应用基因组改组技术选育真菌α-淀粉酶高产菌株
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以实验室保藏的米曲霉FS-16为原始出发菌株,通过传统诱变方法构建正突变库。通过致死曲线的测定,确定紫外诱变照射剂量为160s,微波诱变辐射剂量为25s。出发菌株分别经紫外诱变、微波诱变,采用淀粉平板透明圈初筛、液体发酵复筛,最终从2000多个突变株中筛选到α-淀粉酶产量较高稳定性较好的突变株FU-8、FU-26、FW-111及FW-130。
     通过单因素实验获得米曲霉原生质体制备和再生的最佳条件:菌龄15h,酶解温度28℃、裂解时间2.5h、0.6mol/L NaCl作为渗透压稳定剂,含0.6mol/L NaCl的PDA培养基为再生培养基。通过响应面分析法对破壁酶系统进行研究,获得最佳酶系组成为:蜗牛酶0.8%、纤维素酶0.8%、溶菌酶0.5%。
     通过米曲霉原生质体灭活实验得出,用紫外线处理180S或热处理12min,米曲霉原生质体即可达到100%灭活;原生质体融合条件研究表明最适融合条件为:PEG30%,Ca2+0.02mol/L,融合时间10min,融合温度30℃。以原始菌株FS-16和诱变筛选出的突变株FU-8、FU-26、FW-111及FW-130作为亲本,采用基因组改组技术,经过三轮递推式融合后筛选得到一株能够稳定遗传的改组菌株F3-542,其酶活较原始菌株提高了61.5%,发酵周期也相对缩短了24h,达到了选育高产菌株的目的。
     对改组菌株F3-542的发酵条件进行优化,首先通过单因素实验可知最佳碳源为玉米粉,最佳有机氮源为牛肉膏,最佳无机氮源为硝酸钠。最适培养条件为:初始pH值为6;接种量为10%;装液量为50mL/250mL三角瓶。通过均匀设计法对培养基配方进行进一步优化,获得它们的最佳组合(g/L):玉米粉56,牛肉膏26,NaNO34.5,K2HP041.4,MgS041.5,FeS040.005。整体优化后,改组菌F3-542从最初酶活力为3920U/mL提高至5147.5U/mL,比最初酶活力提高了31.3%。
Original strain Aspergillus oryzae FS-16 preserved in our laboratory was treated with ultraviolet and microwaves radiation. The mutation conditions were as follows, UV for 160s and microwaves for 25s. Prescreening method was starch plate hydrolysis spot method. Rescreening method was liquid fermentation. The mutant strains with high yield, namely FU-8、FU-26 were obtained by UV mutagenesis and the mutant strains named FW-111, FW-130 were obtained by microwave irradiation
     Through single factor test, the optimized conditions for protoplast preparation and regeneration were as follows:the cells being cultured for 15 h, incubation at 28℃for 2.5h to allow cell wall lysis; 0.6 mol/L NaCl as osmotic stabilizer, and PDA plate with 0.6mol/L NaCl for regeneration. Through the response surface analysis method, the optimized enzyme composition for breaking cell wall was as follows:0.8% cellulose, 0.8% snailase and 0.5% lysozyme.
     The protoplast inactivation methods were determined to be ultraviolet irradiation for 180s and heat treatments for 12 min. The effects of the PEG concentration, the Ca2+ concentration, the fusion time and temperature on protoplast fusion were studied. The fusion was undergone in the fusion system of 30% PEG containing 0.02mol/L Ca2+ and processed for 10 min at 30℃
     The four strains we obtained from UV and microwaves mutation and FS-16 preserved in our lab were selected as parent strains for genome shuffling. After three cycles of recursive protoplast fusion, a shuffled strain named F3-542 was selected. The productionα-amylase activity of F3-542 was increased 61.5% more than that of FS-16. At the same time, the fermentation period was relatively shortened 24h. The results of continues culture and liquid fermentation showed the strains had stable hereditary property. On the whole the breeding purpose was achieved successfully.
     The primary studies on fermentation performance of the strain F3-542 was carried out.Through single factor test, the result showed that the best carbon was corn flour, the optimum nitrogen were beef extract and NaNO3; the best fermentation conditions were obtained based on the single factor test, it showed the optimal amount of inoculation was 10%, the optimum initial pH was 6 and the optimal liquid volume were 50mL culture in 250mL shake flasks.The uniform design study showed that optimal fermentation medium components (g/L) were corn flour 56,beef extract 26, NaNO3 4.5, K2HPO4 1.4, MgSO4 1.5, FeSO4 0.005. After the optimization, the activity of F3-542 was up to 5147.5U/mL, of which was increased 31.3% more than the activity before optimization.
引文
[1]王镜岩.生物化学(上册)[M].北京:高等教育出版社,2002,41-43.
    [2]张树政.酶制剂工业(上册)[M].北京:科学出版社,1998,458-489.
    [3]T H. Handbook of applied mycology:fungal biiotech-nology(Vol 4)[M]. New York:Marcel Dekker,1991.158-210.
    [4]Windish.W.W, Mhatre.N.S. Microbial amylases[J]. Adv Appl.Microbiol.1965, 7:273-304.
    [5]Pandey A, Nigam P, Soccol C, et al. Advances in microbial amylases[J]. Biotechnology and Applied Biochemistry.2000,31(2):135-152.
    [6]谷军.α-淀粉酶的生产与应用[J].生物技术.1994,4(3):1-5.
    [7]Colonna P, Buleon A, Lemarie F. Action of Bacillus subtilis a-amylase on native wheat starch[J]. Biotechnology and bioengineering.1988,31(9):895-904.
    [8]WARNER DA, GROVE MJ, KNUTSON CA. Isolation and characterization of a-amylases from endosperm of germinating maize[J]. Cereal Chem.1991,68:383.
    [9]P B. Meth Enzymol[M]. New York:Academic Press.Inc,1955.135-203.
    [10]史永昶,姜涌明.五种α—淀粉酶测活方法的比较研究[J].微生物学通报.1996,23(006):371-373.
    [11]胡学智.酶制剂工业[M].北京:科学出版社,1984,481-487.
    [12]Yoo YJ, Hong J, Hatch RT. Comparison of a?amylase activities from different assay methods[J]. Biotechnology and bioengineering.1987,30(1):147-151.
    [13]Fuwa H. A new method for microdetermination of amylase activity by the use of amylose as the substrate[J]. Journal of Biochemistry.1954,41(5):583.
    [14]Onishi H, Hidaka O. Purification and properties of amylase produced by a moderately halophilic Acinetobacter sp[J]. Canadian Journal of Microbiology. 1978,24(9):1017-1023.
    [15]Markovitz A, Klein HP, Fischer EH. Purification, crystallization, and properties of the [alpha]-amylase of Pseudomonas saccharophila[J]. Biochimica et biophysica acta.1956,19:267-273.
    [16]C A. Springer Handbook of Enzymes[M]. New York:Springer-Verlag Berlin Heidelberg New York,2003.325-339.
    [17]孔显良,王俊英.α-淀粉酶的研究与应用[J].工业微生物.1989,16(5):282-287.
    [18]Fischer EH. Stein,E8-A-Amylase[M]. New York:Acadomic Press,1960.92-121.
    [19]袁铁铮.两种酸性耐热α-淀粉酶的表达研究.[中国农业科学院硕士论文],2006,4-5.
    [20]Ramesh HP, Tharanathan RN. Carbohydrates-the renewable raw materials of high biotechnological value[J]. Critical reviews in biotechnology.2003,23(2):149-173.
    [21]Gupta R, Gigras P, Mohapatra H, et al. Microbial [alpha]-amylases:a biotechnological perspective[J]. Process Biochemistry.2003,38(11):1599-1616.
    [22]Agger T, Spohr AB, Nielsen J. a-Amylase production in high cell density submerged cultivation of Aspergillus oryzae and A.nidulans[J]. Applied microbiology and biotechnology.2001,55(1):81-84.
    [23]Viniegra-Gonzalez G, Favela-Torres E, Aguilar CN, et al. Advantages of fungal enzyme production in solid state over liquid fermentation systems[J]. Biochemical Engineering Journal.2003,13(2-3):157-167.
    [24]姜锡瑞.酶制剂应用手册[M].北京:中国轻工业出版社,1999,35-68.
    [25]刘仲敏,郭士军,薛永梅,et al.真菌α·淀粉酶高产菌株的诱变选育研究[J].河南科学.2007,25(002):243-246.
    [26]刘仲敏,郭士军,薛永梅,et al.真菌α-淀粉酶固态发酵工艺及酶学性质研究[J].河南科学.2008,26(002):177-180.
    [27]刘仲敏,郭士军,薛永梅,et al.真菌α-淀粉酶制剂的提纯及保存方法[J].食品与发酵工业.2006,32(001):41-44.
    [28]李勃,卫拯友,党永.耐酸性α-淀粉酶高产菌株的选育[J].微生物学杂志.2007,27(004):46-49.
    [29]Outtrup H, K A. Proceedings of the First Intersectional Congress of IAMS[J]. Science Council of Japan.1975,5:204-209.
    [30]张文学,刘春莉,蒋宏.利用原生质体融合和诱变育种技术选育高酶活菌株[J].四川大学学报:工程科学版.2003,35(006):66-70.
    [31]王建华,赵学慧.曲霉种间原生质体融合改良产淀粉酶能力的研究[J].华中农业大学学报.2007,26(005):642-645.
    [32]Gupta A, Gautam S. Improved production of extracellular a-amylase, by the thermophilic fungusMalbranchea sulfurea, following protoplast fusion[J]. World Journal of Microbiology and Biotechnology.1995,11(2):193-195.
    [33]曾庆梅,魏春燕,靳靖,et al. 黑曲霉酸性α-淀粉酶基因的克隆及其在毕赤酵母中的表达[J].
    [34]王海燕,秦浚川,王敖全,et al.黑曲霉酸性α.淀粉酶基因和糖化酶基因对工业酒精酵母的整合及其共表达[J].微生物学报.2004,44(004):483-486.
    [35]刘春莉,张文学.特殊α—淀粉酶的应用研究现状和前景展望[J].四川食品与发酵.2002,38(004):5-9.
    [36]Nagamine K, Murashima K, Kato T, et al. Mode of a-amylase production by the shochu koji mold Aspergillus kawachii[S]. Bioscience, biotechnology, and biochemistry.2003,67(10):2194-2202.
    [37]Palva I, Pettersson RF, Kalkkinen N, et al. Nucleotide sequence of the promoter and NH2-terminal signal peptide region of the [alpha]-amylase gene from Bacillus amyloliquefaciens[J]. Gene.1981,15(1):43-51.
    [38]Stemmer WP. DNA shuffling by random fragmentation and reassembly:in vitro recombination for molecular evolution[J]. Proceedings of the National Academy of Sciences of the United States of America.1994,91(22):10747.
    [39]Stemmer WPC. Rapid evolution of a protein in vitro by DNA shuffling[J]. Nature. 1994,370(6488):389-391.
    [40]Zhang YX, Perry K, Vinci VA, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria[J]. Nature.2002,415(6872):644-646.
    [41]Patnaik R, Louie S, Gavrilovic V, et al. Genome shuffling of Lactobacillus for improved acid tolerance[J]. Nature biotechnology.2002,20(7):707-712.
    [42]Stephanopoulos G Metabolic engineering by genome shuffling[J]. Nature biotechnology.2002,20(7):666-668.
    [43]Stemmer WPC. Molecular breeding of genes, pathways and genomes by DNA shuffling[J]. Journal of Molecular Catalysis B:Enzymatic.2002,19:3-12.
    [44]张彭湃.微生物菌种选育技术的发展与研究进展[J].生物学教学.2005,30(009):3-5.
    [45]欧阳平凯.发酵工程关键技术及其应用[M].化学工业出版社,2005,51-149
    [46]施巧琴.工业微生物育种学[M].北京:科学出版社,2003,125-348.
    [47]Ferain T, Garmyn D, Bernard N, et al. Lactobacillus plantarum ldhL gene: overexpression and deletion[J]. Journal of bacteriology.1994,176(3):596.
    [48]朱惠.纳他霉素产生菌基因组重排育种.[浙江大学硕士论文].2006,13-21.
    [49]梁惠仪,郭勇.全基因组重排育种技术提高豆豉纤溶酶菌产酶量[J].中国生物工程杂志.2007,27(10):39-43.
    [50]徐波,王明蓉.应用基因组重排育种新方法筛选替考拉宁高产菌[J].中国抗生素杂志.2006,31(4):237-242.
    [51]Dai MH, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723[J]. Applied and environmental microbiology.2004,70(4):2391.
    [52]林峻,施碧红,施巧琴,et al.基因组改组技术快速提高扩展青霉碱性脂肪酶产量[J].生物工程学报.2007,23(004):672-676.
    [53]陈涛,王靖宇,周世奇,et al.基因组改组及代谢通量分析在产核黄素Bacillus subtilis性能改进中的应用[J].化工学报.2004,55(011):1842-1848.
    [54]郑佐兴.米曲霉和黑曲霉营养缺陷型的分离及原生质体的制备[J].工业微生物.1994,24(1):18-20.
    [55]李铁,臧威,刘井权,et al.米曲霉沪酿3.042原生质体制备和再生的研究[J].中国酿造.2007,(002):19-22.
    [56]孙剑秋,周东坡.微生物原生质体技术[J].生物学通报.2002,37(007):9-11.
    [57]李武军,郑幼霞.赤霉素产生菌藤仓赤霉原生质体的形成和再生[J].真菌学报.1992,11(003):221-228.
    [58]王立洪,杨土风,杨涛,et al.平菇原生质体的高效制备及再生优化条件[J].应用与环境生物学报.2008,14(003):351-355.
    [59]诸葛健.工业微生物育种学[M].北京:化学工业出版社,2006,235-331.
    [60]Kao K, Michayluk MR. A method for high-frequency intergeneric fusion of plant protoplasts[J]. Planta.1974,115(4):355-367.
    [61]王岳五,宋林生.电融合技术选育能利用木糖和纤维二糖生产乙醇的菌株[J].生物工程学报.1992,8(001):82-86.
    [62]辛明秀,蒋亚平.米曲霉原生质体融合及杂合二倍体的形成[J].微生物学通报.1994,21(003):143-148.
    [63]Grosser J, Gmitter Jr F. Protoplast fusion and citrus improvement[J]. Plant Breeding Reviews.1990,8:339-374.
    [64]Hopwood DA, Wright HM, Bibb MJ, et al. Genetic recombination through protoplast fusion in Streptomyces[J].1977.
    [65]孙剑秋,周东坡,平文祥.灭活微生物原生质体融合的研究进展[J].中国医学生物技术应用杂志.2002,2:29-32.
    [66]张颖.谢氏丙酸杆菌维生素B12代谢途径基因组改组.[中山大学硕士论文].2009,9-10.
    [67]朱林东.普那霉素产生菌基因组重排育种.[浙江大学硕士论文].2006,20-22.
    [68]平文祥,周东坡.微生物原生质体融合[M].哈尔滨:黑龙江科学技术出版社,1900,211-245.
    [69]陈坚,李寅.发酵过程优化原理与实践[M].北京:化学工业出版社,2002,32-65.
    [70]Uitdehaag JCM, Mosi R, Kalk KH, et al. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the a-amylase family[J]. Nature Structural & Molecular Biology.1999,6(5):432-436.
    [71]张强.耐高温α-淀粉酶产生菌的分离鉴定及发酵条件与酶学性质研究.[四川大学硕士论文].2005,66-67.
    [72]张强.耐高温a-淀粉酶产生菌的分离鉴定及发酵条件与酶学性质研究[J].食品与发酵工业.2005,32(2):32-37.
    [73]李江华,房峻.真菌α-淀粉酶产生菌的筛选及其固态发酵条件的初步研究[J].食品科学.2007,28(011):373-378.
    [74]陈坚.微生物重要代谢产物--------发酵生产与过程解析[M].北京:化学工业出版社,2005,14-23.
    [75]肖怀秋,李玉珍.微生物培养基优化方法研究进展[J].酿酒科技.(001):90-94.
    [76]王继韶,李颖.常用实验设计与优化方法及其在发酵实验中的应用[J].实验室科学.2007,(001):60-62.
    [77]任露泉.试验优化设计与分析[M].北京:高等教育出版社,2003,9-25.
    [78]曾昭均.均匀设计及其应用[M].沈阳:辽宁人民出版社,2003,10-36.
    [79]方开泰.均匀设计与均匀设计表[M].科学出版社,1994.17-130.
    [80]Liu D, Wang P, Li F, et al. Application of uniform design in L-isoleucine fermentation[J]. Chinese journal of biotechnology.1991,7(3):207.
    [81]Wang FQ, Gao C J, Yang CY, et al. Optimization of an ethanol production medium in very high gravity fermentation[J]. Biotechnology letters.2007,29(2):233-236.
    [82]胡爱红,莫章桦.GL-7-ACA酰化酶发酵培养基的均匀优化设计[J].生命科学研究.2004,8(001):89-91.
    [83]陶勇卜,龙章富,金虹,et al.均匀设计法对产几丁质酶细菌C4发酵条件的优化[J].生物技术.2004,14(006):44-46.
    [84]孙利芹,林剑,王长海,et al.洋通报.2004,23(006):66-70.均匀设计在紫球藻培养基优化中的应用[J].海
    [85]潘力,梁燕嫦,苗小康,et al.·基于基因组改组的米曲霉沪酿3.042多亲株PEG介导融合育种[J].中国酿造.2008,(012):70-73.
    [86]徐昶,龙敏南,邬小兵,et al.高产纤维素酶菌株的筛选及产酶条件研究[J].厦门大学学报:自然科学版.2005,44(001):107-111.
    [87]宋小炎,宋桂经.抗高浓度葡萄糖阻遏的纤维素酶高产菌的选育[J].山东大 学学报:自然科学版.1999,34(004):488-492.
    [88]郑毅,段慧明.快速筛选产β—葡聚糖酶曲霉及抗阻遏育种[J].生物技术.2001,11(001):21-24.
    [89]李永泉,翁醒华.微波诱变结合化学诱变选育酸性蛋白酶高产菌[J].微生物学报.1999,39(002):181-184.
    [90]邱胜苗,阔振荣.α-乙酰乳酸脱梭酶产生菌的微波诱变[J].生物技术.2006,16(4):23-24.
    [91]张志光.真菌原生质体技术[M].北京:湖南科学技术出版社,2003,95-119.
    [92]金其荣,张继民.有机酸发酵工艺学[M].中国轻工业出版社,1995,156-190.
    [93]Stasz T, Harman G, Weeden N. Protoplast preparation and fusion in two biocontrol strains of Trichoderma harzianum[J]. Mycologia.1988,80(2):141-150.
    [94]郑毅,周虓,黄勤清,et al.产耐温蛋白酶苏云金芽孢杆菌FS140液体发酵条件优化[J].应用与环境生物学报.2007,13(005):708-712.
    [95]王卫卫,郭宏星.Y—亚麻酸菌株少根根霉原生质体形成与再生[J].西北大学学报:自然科学版.2002,32(004):397-400.
    [96]张志光,由媛.双亲灭活的原生质体融合株啤酒酵母DR9-2的构建及其特征的研究[J].酿酒科技.2007,34(5):72-75.
    [97]F PJ. In microbial and plant protoplasts[M]. London:Academic Press,1976,43-89.
    [98]陈钢,陈红兰,苏伟,et al.响应面分析法优化黄精多糖提取工艺参数[J].食品科学.2007,28(007):198-201.
    [99]陈宁,常高峰,张克旭.L-异亮氨酸发酵培养基的响应面法优化[J]. FOOD AND FERMENTATION INDUSTRIES.2004,30(2).
    [100]孙艳辉,董英.响应面法优化以豆渣为基质发酵纳豆菌[J].食品科学.2007,28(004):208-211.
    [101]骆健美,李建姝,郭浩,et al.响应面优化褐黄孢链霉菌原生质体再生培养基[J].食品科学.2009,7.
    [102]刘青,肖冬光,姜天笑,et al.一种观察酿酒酵母原生质体的简易方法[J].酿酒科技.2005,(006):123-124.
    [103]罗立新.细胞融合技术与应用[M].北京:化学工业出版社,2004,13-71.
    [104]BALTZ RH. Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration[J]. Microbiology.1978,107(1):93.
    [105]Kao K, Saleem M. Improved fusion of mesophyll and cotyledon protoplasts with PEG and high pH-Ca2+ solutions[J]. Journal of plant physiology.1986, 122(3):217-225.
    [106]Xiang-kai L, Zhi-dong A, Fei Z. Study on Fusion of Biparental Inactivated Protoplasts of Streptomyces lincolnensis [J][J]. Amino Acids & Biotic Resources. 2001,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700