荞麦类黄酮、蛋白的积累特点及氮磷配比的调控效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荞麦是高寒和土地贫瘠地区的主要粮食作物之一,富含其他粮食作物所没有的生物活性成分芦丁,同时蛋白质含量明显高于大米、小麦、玉米等,而且迥异于谷物蛋白,类似于豆类蛋白,这些特性使荞麦具有重要的营养价值和药用价值。目前,对其生物活性成分芦丁和蛋白的研究主要集中于提取方法及营养特性的测定,如何提高其含量,提高加工利用价值成为亟待解决的问题。
     本研究以甜荞和苦荞品种为材料,采用-聚丙烯酰胺凝胶电泳研究了荞麦蛋白组分亚基特性,分析了籽粒形成过程中类黄酮和蛋白组分含量的变化及其了氮磷配比对其含量的影响,以期为栽培与育种中调节荞麦黄酮和蛋白质组分含量,进而调节营养与加工品质提供理论依据。所得结论如下:
     1.甜荞籽粒总蛋白及蛋白质各组分的谱带具有丰富的多态性,而苦荞籽粒总蛋白及蛋白组分谱带的多态性有限;荞麦清蛋白主要由低分子量的亚基构成;甜荞球蛋白组分含由中等到低分子量范围的5~12种亚基,苦荞球蛋白主要由8种亚基组成;甜荞谷蛋白主要由分子量在43-66.2kD之间的3~5种亚基组成,苦荞谷蛋白主要由分子量在31~43kD间的2种亚基组成。
     2.灌浆初期甜荞籽粒类黄酮含量升高,随后其含量下降,但幅度较小,籽粒成熟时类黄酮含量又上升;苦荞籽粒类黄酮含量在灌浆初期含量也较高,随籽粒成熟逐渐下降,后期略有升高。
     3.甜荞与苦荞的清蛋白和球蛋白随籽粒成熟表现相同的变化趋势,即两个栽培种的清蛋白在初期含量较高,随籽粒灌浆成熟而逐渐下降,球蛋白含量在整个籽粒发育成熟过程中始终最低,在灌浆过程中略有上升趋势;甜荞的醇溶蛋白含量在整个籽粒发育成熟过程中有所下降,但幅度很小,谷蛋白含量较高,随籽粒发育成熟而升高,在后期下降;苦荞的谷蛋白随灌浆成熟经历了低-高-低的趋势,但变化幅度较小,含量由15.20%升高到18.44%,最后下降为11.50%,醇溶蛋白的变化趋势与谷蛋白相同,但其含量均明显低于谷蛋白。
     4.不同生育时期叶片和茎中类黄酮含量皆随肥力水平上升而下降。高施肥处理对甜荞类黄酮含量的负效应表现为叶片较茎中更为明显,即与茎相比,甜荞叶片中类黄酮含量更易受肥力水平的影响;高肥处理对甜荞叶片的负效应要大于对苦荞叶片类黄酮含量的负效应,同时,与甜荞不同高肥力对苦荞茎中类黄酮含量也表现一定的负效应,但影响不显著。施肥以及所施肥的种类对甜荞籽粒类黄酮含量的影响差异不显著,高肥力水平则对苦荞类黄酮含量具有负效应。此外,由于长期的环境适应,荞麦具有独特的耐贫瘠性,氮肥利用效率不高。因此,施肥并不是提高荞麦类黄酮含量的理想手段。
     5.同施N相比,施P更容易影响甜荞籽粒各组分蛋白质含量,且各组分对磷素需求量不同,其中球蛋白含量随施磷水平的提高而提高,而施磷量过高则不利于醇溶蛋白的形成。施肥处理更容易影响苦荞籽粒球蛋白和醇溶蛋白含量,对清蛋白含量影响不显著,且适量氮肥和磷肥均有利于提高苦荞籽粒球蛋白和醇溶蛋白的含量。但是,各施肥水平对甜荞和苦荞籽粒谷蛋白含量的影响都不显著。
Buckwheat is one of the staples in alpine region and areas with poor soil. Rich in flavonoid which is absent in other food crops, and protein whose content is higher than that of rice, wheat and maize and property is distinctive, buckwheat has important nutritive and medicinal value. At present, researches on flavonoid and protein focus on the extraction methods and nutrition determination, the improvement of contents, furthermore improving its processing and utilization is great urgent.
     In order to provide foundation for scientific management and production of high quality buckwheat, this study investigated the subunit property of buckwheat protein component, analyzed the dynamics of flavonoid and protein content with seeds maturing, and the effect of ratios of nitrogen and phosphrous on the content. It got the following main conclusions:
     1. Subunits composition of albumin, globulin and glutamine of common and tartary buckwheat,two cultured species,were determined using SDS-PAGE method. The results showed that high polymorphism was revealed among different common buckwheat cultivars while that among tartary buckwheat was limited. The albumin of buckwheat was composed of subunits with low molecular weight. Common buckwheat globulin was composed of 5-12 subunits from low to middle molecular weight whereas only 8 subunits constituted tartary buckwheat globulin. Common buckwheat glutelin was composed of 3-5 subunits with molecular weight ranging within 43-66.2kD. Tartary buckwheat glutelin was composed of 2 subunits whose molecular weight ranged within 31-43kD.
     2. Flavonoid content of common buckwheat seed was higher in the early grain-filling stage, and slowly decreased before rising at the seed maturing stage; Flavonoid content of tartary buckwheat was also higher in the early grain-filling stage, and gradually decreased. At the maturing stage, the flavonoid content was slightly increased.
     3. The dynamics of albumin and globulin content of common buckwheat and tartary buckwheat showed similar tendency. Albumin content was higher at the early grain-filling stage, and gradually decreased with seeds maturing; Globulin content was lowest and a negligible uptrend was observed in the grain-filling stage; Prolamin content of common buckwheat was also lower and a slightly downtrend was observed, glutamine content was higher with an increasing trend, but declined at the late stage of grain-filling stage; a tendency of“low, high, low”was observed for glutamine content of tartary buckwheat,which was also applicable to prolamin content.
     4. Flavonoid content of leaves and stems in development stage decreased with high level of fertilizer. High level of fertilization had a more negative effect on the flavonoid content of common buckwheat leaves than that of stems, a more negative effect on the flavonoid content of common buckwheat leaves than that of tartary buckwheat leaves, and an insignificant negative effect was also observed on the tartary buckwheat stems. In addition, because of tolerance to barren soil for a long time, nitrogen utilization of buckwheat is inefficient; therefore fertilization was not an ideal way for improving flavonoid content.
     5. Content of protein component of common buckwheat seed was more easily affected by P compared with N, and the demand of P was different, its globulin content was improved with higher level of P, which was not favorable to gliadin accumulation; As for tartary buckwheat, its globulin and gliadin content was more easily affected by fertilization level compared with albumin, moreover, moderate level of nitrogen and phosphorus was favorable to the accumulation of globulin and gliadin. However, fertilization level had no significant impact on the glutamine content of common buckwheat and tartary buckwheat.
引文
[1]Ohmi Ohinish. On the origin of buckwheat[C]. Proceedings of the 9th international symposium on buckwheat. Prague:Research Institute of Crop Production Prague-Ruzyne,2004,16-21.
    [2]Tsuji K.,Ohnishi O. Origin of cuLtivated Tartary buckwheat(Fagopyrum tararicum Gaerth.)revealed by RAPD analyses. Genet. Resour. Crop Evol,2000,47:431-438.
    [3]冯佰利,王鹏科.中国荞麦产业发展现状与对策[J].中国小杂粮产业发展报告[M]. 北京:中国农业科学技术出版社,2007.
    [4]Hisayoshi Hayashi, Daisuke Toiguchi, Yingjie Wang, et al. Plant characteristics in relation to lodging in self-pollinating buckwheat[C]. Proceedings of the 10th international symposium on buckwheat. China:NORTHWEST A&F UNIVERSITY,2007. 259-262.
    [5]Pavlova I.V.,Dubovik E.L.,Kadyrov R.M. Anatomy of conductive system tissues of common buckwheat stalk[C]. Proceedings of the 10th international symposium on buckwheat. China: NORTHWEST A&F UNIVERSITY,2007,272-276
    [6]Taiji Adachi. Recent advances in overcoming breeding barriers in buckwheat[C]. Proceedings of the 9th international symposium on buckwheat. Prague : Research Institute of Crop Production Prague-Ruzyne,2004,22-25.
    [7]AII J.,M. Nagano,Campbell C.,et al. MolecuLar characterization of the S locus in buckwheat Abstract of the international symposium on plant[J]. SI.,Sept,17-18.
    [8]Wang Yingjie , Campell Clayton G. , Jiang Ping. Inheritance patterns for rutin content , self-compatibility,winged seeds,and seed shattering in hybrids between F.homotropicum Ohnishi and F. escuLentum Moench[C]. Prceedings of the 9th international symposium on buckwheat. Prague:Research Institute of Crop Production Prague-Ruzyne,2004,241-251.
    [9] Kojima M.,Arai Y.,Iwase N.,et al. Nozue. Development of a simple and efficient method for transformation of buckwheat plants (Fagopyrum escuLentum) using Agrobacterium tumefaciens[J]. BBB,64:845-847.
    [10] Ohnishi O. Discovery of new Fagopyrum species and its implication for the studies of evolution of Fagopyrum and of the origin of cuLtivated buckwheat[C]. Proceedings of the 6th international symposium on buckwheat,Japan,1995,155-169.
    [11]Adachi T. How to combine the reproductive system with biotechnology in order to overcome the breeding barrier in buckwheat?[J]. Fagopyrum,10:7-11.
    [12]Adachi T. Recent advances in overcoming breeding barriers in crop-focused on buckwheat research in Miyazaki[J]. Proc. IPBA,Rogla. Dec.,5-7,1994:1-8.
    [13]Shaikh N.Y.,Guan L.M.,Adachi T. Failure of fertilization associated with avsence of zygote development in the interspecific cross of Fagopyrum tataricum x F. escuLentum. Breed. Sci,2001,52: 9-13.
    [14]Shaikh N.Y.,Guan L.M.,Adachi T. ULtrastructural analysis on breeding barriers of interspecific hybridization in genus Fagopyrum[J]. Kinki Jour. of Crop and Breed,2001,46:37-45.
    [15]Shaikh N.Y.,Guan L.M.,Adachi T. ULtrastructural aspect on degeneration of embryo, endosperm and suspensor cells following interspecific crosses in genus Fagopyrum[J]. Breed. Sci,2002,52:171-176.
    [16]蒋俊芳,王敏浩. 荞麦花器外形结构和开花生物学特性的初步观察[J]. 中国荞麦科学研究论文集[C],1989,114-124.
    [17] Halbrecq B.,Ledent J. F. Evolution of flowering and ripening within inflorescence of buckwheat plants,Effect of reduction of sinks and seed setting of the two floral morphs[C]. Proceedings of the 9th international symposium on buckwheat. Prague : Research Institute of Crop Production Prague-Ruzyne,2004,433-439.
    [18]Taylor D.P.,Obendof R.L. Quantitative assessment of some factors limiting seed set in buckwheat[C]. Crop Science,2001,41:1792-1799.
    [19] Cawoy V.,Halbrecq B.,Jacquemart A.L.,et al. Genesis of grain yield in buckwheat (Fagopyrum EscuLentum Moench ) with a special attention to the low seed set[C]. Prceedings of the 10th international symposium on buckwheat. China:NORTHWEST A&F UNIVERSITY,2007,111-119.
    [20]Shin-ya K.,Naoto Inoue,Yasuyuki Ueda,et al. Heritability and variation of fertilization rate in common buckwheat[C]. Prceedings of the 10th international symposium on buckwheat. China: NORTHWEST A&F UNIVERSITY,2007,155-159.
    [21]Ohnishi O. Non-shattering habit gene (sht),chlorophyll-deficient and other detrimental genes concealed in natural popuLations of the wild ancestor of common buckwheat[J]. Fagopyrum,1999,16: 23-28.
    [22]Funatsuki H.,Maruyama-Funatsuki W.,Fujino K.,et al. Ripening habit of buckwheat[J]. Crop Sci, 2000,40:1103-1108.
    [23]Katsuhiro Matsui,Takahisa Tetsuka,Takahiro Hara. Two independent gene loci controlling non-brittle pedicels in buckwheat[J]. Euphytica,2003,134:203-208.
    [24]Wang YJ,Yang KL,Lu P,et al. Evaluation of tartary buckwheat germplasm from Tibet and their phylogenic study[J]. Buckwheat Trend,1996,1:14-21.
    [25]Wang YJ,Scarth R.,Campell C.G. Interspecific hybridization between Fagopyrum tataricum (L.) Gaertn. and F. escuLentum Moench[J]. Fagopyrum,2002,19:31-35.
    [26] Wang Yingjie,Campbell Clayton G. Tartary buckwheat breeding (Fagopyrum tataricum L. Gaertn.) through hybridization with its Rice-Tartary type[J]. Euphytica,2007,156:399-405.
    [27]Yuji Mukasa,Tatsuro Suzuki,Yutaka Honda. Hybridizaton between ‘rice’ and normal tartary buckwheat and huLl features in the F2 segregates[C]. Prceedings of the 10th international symposium on buckwheat. China:NORTHWEST A&F UNIVERSITY,2007,155-159.
    [28]柴岩,林汝法. 中国小杂粮[M]. 北京:中国农业出版社,2003.
    [29]Fesenko A.N.,Fesenko N.V. Use of blocked branching form in buckwheat breeding[C]. Prceedings of the 9th international symposium on buckwheat. Prague:Research Institute of Crop Production Prague-Ruzyne,2004,207-211.
    [30]Fesenko A.N.,Fesenko N.V. Effect of branching on realization of buckwheat plant’s productive potential[C]. Prceedings of the 9th international symposium on buckwheat. Prague:Research Institute of Crop Production Prague-Ruzyne,2004,237-240.
    [31]赵刚,唐宇. 秋水仙素诱导苦荞同源多倍体实验[C]. 中国荞麦科学研究论文集,1989,84-87.
    [32]Yamane Y. Induced differentiation of buckwheat plants from subcuLtured calluses in vitro[J]. Jpn. J. Genet. 1974,48:139-146.
    [33]Lachmann S.,Adachi T. Callus regeneration from hypocotyls protoplasts of tartary buckwheat (Fagopyrum tataricum Gaertn.)[J]. Fagopyrum,1990,10:62-64.
    [34]Srejovic V.,Neskovic M. Regeneration of plants from cotyledon fragments of buckwheat (Fagopyrum escuLentum Moench.) and perennial buckwheat (F. cyMeisn.)[J]. Jpn. J. Breed. 1981,38:409-413.
    [35]Mijus-Djukic J.,Neskovic M.,Nikovic S.,et al. Agrobacterium-mediated transformation and plant regeneration of buckwheat (Fagopyrum escuLentum Moench.)[J]. Plant Cell Tissue Organ CuLt,1992, 29:101-108.
    [36]Takahata Y. Plant regeneration from cuLtured immature inflorescence of common buckwheat (Fagopyrum escuLentum Moench.) and perennial buckwheat (F. cymosum Meisn.)[J]. Jpn. J. Breed, 1988,38:409-413.
    [37]Park Cheol-Ho,Sang-Lyung Lee,Chan-Sun,et al. Somatic embryogenesis and plant regeneration from leaf and stem explants of buckwheat[J]. Fagopyrum,1999,16:53-56.
    [38]Adachi T.,Yamaguchi A.,Miike Y.,et al. Plant regeneration from protoplasts of common buckwheat (Fagopyrum escuLentum). Plant Cell Rep,1989,8:247-250.
    [39]Bohanec B.,Neskovic M.,Vujicic R. Anther cuLture and androgenic plant regeneration in buckwheat (Fagopyrum escuLentum Moench.)[J]. Plant Cell Tissue Organ. CuLt,1993,35:259-266.
    [40]Woo S.H.,Takaoka M.,Kim H.S.,et al. Plant generation via shoot organogenesis from leaf callus cuLture of common buckwheat (Fagopyrum escuLentum Moench.)[C]. Prceedings of the 9th international symposium on buckwheat. Prague : Research Institute of Crop Production Prague-Ruzyne,2004,61-65.
    [41]王爱国. 荞麦属(Fagopyrum)植物组织培养及其总黄酮含量的研究[D]. 贵州师范大学,2006.
    [42]Suvorova G.N.,Fesenko A.N.,Fesenko M. N. Possibilities of micropropagation technique application in buckwheat breeding[C]. Prceedings of the 9th international symposium on buckwheat. Prague,2004,375-380.
    [43]王英英. 高黄酮苦荞突变体的筛选、诱变效应的研究及其品质的初步综合评价[D]. 山西农业大学,2004.
    [44]Shen Huifang,Guo Feng,Li Guozhu. Irradition effect of 60Co γ-rays on tartarian buckwheat[C]. Prceedings of the 10th international symposium on buckwheat. China : NORTHWEST A&F UNIVERSITY,2007,169-176.
    [45] Wang Yingjie,Clayton G. Campell. First report of male sterility in self-pollinating buckwheat[C]. Prceedings of the 10th international symposium on buckwheat. China : NORTHWEST A&F UNIVERSITY,2007,19-24.
    [46]Mukasa Y.,Suzuki T.,Honda Y. EmascuLation of tartary buckwheat ( Fagopyrum tatarium gaertn.)[J]. Euphytica,2007,107:9-12.
    [47]Mukasa Y.,Suzuki T.,Honda Y. EmascuLation of self-pollinating buckwheat using hot water[J]. Breeding research,2006,18:177-181.
    [48]张美莉,胡小松.荞麦生物活性物质及其功能研究进展[J]. 杂粮作物,2004,24(1):26-29.
    [49]Keda K. Buckwheat composition,chemistry,and processing [J]. Advabces in food nutrition research, 2002,44:395-434.
    [50]舒守贵,冯波,王涛. 荞麦种子的蛋白质研究[J]. 种子,2005,24(12):42-49.
    [51]米宏伟,杨小泉. 荞麦蛋白的研究进展[J]. Science and Technology of Food Industry,2005,26(8):186-189.
    [52]林汝法. 促进未被充分利用作物的保存利用以增加营养和收入[J]. 荞麦动态,2003,2:1-13.
    [53]Kayashita J., Shimaoka I.,Nakajoh M. Hypocholesterolemic effect of buckwheat protein extract in rats fed cholesterol enriched diets [J]. Nutr. Res.,1995,15:691-698.
    [54]张超. 苦荞麦蛋白质抗疲劳功能的研究[D]. 江南大学,2004.
    [55]张政,王转花,刘凤艳,等. 苦荞蛋白复合物的营养成分及其抗衰老作用的研究[J]. 营养学报,1991,21(2):159-163.
    [56]刘本国,朱永义. 生物类黄酮的研究与应用概况[J].粮食与饲料工业,2003,7:46-47.
    [57]罗庆林,邵继荣,胡建平,等. 荞麦中类黄酮的研究进展[J].食品研究与开发. 2008,29 (2):160-165.
    [58]陈春刚,韩芬霞. 生物类黄酮的研究与应用综述[J]. 安徽农业科学,2004,34(13):2949-2951.
    [59]李丹,肖刚,丁霄霖. 苦荞黄酮清除自由基作用的研究[J]. 食品科技,2000,(1):44-47.
    [60]钱建亚,Diemar M.,Manfred K. 荞麦精粉中的黄酮及其自由基清除活性[J]. 食品与发酵工业,1999,26(3):24-30.
    [61]张政,周源,王转花,等. 苦荞麦麸皮中类黄酮的抗氧化活性研究[J]. 2001,8(4):217-220.
    [62]汪德清,沈文梅,田亚平,等. 黄芪总黄酮对羟自由基所致哺乳动物细胞损伤的防护作用[J]. 中国中药杂志[J]. 1995,20(4):26-29.
    [63]罗光宏,陈天仁,祖廷勋,等. 苦荞生物类黄酮及其测定方法研究进展[J]. 食品科学,2005,26(9):542-545.
    [64]刘淑梅,韩淑英,等. 荞麦种子总黄酮对糖尿病高脂血症大鼠血脂、血糖及脂质过氧化的影响[J]. 中成药,2003,(8):662-663.
    [65]尹礼国,曾凡坤,钟耕,等. 荞麦生物类黄酮研究现状[J]. 粮食与油脂,2002,12:22-24.
    [66]辛力. 苦荞麦的性质研究及其产品研制[D]. 1999,中国农业大学.
    [67]唐宇,赵刚. 荞麦中黄酮含量的研究[J]. 四川农业大学学报. 2001,19(4):352-354.
    [68]Steadman J.K.,Burgoon S.M. Buckwheat seed milling fractions:description,macronutrient composition and dietary fibre[J]. J. Cereal Sci.,2001,(33):271-278.
    [69]Benguo L.,Yongyi Z. Extraction of flavonoids from flavonoid-rich parts in tartary buckwheat and identification of the main flavonoids. J. Food Eng.,2005,182-186.
    [70]Gorkova Irina Vyacheslavovna , Pavlavskaya Ninel Efimovna. Comparative characteristic of buckwheat genotype on ontogenesis flavonols accumulation[C]. Proceedings of the 9th international symposium on buckwheat,Prague:Research Institute of Crop Production Prague-Ruzyne,2004. 710-713.
    [71]赵玉平,肖春玲. 苦荞麦不同器官总黄酮含量测定及分析[J]. 食品科学. 2004,25(10):264-266.
    [72]韩志萍,曹艳萍. 甜荞麦不同部位总黄酮含量测定[J]. 食品研究与开发. 2005,26(3):147-148.
    [73]郑淑芳. 苦荞麦中黄酮成分剖析[J]. 食品工程. 2007,2:55-56.
    [74]张怀珠,郭玉蓉,牛黎莉,等. 荞麦不同生长期黄酮含量的动态研究[J]. 食品工业科技. 2006,27(8):71-73.
    [75]王玉珠,张萍,李红宁,等. 十种栽培苦荞麦生物类黄酮含量的比较研究[J]. 食品研究与开发,2007,128(9):121-123.
    [76]Andrea Brunori,Gyorgy Vegvari. Variety and location influence on the rutin content of the grain of buckwheat ( Fagopyrum EscuLentum Moench. And Fagopyrum Tataricum Gaertn. ) grown in centraland southern Italy[C]. Proceedings of the 10th international symposium on buckwheat,China: NORTHWEST A&F UNIVERSITY,2007,349-357.
    [77]文平. 荞麦籽粒芦丁与蛋白质含量的基因型与环境效应研究[D]. 2005,浙江大学.
    [78]刘三才,李为喜,刘方,等. 苦荞麦种质资源总黄酮和蛋白质含量的测定与评价[J]. 植物遗传资源学报,2007,8(3):317-320
    [79]Li Faliang,Cao Jixiang,Suping,et al. Study o content of amicno acid, nutrition and total flavonoid of tartary buckwheat in different ecological environment[C]. Proceedings of the 10th international symposium on buckwheat, China:NORTHWEST A&F UNIVERSITY,2007,394-397.
    [80]Chai Yan,Feng Baili,Hu Yingang,et al. Analysis on the variation of rutin content in different buckwheat genotypes[C]. Proceedings of the 9th international symposium on buckwheat, Prague: Research Institute of Crop Production Prague-Ruzyne,2004,688-691.
    [81]Byoung Jae Park,Jong In Park,Kwang Jin Chang,et al. Comparison in rutin content in seed and plant of tartary buckwheat ( Fagopyrum tataricum)[C]. Proceedings of the 9th international symposium on buckwheat,Prague:Research Institute of Crop Production Prague-Ruzyne,2004. 626-629.
    [82]Sunlim K.,HanBum L. Effect of light source on organic acid,sugar and flavonoid concentration in buckwheat[J]. J. Crop Sci.,2002,163 (3):417-423.
    [83]Kreft S.,Strukelj B.,Gaberscik A.,et al. Rutin in buckwheat herbs grown at different UV-B radiation levels:comparison of two UV spectrophotometric and HPLC method[J]. J. Expe. Bot.,2002,53: 1801-1804.
    [84]Tatsuro Suzuki,Yutaka Honda,Yuji Mukasa. Effects of UV-B radiation,cold and sesiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrim tataricum) leaves[J]. Plant Sci.,2005,168:1303-1307.
    [85] Yao Yinan,Xuan Zuying,Yuan Li,et al. Effect of uLtraviolet-B radiation on crop growth,development, yield and leaf pigment concentration of tartary buckwheat ( Fagopyrum tataricum) under field conditions[J]. Europ. J. Agronomy,2006,25:215-222.
    [86]Kwang Jin Chang,Jong In Park,Byoung Jae Park,et al. Effects of planting density and fertilization on yield and rutin content in Tartary Buckwheat[C]. Proceedings of the 10th international symposium on buckwheat,China:NORTHWEST A&F UNIVERSITY,2007,329-333.
    [87]Ohsawa R.,Tsutumi T. Inter-varietal variations of rutin cotent buckwheat flour (Fagopyrum escuLentum Moench)[J]. Euphytica,1995,86:183-189.
    [88] Kalinava J.,Dadakova E. Varietal differences of rutin in common buckwheat (Fagopyrum escuLentum Moench.) determined by mocellar electrokinetic capillary chromatography[C]. Proceedings of the 9th international symposium on buckwheat, Prague:Research Institute of Crop Production Prague-Ruzyne, 2004,719-721.
    [89]Carmen Coronado,Jose Angelo Silviera Zuanazzi,Christophe Sallaud,et al. Alfalfa root flavonoid production is nitrogen reguLated [J]. Plant Physiol,1995,(108):533-542.
    [90]肖诗明. 加工方法对苦荞麦粉营养成分影响的研究[J]. 粮食与饲料工业,1999,(1):48-49.
    [91]Zhang Li,Li Zhixi,Gong Fengqiu. Effects of traditional processing mwthods on nutrition and functional characteristics of buckwheat products[C]. Proceedings of the 10th international symposium on buckwheat,China:NORTHWEST A&F UNIVERSITY,2007,427-432.
    [92]王改玲,周 乐,梁 冉,耿会玲.不同提取提取条件对苦荞籽粒中芦丁降解的影响[J]. 西北植物学报 2005,25(5):1035-1038.
    [93]Myung Heno Lee,Jung Sun Lee,Tae Heon Lee. Germination of buckwheat grain:Effect on minerials,rutin,tannins and colour[C]. Proceedings of the 9th international symposium on buckwheat, Prague:Research Institute of Crop Production Prague-Ruzyne,2004,50-54.
    [94]Sun-Lim Kim,Sung-Kook Kim,Cheol-Ho Park. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable[J]. Food Research International,2004,(37):319-327.
    [95]张美莉. 萌发荞麦种子内黄酮与蛋白质的动态变化及抗氧化性研究[D]. 2004, 中国农业大学.
    [96]欧阳平,张高勇,康保安. 类黄酮提取的基本原理、影响因素和传统方法[J]. 中国食品添加剂,2003,5:54-57.
    [97]张岩,曹国杰,张燕. 黄酮类化合物的提取以及检测方法的研究进展[J].食品研究与开发,2008,28(1):157-159.
    [98]祝玲,叶曼红. 微波辅助萃取银杏叶中的黄酮类物质的研究[J]. 化工之友,2006,8:11-12.
    [99] 王娟. 葛根有效成分微波辅助萃取研究[J]. 中国医药工业杂志,2002,33(8):382-384.
    [100]王娟,沈平姐. 微波辅助萃取葛根中有效成分的研究[J]. 中国药科大学学报,2003,23(5):379.
    [101]马海乐,王超. 葛根总黄酮微波辅助萃取技术[J]. 江苏大学学报,2005,26(2):100-101.
    [102]范志刚. 微波技术对雪莲中黄酮浸出量影响的研究[J]. 中国民族医药杂志,2000,6(1):43-44.
    [103]李怡彬,郑明初,郑宝东. 竹叶黄酮微波提取工艺的研究[J]. 农产品加工.学刊,2006,52:48-50.
    [104]戴玉锦,卢明,冯玲. 微波法从柚皮中提取黄酮类化合物的工艺研究[J]. 江苏农业科学,2006,(1):121-123.
    [105]孙志萍. 大车前叶中总黄酮的微波提取及含量测定[J]. 现代中药研究与实践,2003,17(1):48-49.
    [106]颜流水,黄智敏,胡臻恺,等. 藜蒿中黄酮类化合物的微波辅助萃取研究[J]. 分析试验室,2006,25(3):66-69.
    [107]王军,王敏,李小艳. 微波提取苦荞麦麸皮总黄酮工艺研究[J]. 天然产物研究与开发. 2006,18(627):655-658.
    [108]安守强,李瑞国,梁成真,等. 微波提取苦荞籽粒总黄酮最佳工艺的研究[J]. 安徽农业科学. 2007,35(10):2833-2834.
    [109]王晓等. 酶法提取山楂叶中总黄酮的研究[J]. 食品工业科技,2002,23(3):37-40.
    [110]奚奇辉,李士敏. 纤维素酶在竹叶总黄酮提取中的应用[J]. 中草药,2004,35(2):66-67.
    [111]蔡健,华景清,王薇,等. 黄酮提取工艺研究进展[J]. 淮阳工学院学报,2003,12(5):82-84.
    [112]郁建平,何照范,熊绿芸,等. 大孔吸附树脂提取荞麦芦丁工艺研究 贵州农业科学[J]. 1997,25(2):3-8
    [113] 哈本 J.B. 黄酮类化合物[M]. 北京:科学出版社,1983,53-70.
    [114]魏永生,王永宁,石玉平,等.分光光度法测定总黄酮含量的实验条件研究[J]. 2003,21(3):61-63.
    [115]朱友春,田世龙,王东晖. 比色法测定苦荞中黄酮含量的方法改进[J].甘肃科技 2003,19(2):13-14.
    [116]曾凡骏,陈松波,曾里,等.一种改进的银杏黄酮紫外分光光度检测方法的研究. 食品科学. 2003,24(11):102-104.
    [117]徐宝才,丁霄霖. 苦荞黄酮的测定方法[J]. 无锡轻工大学学报,2003,(2):98-101.
    [118]郭玉蓉,韩舜愈. 荞麦黄酮类化合物的提取分离及结构鉴定[J]. 2004,(11):131-134.
    [119]韩淑英,王树华,刘江,等. HPLC 测定荞麦中芦丁的含量[J]. 华西药学杂志,2007,22(3):335-336.
    [120]Osborne T.B. The vegetable proteins,2nd ed. London:Longmans Green,1924.
    [121]Pomeranz Y.,Marshall H.G.,Robbins G.S.,et al. Protein content and amino acid composition of maturing buckwheat (Fagopyrum escuLentum Moench) [J]. Ceral Chem.,1975,52:479-485.
    [122]Javomik B.,Eggum B.,Kreft I. Studies on protein fractions and protein quality of buckwheat[J]. Genetika,1981,13:115-121.
    [123]李丹,丁霄霖. 荞麦生物活性成分的研究进展——荞麦蛋白质的结构、功能及食品利用[J]. 西部粮油科技,2000,25(5):30-33.
    [124]Feliciano P.B.,Harold C. Properties of protein concentrates and hydrolysates from Amaranthus and buckwheat [J]. Industrial crop and products, 1999, 10: 175-183.
    [125]杨继民,郭柏寿,陈鹏. 荞麦种子蛋白质研究[J]. 陕西农业科学,2001,(9):4-5.
    [126]Kayashita J.,Shimaoka I., Nakajob M. Hypocholesterolemic effect of buckwheat protein extract in rails fed cholesterol enrichied diets[J]. Nutrition Research,1995,(15):691-698.
    [127]Urisa A,Kondo Y,Morita Y,et al. Isolation and characterization of a major allergen in buckwheat seeds[C]. Matsumoto Shinshu University Press,1995:965-974.
    [128]Nevo E.,et al. Microgeographic edaphic differentiation in horde in polymorphisms of wild barley[J]. Theoretical and applied genetics,1983,64:123-132.
    [129]李建辉,陈庆富. 荞麦种子蛋白质亚基研究的现状及展望[J]. 种子,2007,26(7):47-50.
    [130]Mitsunaga T.,Matsuda M.,Shimizu M.,et al. Isolation and properties of a thiamine-binding protein from buckwheat seed[J]. Cereal Chemistry,1986,(63):332-335.
    [131]Rapala-kozik M.,Kozik A. Mechanism of ligand protein interaction in plant seed thiamine-binding protein-preliminary chemical identification of amino acid residues essential for thiamin binding to the buckwheat seed protein [J]. Biochemistry,1996,78 (2):77-84.
    [132]刘冬生,徐若英,汪青青. 荞麦中蛋白质含量及其氨基酸组成的分析研究[J]. 作物品种资源,1997,(2):26-28.
    [133]张雄,柴岩,尚爱军. 播期对荞麦籽粒蛋白质及其组分含量的影响[J]. 荞麦动态, 2001,1:11-13.
    [134]Grazyna Podolska,Iwona Konopka,Jerzy Dziuba. Response of grain yield,yield components and allergic protein content of buckwheat to drought stress[C]. Proceedings of the 10th international symposium on buckwheat,China:NORTHWEST A&F UNIVERSITY,2007,323-328.
    [135]张美莉,赵广华,胡小松. 萌发荞麦种子蛋白质组分含量变化的研究[J]. 中国粮油学报. 2004,19(4):35-37.
    [136]刘邻渭,陶健,毕磊. 双缩脲法测定荞麦蛋白质[J]. 食品科学,2004,25(10):258-261.
    [137]Bejosano F.P.,Corke H. Properties of protein fractions and protein quality of buckwheat[J]. Industrial Crops and Products,1999,10:175-183.
    [138]Siu-MeiChoi,YoshinoriMine,Ching-YungMa. Characterization of heat-induced aggregates ofglobuLin from Common buckwheat (Fagopyrum escuLentum Moench) [J]. International Journal of Biological MacromolecuLes,2006,39:201-209.
    [139]Radovic S.R. 2S albumin from buckwheat (Fagopyrum escuLentum Moench) seeds [J]. J. Agric. Food Chem.,1999,47,1467-1470.
    [140]Rout M. K.,Chrungoo N.K. Amino acid sequence of the 26kDa subunit of legumin-type seed storage protein of common buckwheat (Fagopyrum escuLentum Moench)[J]. Phytochemistry,1997,45 (3): 865-867.
    [141]Bharali S.,Chrungoo N. K. Amino acid sequence of the 26kDa subunit of legumin-type seed storage protein of common buckwheat ( Fagopyrum escuLentum Moench):molecuLar characterization and phylogenetic analysis[J]. Phytochemistry,2003,63:1-5.
    [142]Milisavljevic M. D.,Timotijevic G. S.,Radovic S. R.,et al. Vicilin-like storage globuLin from buckwheat (Fagopyrum escuLentum Moench) seeds[J]. Agric Food Chem,2004,52:5258-5262.
    [143]Nishida, Tamami. Comparison of the polypeptide components and amino acid composition between protein fraction[J]. Nippon Kasei Gakkaishi,1995,46 (8):73.
    [144]李志西,魏益民. 荞麦籽粒谷蛋白亚基结构研究初探[J]. 中国粮油学报,1993,8(4):11-14.
    [145]胡志昂,王洪新. 蛋白质多样性和品质鉴定[J]. 植物学报,1991,33:556-564.
    [146]李建辉,陈庆富. 荞麦种子蛋白质亚基研究的现状及展望[J]. 种子,2007,26(7):47-51.
    [147]王晶,肖安红. 小麦中麦谷蛋白亚基组成及其含量与面粉品质关系的研究进展[J]. 武汉工业学 院学报,2007,26(4):33-37.
    [148]Ladizinsky G.,Hymowitz T. Seed protein electrophoresis in taxonomic and evolutionary studies[J]. Theoretical and Applied Genetics,1979,(54):145-151.
    [149]杜月红,于永涛,石云素,等. 应用 A-PAGE 技术研究玉米自交系资源种子蛋白的遗传多样性[J]. 植物遗传资源学报,2007,8(4):430-435.
    [150]官玲亮,吴卫,郑有良,等. 油用型红花(Carthamus tinctoris L)种子醇溶蛋白遗传多样性分析[J].种子,2007,26(4):6-10.
    [151]牛吉山,梁清志,朱利霞. 119 份小麦种质资源醇溶蛋白遗传多样性分析[J]. 西北植物学报,2008,28(1):78-84.
    [152]Tomotake H.,Shimaoka I,Kayashita J.,et al. Physicochemical and functional properties of buckwheat protein product[J]. Agri Food Chem,2002,50:2125-2129.
    [153]Zheng G. H.,SosuLski F.W.,Tyler R.T. Wet-milling,composition and functional properties of starch and protein isolated from buckwheat groats [J]. Food Res Internatioanl,1998,30 (7):493-502.
    [154]陶健,毛立新,杨小姣,等.荞麦蛋白的功能特性研究[J]. 中国粮油学报,2005,20 (5):46-50.
    [155]Choi H.S.,Sohn K.Y. The study on emuLsifying and foaming properties of buckwheat protein isolate[J]. Journal of Korean Society of Food Science, 1995, 9 (1): 43-51.
    [156]曾凡骏,陈松波,曾里,等. 一种改进的银杏黄酮紫外分光光度检测方法的研究[J]. 食品科学,2003,24(11):102-105.
    [157]Friedrich J. Zeller, Heidi Weishaeupl, Sai L.K.Hsam. Identification and genetics of buckwheat seed storage protein [J]. Advances in Buckwheat Research,2004,195-201.
    [158]邓妙,魏益民. 蛋白质组分的连续累进提取分析法[J]. 西北农业大学学报,1989,17(1):110-113.
    [159]陈景堂,祝丽英,宋占权,等. 玉米种子清蛋白和球蛋白 PAGE 比较分析[J]. 玉米科学,2002,10 (2):27-29.
    [160]朱新开,周君良,封超年,等. 不同类型专用小麦籽粒蛋白质及其组分含量变化动态差异分析[J]. 作物学报,2005,31(3):342-347.
    [161]荆奇,姜东,戴延波,等. 基因型与生态环境对小麦籽粒品质与蛋白质组分的影响[J],应用生态学报. 2003, 14 (10):1649-1653.
    [162]吴承来,张春庆,李盛福,等. 不同发育时期玉米种子蛋白质组分分析[J]. 玉米科学,2004,12(2):69-70.
    [163]赵宏伟,邹德堂. 氮素用量对玉米籽粒蛋白组分形成积累的影响[J]. 农业现代化研究,2007,28(6):760-762.
    [164]邓志英,田纪春,刘现鹏. 不同高分子量谷蛋白亚基组合的小麦籽粒蛋白组分及其谷蛋白大聚合体的积累规律[J]. 作物学报,2004,30(5):481-486.
    [165]苏佩,蒋纪芸. 小麦籽粒蛋白积累规律研究简报[J]. 西北农业大学学报,1992,20(3):59-63.
    [166]王有庆,马辉,朱慧琴,等. 西宁地区春小麦蛋白含量及其组分变化[J]. 青海农林科技,1998, 2:15-27.
    [167]Kwang Jin Chang,Jong In Park,Byoung Jae Park, et al. Effects of planting density and fertilization on yield and rutin content of buckwheat in Tartary buckwheat[C]. Proceedings of the 10th international symposium on buckwheat, China:NORTHWEST A&F UNIVERSITY,2007,329-333.
    [168]藏小云,刘丽萍,蔡庆生. 不同供氮水平对荞麦茎叶中黄酮含量的影响[J]. 南京农业大学学报, 2006,29(3):28-32.
    [169]Carmen Coronado,Jose Angelo Silviera Zuanazzi,Christophe Sallaud,et al. Alfalfa root flavonoid production is nitrogen reguLated [J]. Plant Physiol,1995,(108):533-542.
    [170]Wojtaszek P.,Stobiecki M.,GuLewicz K. Role of nitrogen and plant growth reguLators in the exudation and accumuLation of isoflavonoids by roots of intact white lupin (Lupinus albus L.) plants[J]. J Plant Physiol,1993,142:689-694.
    [171]牛波,冯美臣,杨武德. 不同肥料配比对荞麦产量和品质的影响[J]. 陕西农业科学,2006 (2):8-10.
    [172]Sun-Hee Woo,Min-Hwa Park,et al. Proteome approach as a tool for the efficient separation of seed storage proteins from buckwheat[J]. Advances in buckwheat research,2007,205-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700