中国水仙挥发性成分及影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以中国水仙为主要试材,采用不同的测试条件分析了水仙花、叶片、组培苗挥发性成分的组成和变化,以及中国水仙干花精油和中国水仙干叶精油成分。研究了赤霉素对芳樟醇合成的影响,游离氨基酸、游离脂肪酸、可溶性糖的变化和挥发性物质的关系,探讨了β-葡萄糖苷酶和醇酰基转移酶对挥发性物质的影响。本文还分离了中国水仙花游离态和键合态挥发性成分,并对两者进行了比较。关于中国水仙挥发性成分对人体健康的影响,本文也有所涉及。因为醇酰基转移酶、芳樟醇合成酶分别与酯类合成、芳樟醇合成有关,最后,本研究试图对这两种酶的基因进行了克隆。主要研究结果如下:
     1.用65μmPDMS/DVB萃取头、50/30μmDVB/CAR/PDMS萃取头、75μmCAR/PDMS萃取头、100μmPDMS萃取头在相同的外部条件下萃取了中国水仙的挥发性成分。各种萃取头所吸附的挥发性成分有所差异,但基本都能萃取到了E-罗勒烯、Z-罗勒烯、芳樟醇、乙酸苯甲酯、乙酸苯乙酯等主要成分。
     2.在不同温度、采后不同天数、不同培养条件下,以及中国水仙花挥发性成分早、中、晚的日变化实验中,虽然所测成分种类和含量有一定差异,但主要成分都是罗勒烯、芳樟醇、乙酸苯甲酯、乙酸苯乙酯等。中国水仙的两个主要品种金盏银台和玉玲珑的挥发性成分类似,也包括罗勒烯、芳樟醇、乙酸苯甲酯、乙酸苯乙酯等。
     3.中国水仙叶片中主要挥发性成分是Z-乙酸-3-己烯酯、E-罗勒烯、乙酸苯甲酯、Z-丁酸-3-己烯酯、乙酸苯丙酯等。
     4.中国水仙干花精油主要成分是棕榈酸和亚油酸,中国水仙干叶精油主要成分是棕榈酸、植物醇、豆蔻酸、苯乙醛等。
     5.在中国水仙鳞茎再生组培培养基中添加30mg/L、50mg/L、70mg/L浓度的赤霉素,以研究赤霉素对组培苗中芳樟醇合成的影响,结果显示三个浓度与对照组相比,均未检测到芳樟醇。
     6.中国水仙花开放过程中苯丙氨酸的含量变化基本和主要酯类挥发性成分的变化呈正相关。油酸可能在初花期和盛花期用于合成挥发性物质;亚油酸含量从花蕾期到初花期是下降的,可能在此阶段通过一系列降解反应生成挥发性物质。葡萄糖含量从花蕾、初花、盛花逐渐上升,到盛花期达到最高,然后开始下降,有可能是从花蕾期到盛花期,中国水仙内源β-葡萄糖苷酶的活性逐渐升高,催化糖苷键的水解断裂,释放出葡萄糖,导致葡萄糖含量升高,风味物质也逐渐增多。
     7.中国水仙内源β-葡萄糖苷酶、醇酰基转移酶活性与酯类物质和芳樟醇的含量呈现一定的相关性。外源β-葡萄糖苷酶能水解糖苷键,释放出与糖苷键结合的挥发性物质,如芳樟醇等。
     8.利用Amberlite XAD-2树脂柱分离了中国水仙盛花粉末中的游离态和键合态挥发性成分,发现游离态成分比键合态成分多。用β-葡萄糖苷酶酶解键合态组分,发现酶解后键合态中出现了葡萄糖,而酶解前没有;果糖含量也比酶解前高;表明β-葡萄糖苷酶确实能水解糖苷键,使之生成单糖,并释放出与糖苷键结合的挥发性物质。但酶解后键合态中未出现芳樟醇,且基本没有与游离态中相同的成分,也没有出现大幅增加的成分。
     9.在布置一定中国水仙花数量的房间里测试了中国水仙花香气成分对人体血压、心率和呼吸频率的影响。青年组在闻香一小时,测得血压下降最大,而中老年组闻香两小时,测定血压下降最大。这可能是由于青年人肺功能好,闻香时用力深呼吸,芳香化合物刺激机体产生相应的生物活性物质,使得心率变慢,血压下降,有效降低了心肌耗氧量。中老年人由于肺功能差,闻香时主要靠增加呼吸频率,导致心率有所增加,但差异无显著性。中国水仙花香能有助于降低人体血压。
     10.醇酰基转移酶和芳樟醇合成酶分别是合成酯类和芳樟醇的关键酶。本研究尝试克隆醇酰基转移酶基因(AAT)和芳樟醇合成酶基因(LIS),得到的AAT克隆片段与文献中报道的AAT cDNA片段大小接近,但经过序列分析后,发现与已知的AAT基因没有相似性,不能确定所克隆片段是否就是AAT cDNA片段。所克隆的LIS片段经过序列分析后,发现与GenBank中已知的LIS基因相似性很低,但其氨基酸序列中含有LIS基因的保守区RR和DDXXD,有待于克隆出全长,并做功能分析后才能确证。
In this study, Narcissus tazetta var. chinensis was used as the main material. Different methods were adopted to analyse the composition and variations of volatile constituents in flowers, leaves and tissue-cultured plantlets and the chemical components of essential oil from dried flower and dried leaf. The impact of Gibberellic acid on the synthesis of linalool was studied, as well asβ-glucosidase and alcohol acyltransferase in essential oil. Connection among the changes of cotents of free amino acids, free fatty acids and soluble sugar and essential oil has been researched. Free and bound volatile components in Narcissus tazetta var. chinensis have also been isolated and compared. The effects of volatile constituents on human health have also been involved. Because alcohol acyltransferase and linalool synthase are related to synthesis of esters and linalool, auther attempted to clone genes involved in these enzymes. The main results are as follow:
     1. Volatile constituents have been extracted by 65μm PDMS/DVB fibre,50/30μm DVB/CAR/PDMS fibre,75μm CAR/PDMS fibre, 100μm CAR/PDMS fibre under the same conditions. Volatile constituents extracted by each fibre are different, however, E-ocimene, Z-ocimene, linalool, benzyl acetate and phenyl acetate have been mostly absorded.
     2. The main volatile constituents are ocimene, linalool, benzyl acetate, phenyl acetate at different temperatures, daily change and conditions, though the measured components are some differences in the type and content. Different varities "yulinlong" and "jinzhanyintai" have samilar volatile constituents.
     3. The main volatile constituents in leaves of Narcissus tazetta var. chinensis are 3Z-hexen-1-ol, acetate,E-ocimene, benzyl acetate, Z-butyricacid-3-hexene esters, phenyl propyl.
     4. The essential oil in dried flowers is palmitic acid and linoleic acid, while in dried leaves is palmitic acid, phytol, myristic acid and phenylacetaldehyde.
     5. To study GA how to affect the synthesis of linalool, we added 30mg/L,50mg/L,70mg /L concentration of GA into the tissue culture medium. The results showed that linalool was not detected from the seedling growing in GA medium and control medium.
     6. During flowering, it is positive correlation between changes of phenylalanine content and major esters of volatile components. From early opening to full opening, oleic acid may be used in the synthesis of volatile substances; linoleic acid decline from the flower bud to early flowering, and at this stage, the degradation reaction may produce a series of volatile substances. Glucose gradually rose to peak from the flower bud, first opening to full blooming, and then declined. Endogenousβ-glucosidase activity increased gradually from the bud stage to full bloom, catalytic glycosidic bonds hydrolysis fracture, releasing glucose, leading glucose levels increased and flavor compounds also gradually increased.
     7. The activities of endogenousβ-glucosidase enzyme and alcohol acyl transferase had some correlation with the content of esters and linalool. Exogenousβ-glucosidase could release volatile substances such as linalool and so on, which could combine with glycosidic bonds by hydrolyzing it.
     8. The free state and bonding state of volatile components of powder from full-bloom stage were separated through Amberlite XAD-2 resin column. We found that volatile components in free state were more than those in bonding state. Glucose was found when enzymatic hydrolyzing the bonding state of volatile components and the content of fructose was also higher, which showed thatβ-glucosidase could hydrolyze glycosidic bond to monosaccharide and release volatile substances that could combine with glycosidic bond. However, linalool was not found when the bonding state was enzymatic hydrolyzed and there were not the same and significantly increased components when comparing with the free state.
     9. The effects of aroma constituents on human blood pressure, heart rate and respiratory rate have been tested in a laboratory with a certain amount Narcissus tazetta var. chinensis. Youth group has the greatest drop in blood pressure after smelled an hour, while middle-aged group has the greatest drop after two hours. This may be due to better lung function of young people. They took a deeper breath when the force smells, the aroma compounds to stimulate the body to produce the corresponding biologically active substance, making slow heart rate, blood pressure, reduce the myocardial oxygen consumption. As poor pulmonary function, the middle aged and old people mainly by increasing the time smelling breath rate, resulting in an increase in heart rate, but the difference was not significant. Narcissus tazetta var. chinensis can reduce normal blood pressure in people with borderline hypertension, heart rate and respiratory rate of performance for the double entry regulation.
     10. Alcohol acyl transferase and linalool synthase are the key enzymes that are related to synthesis of esters and linalool. Alcohol acyl transferase gene (AAT) and linalool synthase gene (LIS) were cloned. The length of clone fragment of AAT obtained was close to those AAT cDNA reported in the literature, but sequence analysis showed that it didn't exhibit similarity with those genes in GenBank. It can't be confirmed whether the cloned fragment is the AAT cDNA fragments. After sequence analysis, result showed that the clone fragment of LIS exhibited very low similarity with those genes in GenBank, but it presented two typical conserved motifs of terpene synthase,i.e RR and DDXXD. It would be confirmed whether the clone fragment of LIS belong to LIS family after full length clone and functional analysis.
引文
[1]高健.钴-60γ射线辐照中国水仙的诱变效应和机理.研究中国林业科学研究院博士学位论文,2000
    [2]陈段芬.中国水仙花型、花色发育基因(NTMADS1、NTMADS3、NTPDS1和NTPZDS1)的克隆与转化.中国林业科学研究院博士学位论文,2008
    [3]张雪荣.薰衣草芳樟醇合成酶的基因克隆、功能鉴定及转基因技术的研究.内蒙古农业大学硕士论文,2007
    [4]Andre Kessler, Ian T. Baldwin. Defensive function of herbivore-induced plant volatile emissions in nature. Science,2001,291 (16):2141-2144
    [5]Florence Negre. Biosynthesis and regulation of floral scent in snapdragon and petunia flower [D]. Purdue University,2006
    [6]戴亮.漳州水仙花精油的化学成分研究.色谱,1990,8(6):377-380
    [7]黄巧巧,冯建跃.吸附丝/色谱/质谱法研究水仙花的香气变化.分析化学,2003,31(11):1408
    [8]黄巧巧,冯建跃.水仙花开放期间香气组分变化的研究。分析测试学报,2004,23(5):110-113
    [9]Song G. Use of solid-phase microextraction as a sampling technique for the characterization of volatile compounds emitted from Chinese daffodil flowers. Journal of Analytical Chemistry,2007,62(7): 674-679
    [10]南蓬.不同生态分布的植物精油化学多样性研究及相关数据库建设.复旦大学博士后论文,2005
    [11]彭红明.中国兰花挥发及特征花香成分研究.中国林业科学研究院博士学位论文,2009
    [12]李大鹏.苹果醇酰基转移酶基因MdAAT2参与酯类香气合成调控机理的研究.山东农业大学,2006
    [13]王焱,叶建仁.固相微萃取法和水蒸气蒸馏法提取马尾松枝条挥发物的比较.南京林业大学学报,(自然科学版),2007,31(1):78-80
    [14]邹磊,傅德贤,杨秀伟.芙蓉菊挥发油的成分分析.天然产物研究与开发,2007,19:250-253
    [15]纳智.圆瓣姜花根茎挥发油的化学成分.热带亚热带植物学报,2006,14(5):417-420
    [16]陈健,姚成.中药材中挥发油化学成分的气相色谱.质谱研究.分析科学学报,2006,22(4):485-486
    [17]瞿万云,余爱农,叶锐.超临界CO2萃取月季花挥发油的工艺研究.中药材,2006,29(5):488-450
    [18]李晓光,高勤,翁文等.超临界CO2萃取法与水蒸气蒸馏法提取广东海风藤挥发油成分的比较.暨南大学学报(自然科学版),2007,28(1):108-110
    [19]宋焕禄.食品风味化学.北京:化学工业出版社,2008
    [20]汪正范,杨树民.色谱联用技术(第2版).北京:化学工业出版社,2007
    [21]金荷仙.室内常用植物挥发物及其对甲醛吸收的初步研究.中国林业科学研究院博士后论文,2007
    [22]张振华,葛毅强,倪元颖.葡萄芳香物质研究进展.食品科学,2004,25(4):181-184
    [23]Antonella N., Pasquale F., Silvano A, et al. Identification of free and bound volatile compounds as typicalness and authenticity markers of non-aromatic grapes and wines through a combined use of mass spectrometric techniques. Food Chemistry,2008,110:762-768
    [24]范刚,齐宇,柴倩等.锦橙果肉和果皮中游离态和键合态香气物质的研究.食品科学,2007,28(10):436-439
    [25]高丽萍,王黎明,张玉琼等.茉莉花香气释放酶的研究.茶叶科学,2001,21(2):140-143
    [26]姚卫蓉,陈军杰,钱和.玫瑰花中键合态和游离态组分的分析.食品科学,2007,28(11):487-492
    [27]H Saathoff, C Linke, R Wagner et al. Temperature dependence of the yield of secondary organic aerosol from the ozonolysis of a-pinene and limonene. Journal of Aerosol Science,2004,1:151-152
    [28]Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. Plant Physiology,2004, 135:1893-1902
    [29]Maaria Loivamaki, Frank Gilmer, Robert J. Fischbach. Arabidopsis, a model to study biological functions of isoprene emission. Plant Physiol.2007,144 (6):1066-1078
    [30]Thomas D. Sharkey, Sansun Yeh, Amy E. Wiberley. Evolution of the isoprene biosynthetic pathway in Kudzu. Plant Physiol,2005,137 (2):700-712.
    [31]Thomas D. Sharkey. Isoprene emission from plants:why and how. Annals of Botany,2008,101: 5-18
    [32]Maaria Loivamaki. Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant physiology, 2007,143 (1):540-551
    [33]Jason W, Johnston. Co-ordination of early and late ripening events in apples is regulated through diff-erential sensitivities to ethylene. Journal of experimental botany.2009,60(9):2689-2699
    [34]Pech JC, Bouzayen M, Latche A. Climacteric fruit ripening:ethylene-dependent and independent re-gulation of ripening pathways in melon fruit. Plant Science,2008,175,114-120
    [35]Nishiyama K, Guis M, Rose JKC. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. Journal of Experimental Botany,2007 58,1281-1290
    [36]Schaffer RJ, Friel EN, Souleyre EJF, et al. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology,2007,144,1899-1912
    [37]Defilippi BG, Dandekar AM, Kader AA. Relationship of ethylene biosynthesis to volatile production related enzymes and precursor availability in apple peel and flesh tissues. Journal of Agricultural and Food Chemistry,2005,53,3133-3141
    [38]Yuanxin Yan, Stephanie Stolz, Philippe Reymond. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell.2007,19 (8):2470-2483
    [39]Orozco-Cardenas, M. L., Narvaez-Vasquez. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonat-e. Plant Cell,2001,13:179-191
    [40]Park, J. H, Halitschke. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J,2002,31:1-12
    [41]Spoel, S. H. NPR1 modulates cross-talk between salicylateand jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell,2003,15:760-770
    [42]Zavala, J. A., Baldwin. Jasmonic acid signalling and herbivore resistance traits constrain regrowth after herbivore attack in Nicotiana attenuata. Plant Cell Environ,2006,29:1751-1760.
    [43]Sharkey TD, Singsaas EL. Why plants emit isoprene. Nature,1995,374:769
    [44]Singsaas EL, Lerdau M, Sharkey TD. Isoprene increases thermotolerance of isoprene-emitting specie-s. Plant Physiology,1997,115:1413-1420
    [45]Singsaas EL, Sharkey TD. The regulation of isoprene emission responses to rapid leaf temperature flu-ctuations. Plant Cell Environ,1998,21:1181-1188
    [46]Sharkey TD, Chen X, Yeh S. Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiology,2001,125:2001-2006
    [47]Maaria Loivamaki, Frank Gilmer, Robert J. Fischbach. Arabidopsis, a model to study biological fun-ctions of isoprene emission. Plant Physiology.2007,144 (6):1066-1078
    [48]Logan BA, Monson RK. Thermotolerance of leaf discs from four isoprene-emitting species is not enh-anced by exposure to exogenous isoprene. Plant Physiology,1999120:821-825
    [49]Monson RK, Jaeger CH, Adams III WW. Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiology,1992,98:1175-1180
    [50]Wilfried Schwab, Rachel Davidovich-Rikanati, Efraim Lewinsohn. Biosynthesis of plant-derived flavor compounds. Plant Journal.2008,54:712-732
    [51]Uta Effmert, Jana Grobe. Ursula S. R. Rose. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis Jalapa (Nyctaginaceae). American Journal of Botany.2005, 92 (1):2-12
    [52]Beverly A. Underwood, Denise M. Tieman, Kenichi Shibuya. Ethylene-regulated floral volatile syn-thesis in petunia corollas. Plant Physiol.2005,138 (5):255-266
    [53]Soheil S. Mahmoud, Rodney B. Croteau. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. PNAS,2003,100 (24):14481-14486
    [54]Rigoberto Rios-Estepa, Glenn W. Turne, James M. Lee. A systems biology approach identifies the bio-chemical mechanisms regulating monoterpenoid essential oil composition in peppermint. PNAS, 2008,105 (8):2818-2823
    [55]Feng Chen, Dorothea Tholl, John C. D'Auria, Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell.2003,15 (2):481-494
    [56]Alexander Vainsteinm, Efraim Lewinsohn, Eran Pichersky. Floral fragrance, new inroads into an old commodity. Plant Physiol.2001,127 (12):1383-1389
    [57]Dudareva N, Pichersky E. Biochemical and molecular genetic aspects of floral scents. Plant Physiol.2000,122:627-633
    [58]Feng Chen, Dae-Kyun Ro, Jana Petri. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol.2004,135 (8): 1956-1966
    [59]Sungbeom Lee, Joseph Chappell. Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol,2008,147(7):1017-1033
    [60]Davis ED, Croteau R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top Curr Chem,2000,209:53-95
    [61]Sharon-Asa L, Shalit M, Frydman A, et al. Citrus fruit flavor and aroma biosynthesis:Isolation fun-ctional characterization, and developmental regulation of Cstpsl, a key gene in the production of the sesquiterpene aroma compound valencene. Plant J,2003,36:664-674
    [62]Martin DM, Faldt J, Bohlmann J. Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol,2004,135: 1908-1927
    [63]Van der Hoeven RS, Monforte AJ, Breeden D. Genetic control and evolution of sesquiterpene bios-ynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell,2000,12:2283-2294
    [64]Kollner TG, Schnee C, Gershenzon J. The variability of sesquiterpenes emitted from two Zea mays cu-ltivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell,2004,16:1115-1131
    [65]Marcelo Camier Dornelas, Paulo Mazzafera. A genomic approach to characterization of the Citrus te-rpene synthase gene family. Genetics and Molecular Biology.2007,30 (3):832-840
    [66]Feng Chen, Dorothea Tholl, John C. D'Auria. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell.2003,15 (2):481-494
    [67]Sungbeom Lee, Joseph Chappell. Biochemical and Genomic Characterization of Terpene Synthases in Magnolia grandiflora. Plant Physiology.2008,147 (7):1017-1033
    [68]Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics,2002,267:730-745
    [69]Chen XY, Chen Y, Heinstein P. (1995) Cloning, expression, and characterization of (+)-delta-cadinene synthase:a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys,1995,324:255-266
    [70]Dorothea Tholl. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology,2006,9:1-8
    [71]Dudareva, N., B. PIECHULLA. Biogenesis of floral scents. Horticultural Reviews,2000,24: 31-54
    [72]Trapp SC, Croteau RB. Genomic organization of plant terpene synthases and molecular evolutionary im-plications. Genetics,2001,158:811-832
    [73]Tholl D, Chen F, Petri J, et al. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J,2005,42:757-771
    [74]Dudareva N, Martin D, Kish CM, et al. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon:function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell,2003,15:1227-1241
    [75]Sharon-Asa L, Shalit M, Frydman A, et al. Citrus fruit flavor and aroma biosynthesis:isolation, fu-nctional characterization, and developmental regulation of Cstps 1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant J,2003,36:664-674
    [76]Lucker J, Schwab W, Franssen MCR. Metabolic engineering of monoterpene biosynthesis:two-step production of(+)-transisopiperitenol by tobacco.Plant J,2004,39:135-145
    [77]Choi D, Ward B L, Bostock R M. Differential in duction and suppression of potato 3-hydroxy-3-methy-lglutaryl coenzymeA reductase gene sinresponse to phytophth or ainfestans And to it selicitorar achido-nic acid. Plant Cell,1992,4:1333-1344
    [78]Zhenbiao Yang, Heesung Park, George H. Lacy. Differential Activation of Potato 3-hydroxy-3-meth-ylglutaryl coenzyme a reductase genes by wounding and pathogen challenge. Plant Cell.1991,3 (4): 397-405
    [79]Doil Choi, Bernard L. Ward, Richard M. Bostock. Differential Induction and Suppression of Potato 3-Hydroxy-3-MethylgIutaryl Coenzyme A Reductase Genes in Response to Phytophthora infestans and to Its Elicitor Arachidonic Acid. Plant Cell,1992,4 (10):1333-1344
    [80]Jonathon O. Narita, Wilhelm Gruissem. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. Plant Cell,1989,1 (2):181-190
    [81]Zoltan Kevei, Geraldine Lougnon, Peter Mergaert, et al.3-hydroxy-3-methylglutaryl coenzyme A reductase1 interacts with NORK and is crucial for nodulation in Medicago truncatula. Plant Cell,2007, 19 (12):3974-3989
    [82]Montserrat Enjuto, Victoria Lumbreras. Expression of the Arabidopsis HMG2 gene, encoding 3-hydro-xy-3-methylglutaryl coenzyme A reductase, is restricted to meristematic and floraltissues. Plant Cell, 1995,7 (5):517-527
    [83]Manuel Rodriguez-Concepcion, Oriol Fores, Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell,2004, 16(1):144-156
    [84]Dorothea Tholl, Christine M. Kish, Irina Orlova, et al. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell, 2004,16 (4):977-992
    [85]Tao-Hsin Chang, Fu-Lien Hsieh, Tzu-Ping Ko. Structure of a heterotetrameric geranyl pyrophosphate synthase from Mint (Mentha piperita) reveals intersubunit regulation. Plant Cell,2010,22(2):454-467
    [86]Hsiao Y. Y., Jeng M. F., Tsai W. C., et al. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant J,200855:719-733
    [87]Irina Orlova, Dinesh A. Nagegowda, Christine M. Kish. The small subunit of snapdragon geranyl dip-hosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synt-hase in planta. Plant Cell,2009,21 (12):4002-4017
    [88]Florence Bouvier, Claude Suire, Alain d'Harlingue. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant Journal.2000,24(2):241-252
    [89]Asaph Aharoni, Ashok P. Giri, Francel W. A. Verstappen. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell.2004,16(11):3110-3131
    [90]Chauncey R. Benedict, Jia-Ling Lu, Donald W. Pettigrew, et al. The cyclization of farnesyl diphosphate and nerolidyl diphosphate by a purified recombinant 8-cadinene synthase. Plant Physiology,2001,125 (4):1754-1765
    [91]Christophe Sallaud, Denis Rontein, Sandrine Onillon, et al. A novel pathway for sesquiterpene bio-synthesis from Z,Z-farnesyl pyrophosphate in the wild tomato solanum habrochaites. Plant Cell,2009, 21 (1):301-317
    [92]Charles Burke, Rodney Croteau. Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl dipho-sphate. Journal of Biological Chemistry.2002,277 (5):3141-3149
    [93]Chris C. N. van Schie, Kai Ament. Axel Schmidt. Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant Journal.2007,52:752-762
    [94]Kazunori Okada, Takeshi Saito, Tsuyoshi Nakagawa. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis 1. Plant Physiol.2000,122 (4):1045-1056
    [95]Natalia Dudareva, Diane Martin, Christine M. Kish. (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon:function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell.2003,15 (5):1227-1241
    [96]Yoko Iijima, Rachel Davidovich-Rikanati, Eyal Fridman. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cult-ivars of basil. Plant Physiol.2004,136 (11):3724-3736
    [97]Edward M. Davis, Kerry L. Ringer, Marie E. McConkey. Monoterpene metabolism cloning, expression, and Characterization of menthone reductases from Peppermint. Plant Physiol.2005,137(3):873-881
    [98]Lange B. M, Wildung M. R, McCaskill D. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci,1998,95(5):2100-2104
    [99]Lois L. M, Campos N. Cloning and characterization of a gene from Escherichia coli encoding a trans-ketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose-5-phosphate, a common precu-rsor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc. Natl. Acad. Sci,1998,95(5): 2105-2110
    [100]林翔云.天然芳樟醇与合成芳樟醇.化学工程与装备,2008,7:21-26
    [101]林翔云.调香术(第2版).北京:化学工业出版社,2008
    [102]Joost Liicker, Harro J. Bouwmeester, Wilfried Schwab. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside. Plant Journa-1.2001,27 (4):315-324
    [103]Chris C. N. van Schie Michel A. Haring, Robert C. Schuurink. Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol.2007,64:251-263
    [104]Efraim Lewinsohn, Fernond Schalechet, Jack Wilkinson. Enhanced levels of the aroma and flavor compound S-Linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physi-ol.2001,127 (11):1256-1265
    [105]Nagegowda, D. A, Gutensohn, M, Wilkerson, C. G. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J,2008,55:224-239
    [106]Natalia Dudareva, Leland Cseke, Victoria M. Blanc. Evolution of floral Scent in Clarkia:novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell.1996,8(7): 1137-1148.
    [107]Tang Li, Tang Fang, Duan Jinhua. Cloning and sequence analysis of a homologous linalool synthase gene involved in floral scents in Osmanthus fragrans var. thunbergii. Forest Science,2009,45 (5): 11-19
    [108]Igor Hernandez, Douwe Molenaar, Jules Beekwilder. Expression of plant flavor genes in Lactococcus lactis. Applied and Environmental Microbiology.2007,73 (5):1544-1552
    [109]Michal L, Amir Z, Efraim L. et al. Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Molecular Breeding,2002,9:103-111
    [110]Lewinsohn E, Schalechet F, Wilkinson J, et al. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits, Plant Physiology, 2001,127:1256-1265
    [111]Eran Pichersky, Robert A. Raguso, Efraim Lewinsohn. Floral scent production in CIarkia (Onagraceae) 1. localization and developmental modulation of monoterpene emission and linalool synthase activ-ity. Plant Physiology,1994,106:1533-1540
    [112]Leland Cseke, Natalia Dudareva, Eran Pichersky. Structure and evolution of linalool synthase Mol. Biol. Evol,1998,15 (11):1491-1498
    [113]Crowell AL, Williams D C, Davis EM. et al. Molecular cloning and characterization of a new linalool synthase. Archives of Biochemistry and Biophysics,2002,40 (5):112-121
    [114]Chris C. N. van Schie, Michel A. Haring, Robert C. Schuurink. Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol. Biol,2007,64:251-263
    [115]Asaph Aharoni, Maarten A. Jongsma, Harro J. Bouwmeester. Volatile science? metabolic engineering of terpenoids in plants. Trends of Plant Science,2005,10 (12):1360-1385
    [116]Baldwin E. A, J. W. Scott, C. K. Shewmaker. Flavor trivia and tomato aroma:biochemistry and possible mechanisms for control of important aroma components. Hortscience,2000,35(6): 1013-1021
    [117]CatherineN. S, P. Suurmeijer, Manuela Perez-Gilabert, et al. Purification,stabilization and character-rization of tomato fatty acid hydroperoxide lyase. Phytochemistry,2000,53:177-185
    [118]Hamberg M, Sanz A. Alpha-oxidation of fatty acids in higher plants.identification of a pathogen indu-cible oxygenase(piox)as an alpha-dioxygenase and biosynthesis of 2-hydroperoxy-lino-lenic acid. J Biol Chem,1999,27:274(35):245:03-13
    [119]Jen-Minkuo, Ann H, Dong-Bor Yeh, et al. Lipoxygenase from banana leaf:purification and ch-aracterization of an enzyme that catalyzes linoleic acid oxygenation at the 9-position. J Agric Food Chem,2006,54:3151-3156
    [120]Li, L., Leshkevich. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell,2001,13:1567-1586
    [121]Wyllie SG, Fellman JK. Formation of volatile branched chain esters in bananas(Musa sapientum L.). J. Agric. Food Chem,2000,48:3493-3496
    [122]Wyllie SG, Leach DN, Wang Y. Development of flavor attributes in the fruit of C. melo during ripening and storage. In GR Takeoka, R Teranishi,PJ Williams, A Kobayashi, eds, Biotechnology for Improved Foods and Flavors. Amer. Chem. Soc., Washington,D. C,1996:228-239
    [123]Robert J. Schaffer, Ellen N. Friel, Edwige J. F. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Ph-ysiology,2007,144(8):1899-1912
    [124]Dudareva N, D'Auria JC, NamKH, et al. Acetyl-CoA:benzylalcohol acetyltransferase-an enzyme involved in floral scent production in Clarkia breweri. Plant J,1998,14(3):297-304
    [125]Sompoch Noichinda, Yoshinori Ueda. Subcellular localization of alcohol acetyltransferase in strawbe-rry fruit. Food Sci. Technol. Res,1999,5(3):239-242
    [126]Beekwilder J, Alvarez-Huerta M, Neef E. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiology,2004,135:1865-1878
    [127]Guterman I, Masci T. Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol. Bio,2006,60:555-563
    [128]Moshe Shalit, Inna Guterman, Hanne Volpin. Volatile ester formation in roses.identification of an acetyl-coenzyme A. geraniol/citronellol acetyltransferase in developing rose petals 1. Plant Physiol.2003,131:1868-1876
    [129]Bruno G. Defilippi, Adel A. Kader. Apple aroma:alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Sci,2005,168:1199-1210
    [130]Edwige J. F, Souleyre, David R. An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS J,2005,272:3132-3144
    [131]Mariska Lilly, Florian F. Bauerl, Marius G. Lambrechts. The effect of increased yeast alcohol ace-tyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast,2006,23: 641-659
    [132]Fikri E. L. Yahyaoui, Chalermchai Wongs-Aree, Rachel Hackett. Molecular and biochemical charac-teristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening. Eur. J. Biochem,2002,269:2359-2366
    [133]John C. D'Auria, Feng Chen, Eran Pichersky. Characterization of an acyltransferase capable of sy-nthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia brewer-i. Plant Physiol,2002,130 (9):466-476
    [134]Miki Harada, Yoshinori Ueda, Takashi Iwata. Purification and some properties of alcohol acetyltrans-ferase from banana fruit. Plant Cell Physoil,1985,26 (6):1067-1074
    [135]Bruno G. Defilippi, Adel A. Kader, Abhaya M. Dandekar. Apple aroma:alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Science,2005,168: 1199-1210
    [136]Kevin J. Verstrepen, Stijn D. M. Van Laere, Bart M. P. Vanderhaegen. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Applied and Environmental Microbiology,2003,69 (9):5228-5237
    [137]Osamu Akita, Syuzi Suzuki, Takaji Obata. Purification and some properties of alcohol acetyltrans-ferase. Agric. Biol. Chem.,1990,54 (6):1485-1490
    [138]M. Lilly, M. G. Lambrechts, I. S. Pretorius. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Applied and Environmental Microbiology,2000, 66 (2):744-753
    [139]Toshio Fujii, Naoshi Nagasawa, Akihiro Iwamatsu. Molecular cloning, sequence analysis, and expre-ssion of the yeast alcohol acetyltransferase gene. Applied and Environmental Microbiology,1994, 60 (8):2786-2792
    [140]Inna Guterman, Tania Masci, Xinlu Chen. Generation of phenylpropanoid pathway-derived volatiles in transgenic plants:rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Molecular Biology,2006,60:555-563
    [141]Asaph Aharoni, Leopold C. P. Keizer, J. Bouwmeester. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Physiology,2000,12(5):647-661.
    [142]Jules Beekwilder, Mayte Alvarez-Huerta, Evert Neef. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiology,2004,135 (8):1865-1878
    [143]Uta Effmert, Jana Grobe. Ursula S. R. Rose. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis Jalapa (Nyctaginaceae). American Journal of Botany,2005,92 (1):2-12
    [144]Denise M. Tieman, Michelle Zeigler, Eric A. Schmelz. Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany,2006,57 (4):887-896
    [145]John C,D'Auria, Feng chen. Characterization of an acyltransferase capable of synthesizing benzylben-zoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiology, 2002,130:466-476
    [146]Cristian Balbont'im, Carlos Gaete-Eastman. Treatment with 1-MCP and the role of ethylene in aroma development of mountain papaya fruit. Postharvbio,2007,43:67-77
    [147]Jason W, Johnston. Co-ordination of early and late ripening events in apples is regulated through dif-ferential sensitivities to ethylene. Journal of Experimental Botany,2009,60(9):2689-2699
    [148]Robert A, Raguso, Eran Pichersky. Floral volatiles from Clarkia breweri and C. concinna (Onagra-ceae):recent evolution of floral scent and moth pollination. P1. Syst. Evol,1995,194:55-67
    [149]Kevin L. C. Wang, Hai Li. Joseph R. Ecker. Ethylene biosynthesis and signaling networks. Plant Cell,2002, supplement:131-151
    [150]Sandrine Mathieu, Valeriano Dal Cin, Zhangjun Fei. Flavour compounds in tomato fruits:iden-tification of loci and potential pathways affecting volatile composition. Journal of Experimental Bot-any,2009,60 (1):325-337
    [151]Kai Ament, Merijn R. Kant, Maurice W. Sabelis. Jasmonic acid Is a key regulator of spider mite-Induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol.2004,135 (8): 2025-2037
    [152]Jeroen Stuurman, Maria Elena Hoballah, Larissa Broger. Dissection of floral pollination syndromes in Petunia. Genetics.2004,168:1585-1599
    [153]Florence Negre, Christine M. Kish, Jennifer Boatright. Regulation of methylbenzoate emission after pollination in Snapdragon and Petunia flowers. Plant Cell,2003,15 (12):2992-3006
    [154]Ben Spitzer, Michal Moyal Ben Zvi, Marianna Ovadis. Reverse genetics of floral scent:application of tobacco rattle virus-based gene silencing in Petunia. Plant Physiology,2007,145 (12):1241-1250
    [155]Beverly A. Underwood, Denise M. Tieman, Kenichi Shibuya. Ethylene-regulated floral volatile sy-nthesis in petunia corollas. Plant Physiol,2005,138 (5):255-266
    [156]Paul E. Staswick. Jasmonate, genes, and fragrant signals. Plant Physiology,1992,99:804-807
    [157]Kyoung Hee Nam, Natalia Dudareva, Eran Pichersky. Characterization of benzylalcohol acetyltra-nsferases in scented and non-scented Clarkia species. Plant Cell Physiology,2001,40(9):916-923
    [158]Natalia Dudareva, Robert A. Raguso, Jihong Wang. Floral scent production in Clarkia breweri. III. Enzymatic synthesis and emission of benzenoid esters. Plant Physiology,1998,116: 599-604
    [159]Dina Aranovich, Efraim Lewinsohn, Michele Zaccai. Post-harvest enhancement of aroma in transgenic lisianthus (Eustoma grandiflorum) using the Clarkia breweri benzyl alcohol acetyltransferase (BEAT) gene. Postharvest Bio & Tec,2007,43:255-260
    [160]Moshe Shalit, Inna Guterman, Hanne Volpin. Volatile ester formation in roses.identification of an acetyl-coenzyme A. geraniol/citronellol acetyltransferase in developing rose petals. Plant Physiology, 2003,131 (4):1868-1876
    [161]Hirokazu Suzuki, Shin'ya Sawada. Kuzufumi Watanabe. Identification and characterization of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers an enzyme that is phylo-genetically separated from other anthocyanin acyltransferase. Plant Journal,2004,38:994-1003
    [162]Torsten Grothe, Rainer Lenz, Toni M. Kutchan. Molecular characterization of the salutaridinol 7-O-acetyltransferase involved in morphine biosynthesis in opium poppy Papaversomniferum. Journal of Biological Chemistry,2001,276 (33):30717-30723
    [163]Jeremy Kapteyn, Anthony V. Qualley, Zhengzhi Xie. Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. Plant Cell,2007,19(10): 3212-3229
    [164]Chloe Zubieta, Jeannine R. Ross, Paul Koscheski. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Physiology,2003,15 (8):1704-1716
    [165]Jeremy Kapteyn, Anthony V. Qualley, Zhengzhi Xie. Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. Plant Physiology,2007,19 (10):3212-3229
    [166]Marcella B. Pott, Frank Hippauf, Sandra Saschenbrecker. Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in stephanotis floribunda and Nicotiana suaveolens. Plant Physiol.2004,135 (8):1946-1955
    [167]Natalia Kolosova, Debra Sherman, Dale Karlson. Cellular and subcellular localization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in Snapdragon flowers. Plant Physiology,2001,126 (7):956-964
    [168]Julian C. Verdonk, Michel A. Haring, et al. ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell,2005,17:1612-1624
    [169]Kolosova N, Gorenstein N, Kish C M. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell,2003,13:2333-2347
    [170]Ted CJ Turlings, Jurriaan Ton. Exploiting scents of distress:the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Current Opinion in Plant Biology, 2006,9:421-427
    [171]李祖光,李新华,高建荣.白丁香鲜花在不同开花期的香气化学成分研究.林产化学与工业,2005,25(4):63-66
    [172]李瑞红,范燕萍.白姜花不同开花时期的香味组分及其变化.植物生理学通讯,2007,43(1)176-180
    [173]刘百战,高芸.固相微萃取-气相色谱/质谱分析栀子花的头香成分.色谱,2000,18(5):452-455
    [174]杨淑珍,范燕萍.蝴蝶兰2个品种挥发性成分差异性分析.华南农业大学学报,2008,9:93-95
    [175]范燕萍,王旭日,余让才.不同种姜花香气成分分析.园艺学报,2007,34(1):231-234
    [176]魏好程,王贵禧,梁丽松.HS-SPME在桃果实挥发性芳香物质分析中应用研究.食品科学,2007,28(7):347-351
    [177]朱旗.速溶绿茶加工中主要风味物质变化规律及分析方法研究.湖南农业大学博士论文,2001
    [178]文志勇,孙宝国.脂质氧化产生风味物质.中国油脂,2004,29(9):41-44
    [179]邵惠芳,许自成,刘丽.烤烟总氮和蛋白质含量与主要挥发性香气物质的关系.西北农林科技大学学报(自然科学版),2008,36(12):69-76
    [180]章建浩,周光宏,朱健辉.金华火腿传统加工过程中游离氨基酸和风味物质的变化及其相关性.南京农业大学学报,2004,27(4):96-100
    [181]乜兰春,孙建设,邸保.苹果果实香气产生过程中氨基酸和脂肪酸含量及一些相关酶活性的变化.植物生理与分子生物学学报,2005,31(6):663-667
    [182]黄新安,宛晓春.茉莉花酶促释香研究.中山大学学报(自然科学版),48(2):144-145
    [183]Bruno G. defilippi, Apple aroma:alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene[J]. Plant Science,2005,168:1199-1210
    [184]宋晓青.蜡梅花β-葡萄糖苷酶的活性分析、分离纯化与性质的初步研究.华中农业大学硕士论文,2005
    [185]Osorio C., Duque C., Batista Viera F. Studies on aroma generation in lulo (So lanum quitoense): enzymatic hydrolysis of glycosides from leaves. Food Chemistry,2003,81:333-340.
    [186]Kilic A., Kollmannsberger H., Nitz S. Glycosidically bound volatile and favor precursors in Laurus nobilis. Journal of Agricultural and Food Chemistry,2005,53:2231-2235
    [187]Boulanger R., Crouzet J. Identification of the aroma components of acerola (Malphigia glabra L.): free and bound flavour compounds. Food Chemistry,2001,74:209-216
    [188]Mastelic J., Jerkovic I. Free and glycosidically bound volatiles of Mentha longifolia growing in croatia. Chemistry of Natural Compounds,2002,38 (6):561-564
    [189]Milos M. Chemical composition and antioxidant effect of glycosidically bound volatile compounds from oregano. Food Chemistry,2000,71:79-83.
    [190]孙爱东,葛毅强,倪元颖.不同来源的增香酶酶解橙汁(皮)中键合态主要芳香物质的效果分析.食品与发酵工业,2001,27(11):1-4
    [191]范刚,柴倩,潘思轶.锦橙游离态和键合态风味物质研究.食品科学,2006,27(12):618-622
    [192]李玉杰,刘晓蕾,刘霞等.玫瑰精油的化学成分及抗菌活性.植物研究,2009,29(4):488-491
    [193]陈辉,张显.浅析芳香植物的历史及在园林中的应用.陕西林业科学,2005,3:140-142
    [194]Wilfried Schwab, Rachel Davidovich-Rikanati, Efraim Lewinsohn. Biosynthesis of plant derived flavor compounds. Plant Journal,2008,54:712-732

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700