具细菌漆酶活性的芽孢外壁蛋白CotA基因克隆及异源表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从五常林区和凉水国家级自然保护区的森林土壤中筛选出一株具有高漆酶活性的细菌菌株,通过形态学特征、生理生化特性及16S rDNA分析,鉴定该细菌属于枯草芽孢杆菌Bacillus subtilis,定名为Bacillus subtilis WD23。该菌株的产芽孢率与其细菌漆酶酶活成正相关,说明该芽孢杆菌的外壁蛋白具有漆酶活性,可能来源于芽孢外壁组成蛋白CotA。使用B. subtilis WD23芽孢对偶氮和蒽醌类染料进行脱色试验,在24h内脱色率能达到50-90%,用其固定化的芽孢处理造纸黑液,处理7d色度下降24.9%,COD下降31.2%。利用GenBank上公布的B. subtilis CotA基因序列设计上、下游引物,克隆B. subtilis WD23的CotA基因,并转化Escherich coli BL21(DE3)感受态细胞,用IPTG(异丙基-β-D-硫代半乳糖苷)诱导其CotA蛋白表达,分子量约为65 kDa,测定工程菌株发酵液的粗提液的漆酶活性达到1700U/mL,表明该菌株漆酶活性来源于其芽孢外衣蛋白CotA。采用特异的His标签纯化试剂盒对CotA蛋白进行纯化。CotA漆酶对RBBR和刚果红的脱色率在87%以上,对靛红和结晶紫的脱色率也达55%以上。本文的主要研究内容和结果如下:
     (1)利用铜离子作为筛选剂,从凉水国家级自然保护区的土壤中筛选出一株具有高漆酶活性的菌株。其菌落在含0.2 mmol/LCu2+的培养基上呈灰白色而在不含Cu2+的培养基上呈浅红色。该菌株革兰氏染色反应呈阳性,菌体为短杆状,1-2μm长,能形成芽孢,具有鞭毛和运动性,不能利用木糖和阿拉伯糖这两种典型的枯草芽孢杆菌能利用的碳源。
     该菌株的16S rDNA片段长度为1513bp,在GenBank中的登录序号为EU780682。由构建的系统发育树分析,该菌株与枯草芽孢杆菌Bacillus subtilis的同源性为100%。综合其形态学特征、生理生化特征及16S rDNA分析,鉴定该细菌属于Bacillus subtilis,将此菌株定名为Bacillus subtilis WD23.
     (2)通过对B. subtilis WD23的生物学特性研究,得出其最适生长温度是30℃,最适生长pH为7.0,具有一定的抗盐、抗铜、抗紫外线和抗H2O2的能力。
     (3)以丁香醛连氮作为底物,测定菌株WD23细菌芽孢漆酶的最适反应温度为60℃,最适反应pH为6.8。B. subtilis WD23芽孢漆酶具有很好的热稳定性及pH稳定性,在80℃高温下,其活性半衰期为2.5h,在pH9.0,60℃的条件下,其活性半衰期达10d。EDTA、甲醇和Zn2+等化学物质都强烈抑制细菌芽孢漆酶的活性,而Cu2+、Fe2+和Mg2+却可以增强细菌芽孢漆酶的活性。B. subtilis WD23的芽孢漆酶在24h之内使RBBR和茜素红脱色率达90%以上,刚果红、甲基橙和结晶紫的脱色率也达50%以上,显示了本研究所采用的细菌芽孢漆酶在染料降解上具有很大的应用潜力。
     (4)固定化芽孢漆酶最适反应温度为70℃。最适反应pH为6.8。固定化芽孢漆酶贮存于30℃,pH 6.8的封闭容器内,其活性半衰期t1/2超过7个月。固定酶的米氏常数Km较非固定化酶的米氏常数Km小。
     (5)采用固定式填充床装置,利用固定化微胶囊处理造纸黑液,固定化菌株WD23的芽孢漆酶处理黑液的COD去除率为31.19%,固定化真菌新月弯胞霉处理黑液的COD去除率45.86%,二者联合处理黑液的COD去除率却能达到为61.31%,说明共代谢作用更有利于处理像造纸黑液这样的难处理的复杂污染废水。
     (6)以B. subtilis WD23总DNA为模板,扩增得到1558 bp CotA基因,通过BLAST比对,其与枯草芽孢杆菌的CotA基因同源性很高,达到99%,可见克隆的序列为CotA基因。
     (7)构建重组表达载体pET22b/CotA,测序得到CotA基因序列共有1542 bp,在GenBank数据库中的登陆号为GQ184294,其氨基酸序列在GenBank数据库中的登陆号为ACS44284。用阳性重组子的质粒转化表达菌株E. coli BL21(DE3),得到了CotA基因的异源表达菌株。
     用IPTG诱导CotA基因表达,经SDS-PAGE检测到表达的CotA蛋白在粗提液中,用丁香醛连氮作底物,测定粗提液的漆酶活性达到1700 U/mL,表明菌株WD23的漆酶活性来源其芽孢CotA蛋白。为了提高漆酶的产量,优化了漆酶诱导表达条件,结果表明:诱导剂IPTG的浓度为1.0 mmol/L,加入IPTG时菌液的OD600值为1.0,诱导温度为25℃和诱导时间为15h漆酶的产量最高。
     (8)利用BioEdit软件对CotA氨基酸的亲疏水性进行分析,其亲水性比较强的,表明其易于表达。
     利用BLAST软件对B. subtilis WD23的CotA蛋白的保守结构分析,其含有铜氧化酶超家族。用Clust X软件将B. subtilis WD23的CotA氨基酸序列与一些典型的细菌和真菌漆酶进行比对,结果表明其与真菌的漆酶氨基酸序列之间的相似度非常低,而与细菌漆酶如E.coli cueO、嗜热栖热菌、薰衣草链霉菌和抗生素链霉菌的漆酶之间的相似度也比较低,但与1GSK_A (B.subtilis CotA)的同源性很高。
     (9)采用特异的His标签纯化试剂盒对CotA蛋白进行纯化的效果比较好,经Native-PAGE,纯化的CotA蛋白在pH5.0条件下被0.1%丁香醛连氮染成红色。
     以丁香醛连氮为底物测定CotA漆酶的最适反应温度为45℃,最适反应pH为7.2。pH7.2条件下,80℃时CotA漆酶活性半衰期t1/2为0.5h。在最适反应温度45℃下,pH9.0时CotA漆酶活性半衰期t1/2达到8h。
     CotA蛋白的Km值小于芽孢漆酶的Km值。CotA漆酶对RBBR和刚果红的脱色率在87%以上,对靛红和结晶紫的脱色率也达55%以上,此CotA漆酶在短时间内对染料能够有效地脱色,能够成为有潜力的工业用酶。
A novel strain showing a high degree of laccase activity was screened and purified from soil of WuChang forest and Liangshui National Nature Reserve in Heilongjiang. The strain was identified as Bacillus subtilis WD23 by the morphological, physiological, biochemical characteristics and the comparative analysis of 16S rDNA sequence. It was deduced that the laccases were bound to B. subtilis WD23 spores because the laccase activities correlated well with the rate of production of spores. The laccase activity might come from the spore coat protein CotA. The spore laccase could decolorize azo and anthraquinone dyes with 50% to 90% efficiency in 24 h. The immobiled spore laccases could decolorize black pulping liquor with 24.9% efficiency and decrease COD by 31.2% in 7 days. The CotA gene was cloned by upstream and downstream primers designed according to B. subtilis CotA gene on GenBank. CotA gene was transformed to Escherich coli BL21(DE3) competent cell successfully. The CotA protein, showing a induction band of approximately 65 kDa, was expressed by IPTG (Isopropylβ-D-1-thiogalactopyranoside) induction method. The laccase activity of the extraction of the fermentation broth was 1700 U/mL. The result suggested that the laccase activity derived from the spore coat protein CotA. The CotA protein was purified by the special His Microspin Purification kit. The CotA laccases could decolorize Remazol brilliant blue R (RBBR) and Congo red with 90% and Isatin and Crystal Violet with 50%. The main results summarized as follows:
     (1) A novel strain exhibiting a high degree of laccase activity was screened and purified from forest soil of Liangshui National Nature Reserve in Heilongjiang with Cu2+ as the enrichment culture reagent. The strain formed pinkish colonies on LB agar plate and formed offwhite colonies on LB agar supplemented with 0.2 mmol/L Cu2+. The strain was a Gram-positive, spore forming, rod shaped,1-2 um long, having flagella and motile bacterium. This strain was unable to utilize xylose and gum sugar, while the classical strains of Bacillus subtilis were able to do according to Bergey's Manual.
     Amplification and sequencing of 16S rRNA gene was performed. The strain yielded a PCR product of 1513 bp for 16S rRNA gene. The 16S rDNA sequence was submitted to the NCBI databases under the accession number EU780682. The comparative analysis of DNA sequence with available database from GenBank searched with BLAST showed that the strain was close to the members of Bacillus subtilis. The highest sequence similarity (100%) and phylogeny based on Clustal X 1.81 software indicated that it was a strain of B. subtilis. The strain was identified as Bacillus subtilis WD23 by the morphological, physiological, biochemical characteristics and the comparative analysis of 16S rDNA sequence.
     (2) The optimum pH of B. subtilis WD23 was 7.0 and the optimum temperature was observed at 30℃. The strain WD23 showed strength of tolerance to NaCl and copper. It exhibited ability of tolerance to ultraviolet radiation and hydrogen peroxide.
     (3) Using syringaldazine as the substrate to determine the spore laccase activity of the strain WD23, the optimum temperature of the spore laccase was 60℃and the optimum pH was 6.8. The spore laccases exhibited a higher thermal stability and pH-stabilities. The temperature half-life of the laccases was 2.5 h at 80℃and the pH half-life was 10 days at pH 9.0,60℃. The spore laccases were strongly inhibited by EDTA, methyl alcohol and Zn2+, however were activated by Cu2+, Fe2+ and Mg2+. The spore laccases could decolorize Remazol brilliant blue R (RBBR) and Alizarin Red with 90% and Congo Red, Methyl Orange and Crystal Violet with 50%.
     (4) The optimum pH and temperature of immobilized spore laccase were 6.8 and 70℃respectively. The pH half-life was more than 7 months at pH 6.8,30℃. The Km of the immobilized spore laccases was less than that of the mobile spore laccases.
     (5) Using immobiled laccases treatment of papermaking black liquid in a fixed packed-bed reactor, the immobiled spore laccases could decrease COD by 31.19%, and the immobiled Curvularia lunata could decrease COD by 45.86%, while both the immobiled spore laccase and the Curvularia lunata could decrease COD by 61.31%. It showed that cometabolism was propitious to processing biorecalcitrance wastewater.
     (6) CotA gene was cloned using the genomic DNA of B. subtilis WD23 as the template, 45.7℃as the annealing temperature determined by gradient PCR. Sequencing result showed that the gene was made of 1558 bp. The gene had high homology with four sequences those were CotA genes of Bacillus subtilis by BLAST alignment. It showed that the gene cloned was CotA gene.
     (7) CotA gene and expression vector pET-22b(+) digested respectively by BamH I and Hind III were linked by T4 DNA ligase. Recombinant expression vector pET22b/CotA was obtained by transforming the linked production to E. coli DH5a competent cells. The CotA gene was composed of 1542 bp. The CotA gene was submitted to the NCBI databases under the accession number GQ184294. The sequence showed amount of similarity of 99% to B. subtilis CotA gene of AB007638. The CotA heterogenous expression strain was obtained by transforming positive recombinant plasmid pET22b/CotA to E. coli BL21(DE3).
     The CotA protein was expressed by IPTG induction method and released by permeation pressure crushing cell measure. The CotA protein, showing an induction band of approximately 65 kDa, was detected in the extraction by SDS-PAGE. The laccase activity of the extraction of the fermentation broth was 1700 U/mL. The result suggested that the laccase activity derived from the spore coat protein CotA. The condition of induction expression was optimized as follows:the concentration of IPTG was 1.0 mmol/L, the OD600 of the culture broth was 1.0 when IPTG was added, the induction temperature was 25℃and the induction time was 15 h.
     (8) The amino acid hydrophobicity analysis of CotA protein of B. subtilis WD23 showed that its hydrophilicity was stronger, but its hydrophobicity was weaker by BioEdit software. The result showed that the CotA protein was easy to be expressed.
     The conserved domains of the CotA was Cu-oxidase superfamily by BLAST. The Alignment result of deduced amino acid sequence of CotA of B. subtilis WD23 and the sequences of other bacterial and fungus laccases with Clustal X program domenstrated that the CotA had few similarity to fungus laccases and some bacterial laccases such as E.coli CueO, Thermus thermophilus laccase, Streptomyces lavendulae laccase and S. antibioticus laccase, but had high similarity to the amino acid sequence of B. subtilis CotA of 1GSK_A.
     (9) The purification result of the CotA protein was good by the special His Microspin Purification kit. The CotA protein was stained red by syringaldazine after Native-PAGE.
     Using syringaldazine as the substrate to determine the CotA laccase activity, the optimum temperature was 45℃and the optimum pH was 7.2. The temperature half-life of the CotA laccases was 0.5 h at 80℃. The pH half-life was 8 h at pH 9.0.
     The Km of the CotA laccases was less than that of spore laccases. The CotA laccases could decolorize Remazol brilliant blue R (RBBR) and Congo red with 87% and Isatin and Crystal Violet with 55%. The result indicated that the CotA laccase had the potential to be industrial enzyme.
引文
[1]Alexandre G, Zhulin LB. Laccases are widespread in bacteria [J]. Trends Biotechnol,2000, 18:41-42
    [2]Bally R, Thomas-Bauzon D, Heulin T, et al. Determination of the most frequent N2 fixing bacteria in the rice rhizosphere [J]. Can. J. Microbiol,1983,29:881-887
    [3]Solano F, Garcia E, Perez de Egea E, Sanchez-Amat A. Isolation and characterization of strain MMB-1 a novel melanogenic marine bacterium [J]. Appl Environ Microbiol,1997, 63(9):3499-3506
    [4]Grass G, Rensing C. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli [J]. Biochem Biophys Res Commun,2001,286:902-908
    [5]Uma L, Kalaiselvi R, Subramanian G. Isolation of a lignolytic bacterium for the degradation and possible utilization of coir waste [J]. Biotechnology letters,1994,16: 303-308
    [6]Verma P, Madamwar D. Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens [J]. World J Microbiol Biotechnol,2003,19:615-618
    [7]Claus H, Filip Z. The evidence of a laccase-like enzyme activity in a Bacillus sphaericus strain [J]. Microbiol Res,1997,152:209-216
    [8]Ruijssenaars HJ, Hartmans S. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity [J]. Appl Microbiol Biotechnol,2004,65:177-182
    [9]Arias ME, Arenas M, Rodriguez J, et al. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335 [J]. Applied and Environmental Microbiology,2003,69:1953-1958
    [10]Machczynski MC, Vijgenboom E, Samyn B, et al. Characterization of SLAC:a small laccase from Streptomyces coelicolor with unprecedented activity [J]. Protein Sci,2004, 13:2388-2397
    [11]Niladevi KN, Prema P. Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor [J]. World J Microbiol Biotechnol, 2008,24:1215-1222
    [12]Jimenez-Juarez N, Roman-Miranda R, Baeza A, et al. Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea [J]. J Biotechnol,2005,117: 73-82
    [13]Hullo MF, Moszer I, Danchin A, et al. CotA of Bacillus subtilis is a copper-dependent laccase [J]. J Bacteriol,2001,183:5426-5430
    [14]Claus H. Laccases:structure, reactions, distribution [J]. Micron,2004,35(1-2):93-96
    [15]Reinhammar B. Copper proteins and copper enzymes (III) [M]. Lontie R Ed: Boca CRC Press,1984
    [16]Renna 0, Bianchi E. Immobilized laccase for phenolic removal in must and wine [J]. Biotechnology Letters,1994,16(1):35-40
    [17]Cantarelli C, Giovanelli G. White wine stabilization treatments by enzymic oxidation of polyphenols [J]. RevFrOenol,1990,27(2):15-25
    [18]Servil M, Stefanog D E, PiacquadioP, et al. A novel method for removing phenols form grape must [J]. American Journal of Enology and Viticulture,2000,51(4):357-361
    [19]Lante A, Craposo A, Pasini G, et al. Immobilized laccase for must and wine processing [J]. Annals of the NewYork Academy of Sciences,1992, (672):558-562
    [20]Lante A, Craposo A, Pasini G, et al. Characteristics of laccase immobilized on different supports for wine-making technology [J]. Advances in Molecular Cell Biology,1996, (15A):229-236
    [21]李慧容.白腐真菌及其技术的潜在工业应用[J].工业微生物,1996,26(2):35-39
    [22]初华丽,梁宗琦.漆酶的潜在应用价值[J].山地农业生物学报,2004,23(6):529-533
    [23]Ghindilis AL, Yaropolov AI, Borman EA, et al. Enzyme-catalyzed direct electron transfer [J]. Biochimiya,1986,51(9):1442-1445
    [24]付时雨,詹怀宇,余惠.漆酶/介体系统漂白尾叶桉硫酸盐浆的初步研究[J].中国造纸,2000,(3):8-12
    [25]艾育明,余惠生,秦文娟,等.纸浆氯漂废水的生物治理[J].纤维素科学与技术,1999,7(2):22-26
    [26]Ullah MA, Kadhim H, Rastall RA, et al. Evaluation of solid substrates for enzyme production by Coriolus versicolor for use in bioremediation of chlorophenols in aqueous effluents [J]. Appl Microbiol Biotechnol,2000,54:832-837
    [27]Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere:evidence for laccase activity in nonmotile strains of Azospirillum lipoferum [J]. FEMS Microbiol Lett,1993,108(2): 205-210
    [28]Faure D, Bouillant M, Bally R. Isolation of Azospirillum lipoferum 4T Tn5 mutants affected in melanization and laccase activity [J]. Appl Environ Microbiol,1994,60(9): 3413-3415
    [29]Faure D, Bouillant M, Bally R. Comparative study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae laccases [J]. Appl Environ Microbiol,1995, 61(3):1144-1146
    [30]Alexandre G, Bally R, Taylor BL, Zhulin IB. Loss of cytochrome oxidase activity and acquisition of resistance to quinone analogs in a laccase-positive variant of Azospirillum lipoferum [J]. J Bacteriol,1999,181(21):6730-6738
    [31]Freeman JC, Nayar PG, Begley TP, Villafranca JJ. Stoichiometry and spectroscopic identity of copper centers in phenoxazinone synthase: a new addition for the blue copper oxidase family [J]. Biochemistry,1993,32(9):4826-4830
    [32]Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus [J]. J Biochem, 2003,133(5):671-677
    [33]Susana CS, Gloria MD, Yaacov O. Laccase activity in melanin-producing strains of Sinorhizobium meliloti [J]. FEMS Microbiology Letters,2002,209(1):119-125
    [34]Aoife MM, Evelyn MD, Sarah B, et al. Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6 [J]. Enzyme and Microbial Technology,2007,40(5):1435-1441
    [35]Brown NL, Barrett SR, Camakaris J, et al. Molecular gene and transport analysis of the copper resistance determinant (pco) from Escherichia coli plasmid pRJ 1004 [J]. Mol Microbiol,1995,17(6):1153-1166
    [36]Driks A. The Bacillus subtilis spore coat [J]. Phytopathology,2004,94(11):1249-1251
    [37]Martins LO, Soares CM, Pereira MM, et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat [J]. J Biol Chem,2002,277(21):18849-18859
    [38]Held C, Kandelbauer A, Schroeder M, et al. Biotransformation of phenolics with laccase containing bacterial spores [J]. Environ Chem Lett,2005,3(2):74-77
    [39]Abadulla E, Tzanov T, Costa S, et al. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta [J]. Appl Environ Microbiol,2000,66(8): 3357-3362
    [40]D'Annibale A, Stazi SR, Vinciguerra V, Sermanni GG. Oxirane-immobilized Lentinula edodes laccase:stability and phenolics removal efficiency in olive mill wastewater [J]. J Biotechnol,2000,77(2-3):265-273
    [41]黄俊,王行国.Klebsiella sp.601细菌漆酶的鉴定及性质[J].化学与生物工程,2006,23(3):31-34
    [42]Antonio SA, Francisco S. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp. shares catalytic capabilities of tyrosinases and laccases [J]. Biochemical and Biophysical research communications,1997,240(3):787-792
    [43]Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olson GJ, Swanson RV. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus [J]. Nature, 1998,392(6674):353-358
    [44]Diamantidis G, Effosse A, Potier P, Bally R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum [J]. Soil Biol Biochem,2000,32(7):919-927
    [45]Van Waasbergen LQ Hildebrand M, Tebo BM. Identification and characterization of a gene cluster invoved in manganese oxidation by spores of a marine Bacillus sp. strain SG-1 [J]. J Bacteriol,1996,178(12):3517-3530
    [46]Kim C, Lorenz WW, Hoopes JT, Dean JFD. Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene [J]. J Bacteriol,2001, 183(16):4866-4875
    [47]Roberts SA, Weichsel A, Grass G, et al. Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli [J]. Proc Natl Acad Sci USA,2002,99(5):2766-2771
    [48]Sanchez-Amat A, Lucas-Eilo P, Fernandez E, Garcia-Borron JC, Solano F. Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea [J]. Biochim Biophys Acta,2001,1547(1):104-116
    [49]Takami H, Takaki Y, Chee G Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments [J]. Nucleic Acids Res,2002,30(18):3927-3935
    [50]Justin PR, Marianne L, Eloise IL, et al. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067 [J]. Environmental Microbiology,2007,9(4):944-953
    [51]Isono Y, Hoshino M. Laccase-like activity of nucleoside oxidase in the presence of nucleosides [J]. Agric Biol Chem,1989,53(8):2197-2203
    [52]Brouwers GJ, de Vrind JPM, Corstjens PLAM, Cornelis P, Baysse C, de Vrind-deJong EW. CumA, a gene encoding a multicopper oxidase, is involved in Mn-oxidation in Pseudomonas putida GB-1 [J].Appl Environ Microbiol,1999,65(4):1762-1768
    [53]Francis CA, Tebo BM. CumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains[J]. Appl Environ Microbiol,2001,67(9): 4272-4278
    [54]Cha J, Cooksey DA. Copper resistance in Pseudomonas syringae by periplasmic and outer membrane proteins [J]. Proc Natl Acad Sci USA,1991,88(20):8915-8919
    [55]Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum [J]. Proc Natl Acad Sci USA,2002,99(2):984-989
    [56]Endo K, Hosono K, Beppu T, Ueda K. A novel extracytoplasmic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis [J]. Microbiology, 2002,148(6):1767-1776
    [57]Niladevi KN, Rajeev KS, Nicemol J, et al. Optimization of laccase production from a novel strain-Streptomyces psammoticus using response surface methodology [J]. Microbiological Research,2009,164(1):105-113
    [58]Miyazaki K. A hyperthermophilic laccase from Thermus thermophilus HB27 [J]. Extremophiles,2005,9(6):415-425
    [59]Lee Y, Hendson M, Panopoulos NJ, Schroth MN. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small copper proteins and multicopper oxidases [J]. J Bacteriol,1994,176(1):173-188
    [60]Senan RC, Abraham TE. Bioremediation of textile azo dyes by aerobic bacterial consortium Aerobic degradation of selected azo dyes by bacterial consortium [J]. Biodegradation,2004,15:275-280
    [61]Jung H, Xuc F, Li KC. Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7 [J]. Enzyme and Microbial Technology,2002,30: 161-168
    [62]Jun H, Masako N, Haruhiko Y. Reaction of substituted phenols with thermostable laccase bound to Bacillus subtilis spores [J]. Biotechnology Letters,2003,25:1609-1612
    [63]Solano F, Lucas-Elio P, Lopez-Serranno D, Ferandez E, Sanchez-Amat A. Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins [J]. FEMS Microbiol Lett,2001,204(1):175-181
    [64]Kinya K, Shinya K, Masanori S. Degradation of lignin compounds by bacteria from termite guts [J]. Biotechnology Letters,1998,20 (5):459-462
    [65]Yaver DS, Del Carmen Overjero M, Xu F, et al. Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase Lccl [J]. Appl Environ Microbiol,1999,65 (11):4943-4948
    [66]Kiiskinen L-L, Viikari L, Kruus K. Purification and characterization of a novel laccase from the ascomycete Melanocarpus albomyces [J]. Appl Microbiol Biotechnol,2002, 59(2-3):198-204
    [67]孙君社.酶与酶工程及其应用[M].北京:化学工业出版社,2006:87-93
    [68]张伟,杨秀山.酶的固定化技术及其应用[J].新技术新材料,2003,22(5):282-286
    [69]Hasan N and Szybalski W. Construction of lacIts and lacIqts expression plasmids and evaluation of the thermosensitive lac repressor [J]. Gene,1995,163(1):35-40
    [70]Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes [J]. J Mol Biol.,1986,189(1):113-130
    [71]Moffatt BA, Studier FW. T7 lysozyme inhibits transcription by T7 RNA polymerase [J]. Cell,1987,49(2):221-227
    [72]王远亮,杨瑞红,毛爱军,等.采用未培养技术对荷斯坦奶牛瘤胃细菌多样性进行初步分析[J].微生物学报,2005,45(6):915-919
    [73]Nakamura K, Go N. Function and molecular evolution of multicopper blue proteins[J]. Cell Mol Life Sci,2005,62:2050-2066
    [74]Singh SK, Grass G, Rensing C, et al. Cuprous oxidase activity of CueO from Escherichia coli[J]. J Bacteriol,2004,186:7815-7817
    [75]Outten FW, Huffman DL, Hale JA, et al. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli[J]. J Biol Chem, 2001,276:30670-30677
    [76]陈文新.细菌系统发育[J].微生物学报,1998,38(3):240-243
    [77]王琳,邵宗泽.4株苯系物降解菌菌株的筛选鉴定、降解特性及其降解基因研究[J].微生物学报,2006,46(5):753-757
    [78]耿毅,汪开毓,陈德芳,黄小丽.斑点叉尾鲴一株致病菌的分离鉴定及系统发育分析[J].微生物学报,2006,46(4):649-652
    [79]别小妹,陆兆新,房耀维,曾泉,吕凤霞,袁勇军.利用16S rDNA序列分析鉴定一株产抗菌物质的微生物菌株[J].食品科学,2006,27(11):466-470
    [80]张会敏,冯友军.一株野生细菌的16S rDNA序列分析与系统发育树的构建[J].生物信息学,2005,3(1):1-4,18
    [81]张勇法,王风芹,陈文新.我国豇豆和绿豆根瘤菌的数值分类及16S rDNA PCR-RFLP研究[J].微生物学报,2006,46(6):861-868
    [82]黄正根,刘昕,高玉梅,等.细菌16S rDNA基因T碱基特异的PCR产物片段化[J].第三军医大学学报,2005,27(4):317-319
    [83]曾静,窦岳坦,王磊,等.新疆地区盐湖的中度嗜盐菌16S rDNA全序列及DNA同源性分析[J].微生物学报,2002,42(2):133-137
    [84]孙征,周宇光,东秀珠.一个甲烷杆菌新种的描述和系统分类学研究[J].微生物学报,2001,41(3):265-269
    [85]武波,蒋承建,陈以涛,等.一株产耐高温碱性蛋白酶菌株的筛选[J].食品与发酵工业,2001,27(6):16-20
    [86]Saxena D, Ben Dov E, Manasherob R, Barak Z, Boussiba S, Zaritsky A. A UV tolerant mutant of Bacillus thuringiensis subsp. kurstaki producing melanin [J]. Curr Microbiol, 2002,44:25-30
    [87]Lee J, Dawes IW, Roe JH. Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide and menadione [J]. Microbiology,1995,141:3127-3132
    [88]林卫军,周玉恒,经艳,等.灵芝漆酶的分离纯化及其部分酶学性质研究[J].广西科学,2009,16(1):82-86
    [89]施晓燕,蔡宇杰,王志新,等.产漆酶真菌筛选及其固态发酵条件的初步研究[J].食品与药品,2009,11(1):11-13
    [90]周菊英,黄俊,肖海燕,等.血红密孔菌漆酶的活性研究[J].武汉理工大学学报,2005,27(4):23-25,29
    [91]Lei L, Min Z, Bei-Bei Z, Shu-Yu Y, Xi-Jun B, Wei W, Yan W. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme [J]. Appl Microbiol Biotechnol,2007,74:1232-1239
    [92]Kirby N, Marchant R, McMullan G. Declolurisation of synthetic textile dyes by Phlebia tremellosa [J]. FEMS Microbiology Letters,2000,189(1):93-96
    [93]Eggert, C, Temp, U, Eriksson, KEL. The ligninolytic system of the white-rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase [J]. Appl. Environ. Microbiol,1996,62,1151-1158
    [94]Kavita Vasdev, Shikha Dhawan, Rajeev Kumar Kapoor, Ramesh Chander Kuhad. Biochemical characterization and molecular evidence of a laccase from the bird's nest fungus Cyathus bulleri [J]. Fungal Genetics and Biology,2005,42:684-693
    [95]Salony, N. Garg, R. Baranwal, M. Chhabra, S. Mishra, T.K. Chaudhuri, V.S. Bisaria. Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli [J]. Biochimica et BiophysicaActa,2008,1784:259-268
    [96]Sethuraman, A, Akin, DE, Eriksson, KE. Production of ligninolytic enzymes and synthetic lignin mineralization by birds nest fungus Cyathus stercoreus [J]. Appl. Microbiol. Biotechnol,1993,52(5):689-697
    [97]Jasleen B, Neena C, Prince S. Laccase from a non-melanogenic, alkalotolerant y proteobacterium JB isolated from industrial wastewater drained soil [J]. Biotechnology Letters,2003,25:1155-1159
    [98]Lu L, Zhao M, Liang SC, et al. Production and synthetic dyes decolourization capacity of a recombinant laccase from Pichia pastoris [J]. Journal of Applied Microbiology,2009, 107:1149-1156
    [99]Kizhakkedathu N N, Nicemol J, Parukuttyamma P. Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus [J]:Purification and characterization. Process Biochemistry,2008,43:654-660
    [100]Atef J, Francisco G, Michel J P, Angel T M, Maria J M. Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater [J]. Enzyme and Microbial Technology,2005,36:478-486
    [101]Gerbsch N, Buchholz R. New processes and actual trends in biotechnology [J]. FEMS Microbiology Reviews,1995,16:259-269
    [102]胡平平,付时雨,李光日.贝壳状革耳菌漆酶酶活测定方法分析[J].广州化学, 2001,26(4):22-28
    [103]聂剑初,吴国利,张翼伸.生物化学简明教程[M].北京:高等教育出版社,1999,92-96
    [104]李海波,李培军,张轶.静止或缓流污染地表水微生物固定化修复技术研究进展[J].生态学杂志,2005,24(5):561-566
    [105]Tacx JCJF, Schoffeleers HM, Brands AGM. Dissolution behavior and solution properties of polyvinylalcohol as determined by viscometry and light scattering in DMSO [J]. Ethyleneglycol and Water Polymer,2000,41(3):947-957
    [106]陈石根,周润琦.酶学[M].上海:复旦大学出版社,2001:192-204
    [107]李花子,王建龙,文湘华,等.聚乙烯醇-硼酸固定化方法的改进[J].环境科学研究,2002,15(5):25-27
    [108]Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein [J]. J Mol Biol.,1982,157(1):105-132
    [109]萨姆布鲁克J,拉塞尔D.W著,黄培堂等译.分子克隆实验指南[M].第三版.北京:科学出版社,2003:71
    [110]李育阳.基因表达技术[M].北京:科学出版社,2001,6-12
    [11l]陈卫,葛佳佳,张灏,等.半乳糖苷酶基因在大肠杆菌中过量表达及IPTG诱导条件[J].食品与生物技术,2002,21(5):492-495

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700