patterns compared with the donor plant. The variation rate was 1.1 and 1.3% for the direct and indirect embryogenesis pathways, respectively. The findings show that tissue culture of flowering plants is a form of stress which can induce some heritable epigenetic variations and should be considered in future long-term genotype preservation programs of Freesia hybrida
     Using the young inflorescence segments of Freesia refracta as explants, indirect somatic embryogenesis of somatic cells was induced in a N6 medium supplemented with some exogenous hormones. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was used for the analysis of soluble proteins produced during the somatic embryogenesis of this plant. There are six polypeptides, which might play some roles in the process of somatic embryo development. Three polypeptides (45, 53 and 55 kD) were detected in the stages of embryogenic callus, globular embryoid, and embryoid with coleoptiles, except the embryoid with leaf. One polypeptide (83 kD) was specific for the stages of embryoid with coleoptiles and embryoid with leaf. One polypeptide (37 kD) was detected in the first two stages, namely, embryogenic callus and globular embryoid. One polypeptide (35 kD) was regularly synthesized in each stage, from embryogenic callus to embryoid with leaf.
     Floral fragrance compounds of one freesia specie, four cultivars and ten hybrids of two cultivars were studied using static headspace extraction for sample preparation followed by GC-MS analysis. In total, 43 compounds were identified and the number of compounds per species ranged between 3 and 25. Main compounds dominated by only 2–4 compounds in most species were isoprenoids and fatty acid derivatives accompanied by sulphur-containing compounds and nitrogen-containing compounds. Among the compounds, linalool (26.6-85.4%) was the major component and was detected from all the flowers. In the parents and the studied progeny, the laws of segregation of the scent traits in this cross were unveiled, stable inheritance of the main components was observed. Furthermore, In vitro analysis showed that the pistil and petal were the main producers of the floral fragrance compounds
     Based on the measurement of S?rensen’s index of similarity (Is) nonmetric multidimensional scaling (MDS) was used to detect meaningful underlying dimensions and to visualize similarities between the investigated species. The MDS analysis showed two groups of species. The results are discussed in relation to pollination, especially by butterflies, moths, and bees.
引文
[1] Brown N E. Freesia klatt and its history[J]. J. S. Afr. Bot, 1935 (1): 1-31.
    [2] Bolus H M L. Plants-new and noteworthy: Freesia hurlingii L. Bolus[J]. S. Afr. Gard, 1933 (23): 111-112.
    [3] Goldblatt P. Systematics of Freesia (Iridaceae)[J]. J. Southern Africa Botany, 1982(48): 39-92.
    [4] Ruzin S E. Root contraction in Freesia (Iridaceae)[J]. Am. J. Bot, 1979(66): 522-531.
    [5] Goldblatt P. Cytological and morphological studies in the southern African Iridaceae[J]. J. S. Afr. Bot, 1971(37): 317-410.
    [6]王丽,卜秀玲.香雪兰核型研究[J].东北师大学报(自然科学版), 1988(3): 93-95.
    [7] Klatt F W. Freesia leichtlinii F. W. Kaltt[J]. Gartenflora, 1874(23): 289-290.
    [8] Jacob J. The chapman Freesias[J]. The Garden, 1909(73): 590-591.
    [9] Watson W. Kew notes: Freesia armstrong [J]. Gdnr’s Chron ser, 1898, 3, 24, 195.
    [10] Hoog T. Die neuen Freesienhybriden in der Handelsg?rtnerei der Firma C. G. van Tubergen jun,. Haarlem, Holland[J]. Gartenwelt, Berl, 1909(13): 199-201.
    [11] Goemans R A. The history of the modern Freesia[C]. in C. D. Bricakell, D. F. Cutler, and M. Gregory , eds. Petaloid Monocotyledons: Horticultural and Botanical Research. London: Academic Press, 1980. 161-170.
    [12] Halevy A H, Mor Y. Promotion of flowering in Freesia plants var. Princess Marijike[J]. Acta. Hortic, 1969(15): 133-137.
    [13]Mohr O. Kromosomundersogelse hos Freesia[J]. Horticultura, Odense, 1958(11): 89-90.
    [14]林源祥,秦文英,罗震伟.小苍兰杂交育种研究[J].园艺学报, 1993. 20 (1) : 71-74
    [15]战庆悦,那冬晨.红花香雪兰×黄花吞雷兰杂交可配性试验研究[J].北方园艺, 2007(1):90-91.
    [16] Gregory J Tranah, Mark Bagley, Jeremy J etal. Development of codominant markers for identifying species hybrids[J]. Conservation Genetics 2003(4): 537–541.
    [17] Antonio A F Garcia, Luciana L Benchimol, Ant?nia M M Barbosa, etal. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines[J]. Genetics and Molecular Biology, 2004. 27(4): 579-588
    [18] Grzeblus D, Senalik D, Jagosz B, etal. The use of AFLP markers for the identi?cation of carrot breeding lines and F1 hybrids[J]. Plant Breeding, 2001(120): 526-528.
    [19] Teo L L, Kiew R, Set O, etal. Hybrid status of kuwini, Mangifera odorata Griff. (Anacardiaceae) verified by amplified fragment length polymorphism[J]. Molecular Ecology, 2002 (11): 1465–1469.
    [20] Mahmoud Zeid, Chris-Carolin Sch?n, Wolfgang Link. Hybrid performance and AFLP- based genetic similarity in faba bean[J]. Euphytica, 2004(139): 207–216.
    [21] Kiula B A, Lyimo N G, Botha A-M. Association between AFLP-based genetic distance and hybrid performance in tropical maize[J]. Plant Breeding, 2008(127):140-144.
    [22] Li Y H, Han Z H, Xu X. Segregation patterns of AFLP markers in F1 hybrids of a cross between tetraploid and diploid species in the genus Malus [J]. Plant Breeding, 2004 (123): 316-320.
    [23]张春庆,贾继增.利用AFLP技术鉴定玉米自交系及杂交种[J].山东农业大学学报(自然科学版),2003,34(3): 427-430.
    [24]鹿金颖,毛永民,申莲英,彭士琪,刘敏.用AFLP分子标记鉴定冬枣自然授粉实生后代杂种的研究[J].园艺学报,2005,32(4): 680-683.
    [25]阮成江,钦佩,韩睿明,何祯祥.AFLP分子标记在鉴定海滨锦葵杂交后代上的应用[J].南京林业大学学报(自然科学版),2005,29(1)20-24.
    [26]陈瑞丹,张启翔.梅花杂交育种中杂种F1代的早期鉴定[J].北京林业大学学报.2004,26 (S):64-70.
    [27] Gruenbaum Y, Naveh-Many T, Cedar H, etal. Sequence specificity of methylation in higher plant DNA [J]. Nature, 1981(292): 860-862.
    [28] Messeguer R, Ganal M W, Stevens J C, etal. Characterization of the level, target sites andinheritance of cytosine methylation in tomato nuclear DNA [J]. Plant Mol. Biol, 1991(16): 753-770.
    [29] Kakutani T, Munakata K, Richards E J, et al. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana[J].Genetics, 1999, 151(2):831-838.
    [30] Mette M F, Aufsatz W, van der Winden J, et al.Transcriptional silencing and promoter methylation triggered by double stranded RNA[J]. EMBO J, 2000, 19(19): 5194-5201.
    [31] Bezdek M, Koukalova B,Kuhrova V,et al. Differential sensitivity of CG and CCG DNA sequences to ethionine-induced hypomethylation of the Nicotiana tabacum genome[J]. FEBS Lett , 1992, 300(3):268-270.
    [32] Lund G, Messing J, Viotti A. Endosperm-specific demethylation and activation of specific alleles of alpha-tubulin genes of Zea mays L[J]. Mol. Gen. Genet, 1995(246): 716-722.
    [33] Rossi V., Motto M., Pellegrini L. Analysis of the methylation pattern of the maize opaque-2 (O2) promoter and in vitro binding studies indicate that the O2 B-Zip protein and other endosperm factors can bind to methylated target sequences[J]. J. Biol. Chem, 1997(272): 13758-13765.
    [34] Walker E.L. Paramutation of the r1 locus of maize is associated with increased cytosine methylation[J]. Genetics, 1998(148): 1973-1981.
    [35] Xiong L Z, Xu C G, Saghai Maroof M A,etal. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylationsensitive amplification polymorphism technique[J]. Mol. Gen. Genet, 1999(261): 439-446.
    [36] Ruiz-Garcia L, Cervera M T, Martinez-Zapater J M. DNA methylation increases throughout Arabidopsis development[J]. Planta, 2005(222): 301-306.
    [37] Razin A, Cedar H. DNA methylation and gene expression[J]. Microbiol. Rev, 1991(55):451-458.
    [38] Constancia M, Pickard B, Kelsey G, etal. Imprinting mechanisms[J]. Genome Res, 1998(8): 881-900.
    [39] Jablonka E, Goiten R, Marcus M, etal. DNA hypomethylation causes an increase in DNase Isensitivity and advance in the timing of replication of the entire X chromosome[J]. Chromosoma, 1985(93): 152–156.
    [40] Razin A. CpG methylation, chromatin structure and gene silencing: A three-way connection[J]. EMBO J, 1998(17) 4905-4908.
    [41] Gonzalgo M L, Jones P A. Mutagenic and epigenetic effects of DNA methylation[J]. Mutat Res, 1997(386): 107-118.
    [42] Finnegan E.J., Brettell R.I.S., Dennis E.S. The role of DNA methylation in the regulation of plant gene expression[C]. In: Jost J P, Saluz H P, eds. DNA Methylation: Molecular Biology and Biological Significance. Basel: Birkhauser.1993. 218-261.
    [43] Pikaard C S. Nucleolar dominance and silencing of transcription. Trends Plant Sci[J], 1999(4): 478-483.
    [44] Ronemus M J, Galbiati M, Ticknor C, etal. Demethylation-induced developmental pleiotropy in Arabidopsis[J]. Science, 1996(273): 654-657
    [45] Tanaka H, Masuta C, Uehara K, et al. Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense NA of the S-adenosyl-L-homocysteine hydrolase gene[J]. Plant Mol Biol, 1997(35) :981-986
    [46] Kakutani T, Jeddeloh J A, Flowers S K, et al. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations[J]. Proc Natl Acad Sci USA, 1996, 93(22): 12406-12411.
    [47] Sano H , Kamada I , Youssefian S, et al . A single treatment of rice seedling with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA[J]. Mol Gener Genet, 1990(220): 441-447.
    [48] Schwartz D, Dennis E. Transposase activity of the Ac controlling element in maize is regulated by its degree of methylation[J]. Mol Gen Genet 1986(205): 476-482.
    [49] Banks JA, Masson P, Fedoroff N. Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element[J]. Genes Dev 1988(2): 1364-1380.
    [50] Matzke M A, Primig M, Trnovsky J, et al .Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants[J]. EMBO J 1989(8):643-649.
    [51] Lauria M, Rupe M, Guo M, et al. Lund Extensive maternal DNA hypomethylation in the endosperm of Zea mays[J]. Plant Cell G, 2004(16): 510-522.
    [52] Kinoshita T, Miura A, Choi Y, et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation[J]. Science, 2004(303): 521-523.
    [53] Phillips R L,Kaeppler S M, Olhoft P.Genetic Instability of Plant Tissue Cultures:Breakdown of Normal Controls[J].PNAS, 1994(91):5222-5226.
    [54] Chan S W, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsis thaliana[J]. Nat Rev Genet, 2005(6): 351-360.
    [55] Reyna-Lopez G E, Simpson J, Ruiz-herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms[J].Mol Gen Genet, 1997, (253): 703-710.
    [56] Ashikawa I. Surveying CpG methylation at 5′-CCGG in the genomes of rice cultivars[J]. Plant Molecular Biology, 2001(45):31-39.
    [57] Liu B, Brubaker C L, Mergeai G, et al. Polyploid formation in cotton is not accompanied by rapid genomic changes[J]. Genome, 2001(44): 321-330.
    [58] Xu M, Li X, Korban S S. AFLP-based detection of DNA methylation[J]. Plant Mol.Biol.Rep, 2000(18): 361-368.
    [59] Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers[J].Mol Genet Genomics,2002,268:543-552.
    [60] Portis E, Acquadro A, Comino C, et al. Analysis of DNA methylation during germination of pepper(Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP) [J]. Plant Science, 2004(166): 169-178.
    [61] Noyer J L, Causse S, Tomekpe K, et al. A new image of plantain diversity assessed by SSR, AFLP and MSAP markers[J]. Genetica, 2005(124): 61-69.
    [62] Matthes M, Singh R, Cheah S C, et al. Variation in oil palm(Elais guineensis Jacq.)tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes[J]. Theor Appl Genet, 2001(102): 971-979.
    [63] Santy P E, Virginia A H V, Andrew J K.Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP)[J]. Plant Science, 2001(161): 359-367.
    [64] Chakrabarty D, YU K W, Paek K Y. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng(Eleuterococcus senticosus)[J]. Plant Science, 2003(165): 61-68.
    [65] Xu M L, Li X Q, Korban S S. DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.)[J]. Theor Appl Genet, 2004(109): 899-910.
    [66] Law R D, Suttle J C. Transient decreases in methylation at 5’-CCGG-3’sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth[J]. Plant Mol Biol, 2002(51): 437-447.
    [67] Smulders M J M, Rus-Kortekaas W, Vosman B. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants[J]. Theor Appl Genet, 1995(91):1257-1264.
    [68] Joyce S M, Cassells A C. Variation in potato microplant morphology in vitro and DNA methylation[J]. Plant Cell Tiss.Org., 2002(70):125-137.
    [69] Imazio S, Labra M, Grassi F, et al. Molecular tools for clone identification: the case of the grapevine cultivar Traminer[J]. Plant Breed, 2002(121) :531-535.
    [70] Hollander M, Wolfe D A. Nonparametric Statistical Methods. New York, Wiley. 1973.
    [71] Rohlf F J. NTSYS-pc. Numerical taxonomy and multivariate analysis system. Ver. 2.1 Exeter. software. Setauket, New York, 2000.
    [72] Jaccard P. Nouvelles rescherches sur la distribution florale.Bull Soc Vaud Sci Nat, 1908, 44:223-270.
    [73] Rohlf F J. NTSYS-pc: Numerical taxonomy and multivariate analysis system [M]. Exeter.Publishing Ltd. New York, USA, 1993.
    [74] Mantel N A. The detection of disease clustering and a generalized regression approach. Cancer Res, 1967, 27:209-220
    [75] Gower J C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 1966, 53: 325-338.
    [76] Riddle N C and Richards E J.The control of natural variation in cytosine methylation in Arabidopsis[J].Genetics,2002 (162): 355-363.
    [77] Kakutani T.Epi-alleles in plants:inheritance of epigenetic information over generations[J].Plant Cell Physiol,2002,43: 1106-1111.
    [78] Cubas P,Vincent C,and Coen E.An epigenetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401: 157-161.
    [79] Shikawa I. Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars[J]. Plant Mol Biol, 2001, 45: 31-39.
    [80] Opperman R, Emmanuel E, and Levy A A.The Effect of Sequence Divergence on Recombination Between Direct Repeats in Arabidopsis[J]. Genetics. 2004, 168: 2207-2215.
    [81] Liu B and Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol[J]. 2003, 29: 365-379.
    [82] Autran D, Huanca-Mamani W, and Vielle-Calzada J P. Genomic imprinting in plants: the epigenetic version of an Oedipus complex[J]. Curr Opin Plant Biol, 2005, 8: 19-25.
    [83] Vaughn M,Tanurdzic M, Lippman Z, et al. Epigenetic natural variation in Arabidopsis thaliana[J]. PLos Bio, 2007, 5: 1617-1629.
    [84] Riddle N C and Richards E J.Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in Arabidopsis[J].Plant J, 2005, 41: 524-532.
    [85] Wang Y, Lin X, Dong B, et al. DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression[J]. Cell Mol Biol Let, 2004, 9: 543-556.
    [86] Nagel J, Zettler F W, Hiebert E. Strains of bean mosaic virus compared to clover yellow vein virus in relation to gladiolus (Gladiolus hortulanus) production in Florida[J]. Phytopathology, 1983(73): 449-454.
    [87] Wang L, Huang B Q, He M Y, et al. Somatic embryogenesis and its hormonal regulation in tissue cultures of Freesia refracta[J]. Annals of Botany, 1990(65): 271-276.
    [88] Wang L, Huang B Q, He M.Y. et al. In vitro morphogenesis and its hormonal control in tissue cultures of Freesia refracta[C]. in C.B. You, Z.L. Chen and Y. Ding,eds. Biotechnology in Agriculture , Kluwer Academic Publishers: Netherlands. 1993, 379-382.
    [89] Wang L, Huang B Q, He M Y et al. Somatic Embryogenesis in Freesia refracta[C], in Y.P.S.Bajaj, eds. Biotechnology in Agriculture and Forestry, Vol. 31, Somatic Embryogenesis and Synthetic Seed II. Springer– Verlag: Berlin Heidelberg.1995, 294-305.
    [90] Wang L, Zou M Q, Wang X G. Tissue culture of embryo and regeneration of plant in Freesia refractaKlatt[J]. Acta Horticulturae Sinica, 1996 (23): 281-284.
    [91] Davies D R, Nichol M A. In vitro propagation of Freesia[J]. Annu. Rep. John. Innes. Inst, 1971 (62): 45
    [92] Bajaj Y P S, Pierik R L M. Vegetative propagation of Freesia through callus cultures[J]. Neth. J. Agric. Sci, 1974 (22): 153-159.
    [93] Petru E, Jirsakova E, Landa Z. Clonal propagation of some Freesia cultivars through tissue culture[J]. Biol. Plant (Prague), 1976 (18): 304-306.
    [94] Hussey G. Totipotency in tissue explant and callus of some members of the Liliaceae, Iridaceae and Amaryllidaceae[J]. J. Exp. Bot, 1975 (26): 253-262.
    [95] Mori Y, Hasegawa A, Kano K. Studies on the clonal propagation by meristem culture in Freesia[J], J. Jpn. Soc. Hortic Sci, 1975 (44): 294-302.
    [96] Bach A. The healthiness of Freesia x hybrida propagated in vitro[C]. In: Novak F J, Havel L, Dolezel J, eds. Plant tissue and cell culture-application to crop improvement, Czechoslovak Acad Sci Prague.1984, 551-552.
    [97] Bajaj Y P S. Freesia[C]. In: Ammirato P V, Evans D A, Sharp W R, Bajaj Y P S, eds, Handbook of plant cell culture, vol 5. Orrnamental species. McGraw-Hill: New York. 1989, 413-428.
    [98]杨文,刘春艳,卜秀玲等.香雪兰愈伤组织超低温保存的研究[J].东北师大学报自然科学版, 1999(3): 93-95.
    [99] Wang L, Huang B Q, He M Y et al. Origin of direct somatic embryos from cultured inflorescence axis segments of Freesia refracta[J]. International Journal of Plant Science, 1994(155): 672-676.
    [100] Wang L, Bao X M, Huang B Q, et al. Somatic embryogenic potential determined by the morphological polarity of the explant in tissue cultures of Freesia refracta[J]. Acta Botanica Sinica, 1998(40): 138-143.
    [101] Kaeppler S M, Kaeppler H F, Rhee Y. Epigenetic aspects of somaclonal variation in plants[J]. Plant Molecular Biology, 2000, 43: 179-188.
    [102] Larkin P J, Scowcroft W R. Somaclonal variation-a novel source of variability from cell cultures for plant improvement[J].Theor Aool Genet,1981, 61: 197-214.
    [103] Skirvin R M, Norton M, McPheeters K D. Somaclonal variation: has it proved useful for plant improvement [J]. Acta Hort, 1993, 336: 333-340.
    [104] Sun Z Y. Progress in the study and application of plant somaclonal variation[J]. Acta Agriculture Nucleatae Sinica, 2005, 19 (6): 479-484.
    [105] Jain S M. Plant biotechnology and mutagenesis for sustainable crop improvement[C]. In: Behl R K , Singh D K, Lodhi G P, eds. Crop Improvement for Stress Tolerance. CCSHAU, Hissar and MMB, New Delhi, India, 1998. 218–232.
    [106] Ahloowalia B S. Chromosomal changes in parasexually produced ryegrass[C]. In: Jones K, Brandham P, eds. Current Chromosome Research. North Holland: Amsterdam, 1976. 115–122.
    [107] Ahloowalia B S. Spectrum of variation in somaclones of triploid ryegrass[J]. Crop Sci,1983, 23:1141–1147.
    [108] Ahloowalia B S. Limitations to the use of somaclonal variation in crop improvement[C]. In: Semal J, eds. Somaclonal Variation and Crop Improvement. Boston: Martinus Nijhoff, 1986. 14–27.
    [109] Duncan R R. Tissue culture-induced variation and crop improvement[J]. Adv Agron, 1997, 58: 201–240.
    [110] Roth R , Ebert I, Schmidt J. Trisomy associated with loss of maturation capacity in a long-term embryogenic cultures of Abies alba[J]. Theor Appl Genet, 1997, 95(3): 353–358.
    [111] Kaeppler S M, Phillips R L, Olhoft P. Molecular basis of heritable tissue culture-induced variation in plants[C]. In: Jain S M, Brar D S, Ahloowalia B S, eds. Somaclonal Variation and Induced Mutations in Crop Improvement. Dordrecht: Kluwer Academic Publishers, 1998. 467–486.
    [112] Gupta P K. Chromosomal basis of somaclonal variation in plants[C]. In: Jain S M, Brar D S, Ahloowalia B S, eds. Somaclonal Variation and Induced Mutations in Crop Improvement. Dordrecht: Kluwer Academic Publishers, 1998. 149–168.
    [113] Heinz D J, Mee G W P. Plant differentiation from callus tissue of Saccharum species[J]. Crop Sci, 1969, 9: 346–348.
    [114] Heinz D J, Mee G W P, Nickell L G. Chromosome number of some Saccharum species hybrids and their cell suspension cultures[J]. Amer J Bot, 1969, 56(4): 450–456.
    [115] Heinz D J, Mee G W P. Morphologic, cytogenetic and enzymatic variation in Saccharum species hybrid clones derived from callus culture[J]. Amer J Bot, 1971, 58: 257–262.
    [116] Ahloowalia B S. Regeneration of ryegrass plants in tissue culture[J]. Crop Sci, 1975, 15: 449–452.
    [117] Evans D A, Sharp W P. Single gene mutations in tomato plants regenerated from tissue culture[J]. Science, 1983, 221: 949-951.
    [118] Hang A, Bregitzer P. Chromosomal variations in immature embryo-derived calli from six barley cultivars[J]. J. Hered, 1993, 84: 105–108.
    [119] Larkin P J. Heritable somaclonal variation in wheat[J]. Theor Appl Genet, 1984, 67,443-445.
    [120] Al-Zahim M A,Ford-Lloyd B V,Newbury H J. Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis[J]. Plant Cell Rep, 1999, 18, 473-477.
    [121] Juan P R, Ricardo W M. Assessment of somaclonal variation in asparagus by RAPD fingerprinting and cytogenetic analyses[J]. Sci Hortic, 2001, 90: 19-20.
    [122] Sunderland N. Nuclear cytology[C]. In: Street H E, eds. Plant Tissue and Cell Culture. Oxford: Blackwell, 1977. 177–205.
    [123] Amato F. Cytogenetics of plant cell and tissue culture and their regenerates[J]. CRC Crit Rev Plant Sci, 1985, 8: 73-112.
    [124] Lee M, Phillips R L. Genome rearrangements in maize induced by tissue culture[J]. Genome, 1987, 29: 122–128.
    [125] Benzion G, Phillips R L. Cytogenetic stability of maize tissue cultures: a cell line pedigree analysis[J]. Genome, 1988, 30: 318–325.
    [126] Peschke V M, Phillips R L. Genetic implications of somaclonal variation in plants[J]. Adv Genet, 1992, 30: 41–75.
    [127] Ahloowalia B S, Transmission of somaclonal variation in wheat[J]. Euphytica, 1985, 34: 525–537.
    [128] Peschke V M, Phillips R L, Gengenbach B G. Discovery of transposable element activity among progeny of tissue culture-derived maize plants[J]. Science, 1987, 238: 804–807.
    [129] Peschke V M, Phillips R L. Activation of the maize transposable element Suppressor-mutator (Spm) in tissue culture[J]. Theor. Appl. Genet, 1991, 81: 90–97.
    [130] Hirochika H, Sugimoto K, Otsuki Y, et al. Retrotransposons of rice involved in mutations induced by tissue culture[J]. Proceedings of the National Academy of Sciences, 1996, 93: 7783-7788.
    [131] Groose R W, Bingham E T. An unstable anthocyanin mutation recovered from tissue culture of alflafa. 1. High frequency of reversion upon reculture. 2. Stable non revertants derived from reculture[J]. Plant Cell Rep, 1986, 5: 104–110.
    [132] Burr B, Burr F A. Activation of silent transposable elements[C]. In: Nelson D, eds. Plant Transposable Elements. New York: Plenum Press, 1988. 317-324.
    [133] Jain S M. Tissue culture-derived variation in crop improvement[J]. Euphytica, 2001, 118: 153–166.
    [134] Chandler V L, Eggleston W B, Dorweller J E. Paramutation in maize[J]. Plant Mol Biol, 2000, 43: 121-145.
    [135] Finnegan E J, Peacock W J, Dennis E S. DNA methylation, a key regulator of plant development and other processes[J]. Curr Opin Genet Dev, 2000, 10: 217-223.
    [136] Martienssen R A, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi[J]. Science, 2001, 293: 1070-1074.
    [137] Phillips R L, Kaeppler S M, Peschke V M. Do we understand somaclonal variation[C]? In: Nijkamp H J J, van der Plas L H W, van Aartrijk J, eds. Proceedings of the 7th International Congress on Plant Tissue Cell Culture. Dordrecht: Kluwer Academic Publishers, 1990. 131–141.
    [138] Bretell R I S, Dennis E S, Scowcmt W T, et a1. Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase. Mol Gen Genet, 1986, 202: 235-239.
    [139]王小军,鲍文奎.八倍体小黑麦耐盐细胞系产生的遗传机制[J].植物学报,1998, 40(9): 330-338.
    [140] Chaleff R S, Ray T B. Herbicide resistant mutants from tobacco cell cultures[J]. Science, 1984, 223: 1148–1151.
    [141] Evans D A, Sharp W R, Medina-Filho A P. Somaclonal variation and gametoclonal variation[J]. Amer J Bot, 1984, 71: 759–774.
    [142] Shepard J F, Bidney D, Shahin E. Potato protoplasts in crop improvement[J]. Science, 1980, 208: 17–24.
    [143] Larkin P J, Scowcroft S C. Somaclonal variation and eyespot toxin tolerance in sugarcane[J]. Plant Cell Tiss Org Cult, 1983, 2: 111–122.
    [144] Jain S M. Creation of variability by mutation and tissue culture in improving plants[J]. Acta Hort, 1997b, 447: 69–78.
    [145] Israeli Y, Reuveni O, Lahav E. Qualitative aspects of somaclonal variations in banana propagated by in vitro techniques[J]. Sci Hort, 1991, 48: 71–88.
    [146] Gunn R E, Shepard J F. Regeneration of plants from mesophyll-derived protoplasts of British potato (Solanum tuberosum L.) cultivars[J]. Plant Science Letters, 1981, 22: 97-101.
    [147] Karp A, Bright S W J. On the causes and origins of somaclonal variation[J]. Oxford Survey of Plant Molecular and Cell Biology, 1985, 2: 199–234.
    [148] De J, Custers J B M. Induced changes and flowering of chrysanthemun after irradiation and in vitro culture of pedicels and petals epidermis[J]. Euphytica, 1986, 35: 137-148.
    [149] Creissen S S, Karp A. Karyotypic changes in potato plants regenerated from protoplasts[J]. Plant Cell Tiss Org Cult, 1985, 4: 171–182.
    [150] Smith S M, Sreet H E. The decline of embryogenic potential as callus and suspension cultures of carrot (Daucus carota L.) are serially subcultured[J]. Annals of Botany, 1974, 38: 233-241.
    [151] Singh B D, Kao K N, Miller R A. Karyotypic changes and selection pressure in haplopappus gracilis suspension cultures[J]. Canadian Journal of Genetics and Cytology, 1975, 17: 109-116.
    [152] Shepard J F. Protoplasts as sources of disease resistance in plants[J]. Annual Review of Phytopathology, 1981, 19: 145-155.
    [153] Patnaik J, Sahoo S, Debata B K. Somaclonal variation in cell suspension culture-derived regenerants of Cymbopogon martinii (Roxb.) Wats var. motia[J]. Plant Breeding, 1999, 118: 351–354.
    [154] Valkonen J P T, Moritz T, Watanabe K N, et al. Dwarf (di)haploid pito mutants obtained from a tetraploid potato cultivar (Solanum tuberosum subsp. tuberosum) via anther culture are defective in gibberellin biosynthesis[J]. Plant Sci, 1999, 149: 51–57.
    [155] Infante R , Gonelli S, Rosatti P, et al. Longterm cell suspension culture and regeneration of the single-leafed strawberry Fragaria vesca monophylla[J]. J Sci Food Agric, 1996, 72: 196–200.
    [156] Nakajima K. Biotechnology for crop improvement and production in Japan[C]. Paper presented at the Regional Expert Consultation on the Role of Biotechnology in Crop Production. Bangkok: FAO Regional Office for Asia and the Pacific. 1991. 18–21.
    [157] Ramos L R, Maribona R H, Ruiz A, et al. Somaclonal variation as a source of resistance to eyespot disease of sugarcane[J]. Plant Breed, 1996, 115: 37–42.
    [158] Dugdale L J, Collin H A, Issac S, et al. Leaf blight resistance in carrot somaclones[J]. Acta Hort, 1993, 336: 399–404.
    [159] Katiyar R K, Chopra V L. A somaclone of Brassica juncea is processed into a variety and is released for commercial cultivation in India[J]. Cruciferae Newslett, 1995, 17: 92–93.
    [160] Yadav V K, Mehta S L. Lathyrus sativus– a future pulse crop free of neurotoxin[J]. Current Sci, 1995, 68: 288–292.
    [161] Kukreja A K, Dhawan O P, Mathur A K, et al. Screening and evaluation of agronomically useful somaclonal variations in Japanese mint (Mentha arvensis L.) [J]. Euphytica, 1991, 53: 183–191.
    [162] Brown D C W, Finstad K I, Watson E M. Somatic embryogenesis in herbaceous species[C]. In:Thorpe T A, ed. In vitro embryogenesis in plants. Kluwer, Dordrecht, The Netherlands, 1995. 345–415.
    [163] Dunstan D I, Tautorus T E, Thorpe T A. Somatic embryogenesis in woody plants[C]. In: Thorpe TA, ed. In vitro embryogenesis in plants. Kluwer, Dordrecht, The Netherlands, 1995. 471–541.
    [164] Krishnaraj S, Vasil I K. Somatic embryogenesis in herbaceous monocots [C]. In: Thorpe TA, ed. In vitro embryogenesis in plants. Kluwer, Dordrecht, The Netherlands, 1995. 417–471.
    [165] Thorpe T A, Stasolla C. Somatic embryogenesis[C]. In: Bhojwani S S, Soh W H, eds. Current trends in the embryology of angiosperms. Kluwer, Dordrecht, The Netherlands, 2001. 279–336.
    [166] Stover R H. Somaclonal variation in Grand Naine and Saba bananas in the nursery and in the field[M]. In: Persley G J, De Langhe E A, eds. Bananas and plantain breeding strategies. Proceedings of an international workshop. Australian Centre for International Agricultural Research (ACIAR), : Canberra. 1987. 136–139.
    [167] Damasco O P, Smith M K, Adkins S W, et al. Use of SCAR based marker for early detection of dwarf off-types in micropropagated‘Cavendish’bananas[J]. Acta Hort, 1998, 461: 157–164.
    [168] Bairu M W, Fennell C W, van Staden J. The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv’.Zelig’) [J]. Sci Hortic, 2006, 108: 347–351.
    [169] Osternack N, Saare-Surminski K, Preil W, et al. Induction of somatic embryos, adventitious shoots and roots in hypocotyls tissue of Euphorbia pulcherrima Willd. Ex Klotzsch: comparative studies on embryogenic and organogenic competence [J]. J Appl Bot, 1999, 73: 197–201.
    [170] May R A, Trigiano R N. Somatic embryogenesis and plant regeneration from leaves of Dendrathema grandiflora [J]. J Am Soc Hortic Sci, 1991, 116: 366–371.
    [171] Bregitzer P, Campbell R D, Wu Y. Plant regeneration from barley callus: effects of 2,4-dichlorphenoxy acetic acid and phenylacetic acid[J]. Plant Cell Tissue Organ Cult, 1995, 43: 229–235.
    [172] Bohorova N E, Luna B, Briton R M, et al. Regeneration potential of tropical, and subtropical, midaltitude, and highland maize inbreds[J]. Maydica, 1995, 40: 275–281.
    [173] Carvalho C H S, Bohorova N, Bordallo P N, et al. Type II callus production and plant regeneration in tropical maize genotypes[J]. Plant Cell Rep, 1997, 17: 73–76.
    [174] Meins F Jr. Heritable variation in plant cell culture[J]. Annu Rev Plant Physiol, 1983, 34: 27–346.
    [175] Brown P T H. DNA methylation in plants and its role in tissue culture[J]. Genome, 1989, 31(2): 717–729.
    [176] Brown P T H, Gobel E, Lorz H. RFLP analysis of Zea mays callus cultures and their regenerated plants[J]. Theor Appl Genet, 1991, 81: 227–232.
    [177] Kaeppler S M, Phillips R L. Tissue culture-induced DNA methylation variation in maize[J]. Agric Sci, 1993, 90: 8773–8776.
    [178] Brown P T H, Kyozuka J, Sukekiyo Y, et al. Molecular changes in protoplast-derived rice plants[J]. Mol Gen Genet, 1990, 223: 324–328.
    [179] Muller E, Brown P T H, Hartke S, et al. DNA variation in tissue-culture-derived rice plants[J]. Theor Appl Genet, 1990, 80: 673–679.
    [180] Tanurdzic M, Vaughn M W, Jiang H, et al. Epigenomic consequences of immortalized plant cell suspension culture[J]. PLoS Biol, 2008, 6(12): 2880–2895.
    [181] Kaeppler S M, Kaeppler H F, Rhee Y . Epigenetic aspects of somaclonal variation in plants[J]. Plant Mol Biol, 2000, 43: 179–188.
    [182] Peredo E L,ángeles Revilla M, Arroyo-García R. Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organogenic call[J]. J Plant Physiol, 2006(163):1071–1079
    [183] Keyte A L, Percifield R, Liu B, et al. Intraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum)[J]. J Hered, 2006, 97: 444–450.
    [184] Guo W L, Gong L, Ding Z F, et al. Genomic instability in phenotypically normal regenerants of medicinal plant Codonopsis lanceolata Benth. et Hook. f., as revealed by ISSR and RAPD markers[J]. Plant Cell Rep, 2006, 25: 896–906.
    [185] Guo W L, Wu R, Zhang Y F, et al. Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f[J]. Plant Cell Rep, 2007, 26: 1297–1307.
    [186] Li X, Yu X, Wang N, et al. Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin.) Link)[J]. Plant Cell Tissue Organ Cult, 2007, 90: 153–168.
    [187] Arnold S, Sabala I, Bozhkov P, et al. Developmental pathways of somatic embryogenesis[J]. Plant Cell Tissue Organ Cult, 2002, 69: 233–249.
    [188] LoSchiavo F, Pitto L, Giuliano G, et al. DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs[J]. Theor Appl Genet, 1989, 77: 325–331.
    [189] Peraza-Echeverria S, Herrera-Valencia V A, James-Kay A. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP) [J]. Plant Sci, 2001, 161: 359–367.
    [190] Baurens F C, Bonnot F, Bienvenu D, et al. Using SD-AFLP and MSAP to assess CCGG methylation in the banana genome[J]. Plant Mol Biol Rep, 2003, 21: 339–348.
    [191] Jaligot E, Rival A, Beule T, et al. Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis[J]. Plant Cell Rep, 2000, 19: 684–690.
    [192] Kaeppler S M, Phillips R L. DNA methylation and tissue culture-induced variation in plants[J]. In Vitro Cell Dev Biol Plant, 1993, 29:125–130.
    [193] Quemada H, Roth E K, Lark K G. Changes in methylation status of tissue cultured soybean cells detected by digestion with the restriction enzymes Hpa II and Msp I[J]. Plant Cell Rep, 1987, 6: 63–66.
    [194] Cecchini E, Natali L, Cavallini A,et al. DNA variations in regenerated plants of pea (Pisum sativum L.) [J]. Theor Appl Genet, 1992, 84: 874–879.
    [195] Parra R, Pastor M T, Pe′rez-Paya′E, et al. Effect of in vitro shoot multiplication and somatic embryogenesis on 5-methylcytosine content in DNA of Myrtus communis L[J]. Plant Growth Regul, 2001,33: 131–136.
    [196] Thomas E, Bright S W J, Franklin J, et al. Variation amongst protoplast-derived potato plants (Solanum tuberosum cv,‘‘Maris Bar’’). Theor Appl Genet, 1982, 62: 65–68.
    [197] Young W P, Schupp J M, Keim P. DNA methylation and AFLP marker distribution in the soybean genome[J]. Theor Appl Genet, 1999, 99: 785–792.
    [198]路铁钢,郑国昌.体细胞胚胎发生的分子机制及生理生化研究进展[J].植物学通报, 1989,6(4):197-204.
    [199] Aitman A, Nadel B L, Falash Z, etal. Somatic embryogenesis in celery: introduction,control and change in polyamines and proteins[J]. Progress in Plant cell and Molecular Biology, 1991.454-459
    [200] Biesboer D D. Changes in protein synthesis during somatic embryogenesis in Aselepias tuberosaL tissue cultures[J]. American Journal of Botany, 1984(71): 121.
    [201] Vargas T E, De García E Oropeza M, Somatic embryogenesis in Solanum tuberosum from cell suspension cultures: histological analysis and extracellular protein patterns[J]. Journal of Plant Physiology, 2005(162): 449-456
    [202]梁文裕,陈伟,吕柳新。植物胚胎发育时期特异蛋白的研究进展。福建农林大学学报(自然科学版),2003, 32(1):98-103
    [203] Braybrook S A, Stone S L, Park S, et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis[J]. PNAS, 2006, 103 (9) , 3468-3473
    [204]陈金慧,施季森,诸葛强等.植物体细胞胚胎发生的研究进展[J].南京林业大学学报(自然科学版), 2003, 27(1): 75-80.
    [205] Dias J S, Martins M G. The effect of silver nitrate on anther culture embryo production of different Brassica oleracea mophotypes[J]. Scientia Horti culture, 1999(82): 299-307.
    [206]朱长甫,镰田博,何奕昆等.胡萝卜(Daucuscarota L.)胚性细胞蛋白的分离研究[J].实验生物学报,1997, 30(1): 13-19.
    [207]郑晓峰,黄百渠.几种植物体细胞胚胎发生标记蛋白的研究.植物学报[J].1994, 36 (3): 175-180
    [208] Croteau R, Karp F. Perfume: Art, Science and Technology[M]. New York: Elsevier, 1991. 101–126.
    [209]唐传核编著.植物生物活性物质[M].北京:化学工业出版社&化学与应用化学出版中心,2005.44-47.
    [210]董玉山,傅建熙,许平安等.植物精油研究进展[J].河南林业科技, 1999, 19(4):23.
    [211] Knudsen J T, Tollsten L. Trends in floral scent chemistry in pollination syndromes–floral scent composition in moth-pollinated taxa[J]. Bot J Linn Soc, 1993 (113): 263-284.
    [212] Steeghs M, Bais H P, de Gouw J, et al. Proton-transfer-reaction mass spectrometry (PTR-MS) as a new tool for real time analysis of root-secreted volatile organic compounds (VOCs) in Arabidopsis thaliana[J]. Plant Physiol, 2004 (135): 47-58.
    [213] Pare P W, Tumlinson J H. Plant volatiles as a defense against insect herbivores[J]. Plant Physiol, 1999 (121): 325-331.
    [214] Dudareva N, Pichersky E. Biochemical and Molecular Genetic Aspects of Floral Scents[J]. Plant Physiol, 2000 (122): 627-633.
    [215] Pham-Delegue M H , Etievant P, Guichard E, et al. Chemicals involved in honeybee-sunflower relationship[J]. J Chem Ecol, 1990 (16): 3053-3065.
    [216] Raguso RA, Light DM, Pichersky E. Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers[J]. J Chem Ecol, 1996(22): 1735-1766.
    [217] Henning J A, Peng Y S, Montague M A, et al. Honey bee (Hymenoptera: Apidae) behavioral responses to primary alfalfa (Rosales: Fabaceae) floral volatiles[J]. J. Econ. Entomol, 1992(85): 233-239.
    [218] Pichersky E, Raguso RA, Lewinsohn E, et al. Floral Scent Production in Clarkia (Onagraceae) (I. Localization and Developmental Modulation of Monoterpene Emission and Linalool Synthase Activity)[J]. Plant Physiol, 1994(106): 1533-1540.
    [219] Jakobsen H B, and Olsen C E. Influence of climatic factors on emission of flower volatiles in-situ[J]. Planta, 1994 (192): 365-371.
    [220] Helsper J P F, Davies J A, Bouwmeester H J, et al. Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty[J]. Planta, 1998(207): 88-95.
    [221] Kolosova N, Gorenstein N, Kish C M, et al. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants[J]. Plant Cell, 2001(13): 2333-2347.
    [222] Kraus B, Page R E. Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California[J]. Environ. Entomol, 1995(24): 1473-1480.
    [223] De Moraes C M, Mescheer M C, Tumlinson J H. Caterpillar-induced nocturnal plant volatiles repel nonspecific females[J]. Nature, 2001 (410): 577-580.
    [224] Friedman M, Henika P R, Mandrell R E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica[J]. J Food Prot, 2002 (65): 1545-1560. [225 Hammer K A, Carson C F, Riley T V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil[J]. J Appl Microbiol, 2003 (95): 853-860.
    [226] Sharkey T D, Yeh S S. Isoprene emission from plants[J]. Annu Rev Plant Physiol, 2001 (52): 407-436.
    [227] Sharkey T D, Chen X Y, Yeh S. Isoprene increases thermotolerance of fosmidomycin-fed leaves[J]. Plant Physiol, 2001 (125): 2001-2006.
    [228] Loreto F, Velikova V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes[J]. Plant Physiol, 2001 (127): 1781-1787.
    [229] Vuorinen T, Nerg A-M, Ibrahim MA, et al. Emission of Plutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behaviour of the natural enemies[J]. Plant Physiol, 2004 (135): 1984-1992.
    [230] Mercke P, Kappers I F, Verstappen F W A, et al. Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants[J]. Plant Physiol, 2004 (135): 2012-2024.
    [231] Arimura G, Ozawa R, Kugimiya S, et al. Herbivore-induced defense response in a model legume: Two-spotted spider mites, Tetranychus urticae, induce emission of (E)-b-ocimene and transcript accumulation of (E)-b-ocimene synthase in Lotus japonicus[J]. Plant Physiol, 2004 (135): 1976-1983.
    [232] Degen T, Dillmann C, Marion-Poll F, et al. High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines[J]. Plant Physiol, 2004 (135): 1928-1938.
    [233] Dicke M, Van Loon J J A. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context[J]. Entomol Exp Appl, 2000 (97): 237-249.
    [234] Kessler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science, 2001(291): 2141-2144.
    [235] Vancanneyt G, Sanz C, Farmaki T P, et al. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance[J]. Proc Natl Acad Sci USA, 2001 (98): 8139-8144.
    [236] Andersen R A, Hamilton-Kemp T R, Hildebrand D F, et al. Structure-antifungal activity relationshipsamong volatile C6 and C9 aliphatic aldehydes, ketones andalcohols[J]. J Agric Food Chem 1994 (42): 1563-1568.
    [237] Arimura G, Ozawa R, Shomoda T, et al. Herbivory-induced volatiles elicit defense genes in lima bean leaves[J]. Nature, 2000 (406): 512-515.
    [238] Dicke M, Bruin J. Chemical information transfer between plans: back to the future[J]. Biochem Syst Ecol, 2001(29): 981-994.
    [239] . Engelberth J, Alborn H T, Schmelz E A, et al. Airborne signals prime plants against insect herbivore attack[J]. Proc Natl Acad Sci USA, 2004 (101): 1781-1785.
    [240] Hoffmann T, Odum J R, Bowman F, et al. Formation of organic aerosols from the oxidation of biogenic hydrocarbons[J]. J Atmos Chem, 1997(26): 189-212.
    [241] Bonn B, Moortgat G K. Sesquiterpene ozonolysis: origin of atmospheric new particle formation from biogenic hydrocarbons[J]. Geophys Res Lett, 2003(30): 1585
    [242] Delfine S, Csiky O, Seufert G, et al. Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures[J]. New Phytol, 2000(146): 27-36.
    [243] Loreto F, Pinelli P, Manes F, et al. Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves[J]. Tree Physiol, 2004 (24): 361-367.
    [244] Vuorinen T, Nerg A-M, Holopainen J K. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling[J]. Environ Pollut, 2004(131): 305-311.
    [245] Effmert U, Grosse J, Ursula S R, et al. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae)[J]. American Journal of Botany, 2005(92): 2-12.
    [246] Sagae M, Oyama-Okubo N, Ando T, et al. Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaries[J]. Biosci Biotechnol Biochem, 2008(72): 110-115.
    [247] Ishikawa M, Honda T, Fujita A, et al.“Aqua-space”, a New Headspace Method for Isolation of Nature Floral Aromas Using Humidified Air as a Carrier Gas[J]. Biosci. Biotechnol. Bichem, 2004, 68(2), 454-457.
    [248] Luciano Pecetti, Aldo Tava. Effect of Flower Color and Sampling Time on Volatile Emanation in Alfalfa Flowers[J]. Crop Science, 2000(40): 126-130.
    [249] Oyama-Okubo N, Ando T, Watanabe N, et al. Emission mechanism of floral scent in Petunia axillaris[J]. Biosci. Biotechnol. Biochem, 2005 (69): 773-777.
    [250] Kondo M, Oyama-Okubo N, Ando T, et al. Floral Scent Diversity is Differently Expressed in Emitted and Endogenous Components in Petunia axillaris Lines[J]. Annals of Botany 2006(98): 1253-1259.
    [251] Kuanprasert N, Kuehnle A R, Tang C S. Floral fragrance compounds of some anthurium (ARACEAE) species and hybrids[J]. Phytochemistry, 1998(49): 521-527.
    [252] Hiroshi Ishizaka, Hideki Yamadab, Keiji Sasaki. Volatile compounds in the flowers of Cyclamen persicum, C. purpurascens and their hybrids[J]. Scientia Horticulturae, 2002(94): 125-135.
    [253] Cherri-Martin M, Jullien F, Heizmann P, et al. Fragrance heritability in Hybrid Tea roses[J]. Scientia Horticulturae, 2007(113): 177-181.
    [254] Jürgens A, Witt T, Gottsberger G. Flower scent composition in night-flowering Silene species (Caryophyllaceae)[J]. Biochemical Systematics and Ecology, 2002(30): 383-397.
    [255] Jürgens A. Flowerscent composition in diurnal Silene species (Caryophyllaceae): phylogenetic constraints or adaption to flower visitors [J]? Biochemical Systematics and Ecology, 2004(32): 841-859.
    [256] Jürgens A, Witt T, Gottsberger G. Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy[J]. Biochemical Systematics and Ecology, 2003(31): 345-357.
    [257] Aharoni A, Ashok P. Girib, Francel W A, et al. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species[J]. Plant Cell, 2004 (16): 3110-3131.
    [258] Bertea, C.M. Freije J R, van der Woude, et al. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua[J]. Planta Med, 2005 (71): 40-47.
    [259] Haudenschild C, Croteau R. Molecular engineering of monoterpene production[J]. Genet. Eng, 1998 (20): 267-280.
    [260] Lin, Z.J. Qiu S X, Wufuer A, et al. Simultaneous determination of glycyrrhizin, a marker component in Radix glycyrrhizae, and its major metabolite glycyrrhetic acid in human plasma by LC-MS/MS. J. Chromatogr. B Analyt[J]. Technol. Biomed. Life Sci, 2005 (814): 201-207.
    [261] McCaskill D, Croteau R. Some caveats for bioengineering terpenoid metabolism in plants[J]. Trends Biotechnol, 1998 (16): 349-355.
    [262] Rodriguez-Concepcion M. The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs[J]. Curr. Pharm. Des, 2004(10): 2391-2400
    [263] Degenhardt J, Gershenzon J, Baldwin I T, et al. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies[J]. Curr. Opin. Biotechnol, 2003 (14): 169-176.
    [264] Pichersky E, Gershenzon J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense[J]. Curr. Opin. Plant Biol, 2002 (5): 237-243.
    [265] Balkema-Boomstra A G, Zijlstra S, Verstappen F W, et al. Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.) [J]. J. Chem. Ecol, 2003 (29): 225-235.
    [266] Powell G, Hardie J, Pickett J A. Laboratory evaluation of antifeedant compounds for inhibiting settling by cereal aphids[J]. Entomol. Exp. Appl, 1997(84):189-193.
    [267] Arimura G, Ozawa R, Shimoda T, et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature, 2000(406): 512-515.
    [268] Chen, F, Dae-Kyun Ro, Petri J, et al. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole[J]. Plant Physiol, 2004(135): 1956-1966.
    [269] Mahmoud S S, Croteau R B. Strategies for transgenic manipulation of monoterpene biosynthesis in plants[J]. Trends Plant Sci, 2002 (7): 366-373.
    [270] Rodriguez-Concepcion M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics[J]. Plant Physiol, 2002 (130): 1079-1089.
    [271] Adam K P, Zapp J. Biosynthesis of the isoprene units of chamomile sesquiterpenes[J]. Phytochemistry, 1998(48): 953-959.
    [272] Bick J A, Lange B M. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane[J]. Arch. Biochem. Biophys, 2003 (415): 146-154.
    [273] Dudareva N, Andersson S, Orlova I, et al. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers[J]. Proc. Natl. Acad. Sci. U. S. A, 2005(102): 933-938.
    [274] Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles[J]. Plant Physiol, 2004(135): 1893-1902.
    [275] Hemmerlin A, Hoeffler J F, Odile Meyer O, et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in Tobacco Bright Yellow-2 cells[J]. J. Biol. Chem, 2003(278): 26666-26676.
    [276] Laule O, Fürholz A Hur-Song Chang H S, et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J]. Proc. Natl. Acad. Sci. U. S. A, 2003(100): 6866-6871.
    [277] Schuhr C A, Radykewicz T, agner S, et al. Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy[J]. Phytochem. Rev, 2003(2): 3-16.
    [278] Lange B M, Mark R. Wildung M R, Stauber E J, et al. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes[J]. Proc. Natl.Acad. Sci. U. S. A, 2000(97): 2934-2939.
    [279] Wise M L, Croteau R. Comprehensive Natural Products Chemistry, Isoprenoids Including Caroteinoids and Steroids[M]. vol 2. Amsterdam: Elsevier, 1999. 97-135.
    [280] J?rg Degenhardt, Tobias G. K?llner, Jonathan Gershenzon. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants[J]. Phytochemistry, 2009(70):1621-1637
    [281] Dudareva N, Cseke L, Blanc V M, et al. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower[J]. Plant Cell, 1996, 8(7): 1137-1148.
    [282] Jia J W, Crock J, Lu S, et al. (3R)-Linalool synthase from Artemisia annua L.: cDNA isolation, characterization, and wound induction[J]. Arch Biochem Biophys, 1999, 372(1): 143-149.
    [283] Crowel A L, Williams D C, Davis E M, et al. Molecular cloning and characterization of a new linalool synthase[J]. Arch Biochem Biophys, 2002, 405(1): 112-121.
    [284] Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana[J]. Mol Genet Genomics, 2002(267): 730-745.
    [285] Hosoi M, Ito M, Yagura T, et al. cDNA isolation and functional expression of myrcene synthase from Perilla frutescens[J]. Biol Pharm Bull, 2004, 27(12): 1979-1985.
    [286] Landmann C, Fink B, Festner M, et al. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia)[J]. Arch Biochem Biophys, 2007, 465(2): 417-429.
    [287]张雪荣.薰衣草芳樟醇合成酶的基因克隆、功能鉴定及转基因技术的研究[D].内蒙古农业大学硕士学位论文, 2007.
    [288] Nagegowda D A, Gutensohn M, Wilkerson C G, et al. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers[J]. Plant J, 2008, 55(2): 224-239.
    [289] Vainstein A, Lewinsohn E, Pichersky E et al. Floral fragrance. New inroads into an old commodity[J]. Plant Physiol, 2001, 127(4): 1383-1389.
    [290] Yang L, Mercke P, Loon J J A, et al. Expression in Arabidopsis of a strawberry linalool synthase gene under the control of the inducible potato PI2 promoter[J]. Agricultural Sciences in China, 2008, 7(5): 521-534.
    [291] Lücker J, Bouwmeester H J, Schwab W, et al. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranoside[J]. Plant J, 2001, 27(4): 315-324.
    [292] Lavy M, Zuker A, Lewinsohn E, et al. Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene[J]. Mol Breeding, 2002, 9(2): 103-111.
    [293] Aharoni A, Giri AP, Deuerlein S, et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants[J]. Plant Cell, 2003, 15(12): 2866-2884.
    [294] Hernández I, Molenaar D, Beekwilder J, et al. Expression of plant flavor genes in Lactococcus lactis[J]. Appl Environ Microbiol, 2007, 73(5): 1544-1552.
    [295] Martin DM, F?ldt J, Bohlmann J. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily[J]. Plant Physiol, 2004, 135(4):1908-1927.
    [296] Tollsten L, J Knudsen, Bergstr?m L G. Floral scent in generalistic Angelica (Apiaceae): an adaptive character[J]? Biochemical Systematics and Ecology, 1994 (22): 161–169
    [297] Borg I, Lingoes J. Multidimensional similarity structure analysis[C]. Springer, New York, 1987, pp. 1–390.
    [298] Kruskal J B. Nonmetric multidimensional scaling: a numerical method[J]. Psychometrica, 1964(29): 115–129.
    [299] Fu Y, Gao X, Xue Y Q, et al. Voltile Compounds in the Flowers of Freesia Parental Species and Hybrids[J]. Jounal of Integrative Plant Biology, 2007, 49: 1714-1718.
    [300] Wongchaochant S, Inamoto K, Doi M. Analysis of Flower Scent of Freesia Species and Cultivars[J]. Acta Hort (ISHS), 2005, 673: 595-601.
    [301] McConkey M E, Gershenzon J, Croteau R B. Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint[J]. Plant Physiol, 2000, 122: 215–223.
    [302] Adams K L, Wendel J F. Novel patterns of gene expression in polyploid plants[J]. Trends Genet, 1995, 21: 539–543.
    [303] Werker E, Ravid U, Putievsky E. Structure of glandular hairs and identification of the main components of their secreted material in some species of the Labiatae[J]. Israel Journal of Botany, 1985, 34: 31–45.
    [304] Werker E. Functions of essential oil-secreting glandular hairs in aromatic plants of the Lamiaceae—a review[J]. Flavour and Fragrance Journal, 1993, 8: 249–255.
    [305] Voirin B, Bayte C. Developmental changes in the monoterpene composition of Mentha 3 piperita leaves from individual trichomes[J]. Phytochemistry, 1996, 43: 573–580.
    [306] Gershenzon J, Mcconkey J E, Croteau R B. Regulation of monoterpene accumulation in leaves of peppermint[J]. Plant Physiology, 2000, 122: 205–213.
    [307] Turner G W, Gershenzon J, Croteau R B. Development of peltate glandular trichomes of peppermint[J]. Plant Physiology, 2000, 124: 665–679.
    [308] Gang D R, Wang J, Dudareva N, et al. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil[J]. Plant Physiology, 2001, 125: 539–555.
    [309] Goldblatt P, Manning J C. Iridaceae[C], In: Leistner O A, ed. Seed Plants of Southern Africa, Strelitzia 10. Pretoria: National Botanical Institute, 2000. 623-638.
    [310] Fonta C, Masson C. Comparative study by electrophysiology of olfactory responses in bumblebees (Bombus hypnorum and Bombus terrestris) [J]. J Chem Ecol, 1984, 10: 1157–1168.
    [311] Dobson H E M. Floral volatiles in insect biology[C] In: Bernays E A, ed. Insect–Plant Interactions. Boca Raton: CRC Press, 1994. 5: 47-81.
    [312] Andersson S. Antennal responses to floral scents in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepterix rhamni (Pieridae) [J]. Chemoecology, 2003, 13: 13–20.
    [313] Andersson S, Nilsson L A, Groth I, et al. Floral scents in butterfly-pollinated plants: possibleconvergence in chemical composition[J]. Bot J Linn Soc, 2002, 140: 129–153.
    [314] Andersson S. Foraging responses in the butterflies Inachis io, Aglai urticae(Nymphalidae), and Gonepterix rhamni (Pieridae) to floral scents[J]. Chemoecology, 2003, 13: 1–11.
    [315] 21. Kaiser R A J. On the scent of orchids[C]. In: Teranishi R, Buttery R G, Sugisawa H, eds. Bioactive Volatile Compounds from Plants. ACS Symposium Series, American Chemical Society, 1993, 525: 240–268.
    [316] Bruneton J. Parmacognosy, phytochemistry, medicinal plants[M]. New York: Elsevier Publ. 1995, 1–1119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700