富营养化原水中微囊藻毒素分析与去除方法及氧化降解机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富营养化水体中的蓝藻水华可导致微囊藻毒素(MC)含量升高,MC是肝毒素和肿瘤促进剂,其化学性质稳定,常规水处理工艺不能有效将其脱除,由此对饮用水的安全带来很大威胁。本文以天津市富营养化原水中的MC为研究对象,开展了MC分析方法、水华蓝藻中MC的提纯及鉴定、水中MC去除技术和MC氧化降解动力学及机理四个方面的深入研究,并取得了一定的成果。
     首先,对MC的HPLC检测条件和SPE富集条件进行了优化,在此基础上建立了高效、灵敏的SPE-HPLC富集分析检测方法,该方法具有很好的重现性、精密度和回收率,对MC的最低检测限可达0.1μg/L,适合用来分析水体中的痕量MC。根据MC的分子特性,对其质谱检测参数进行了优化,并与HPLC有机结合建立了MC的HPLC-ESI/MS分析方法,该方法进一步提高了检测的灵敏度,将绝对检测限降至pg级,且能有效进行MC及其降解产物的定性分析,为MC各方面研究工作的深入打下基础。
     围绕天津水华蓝藻,进行了MC提取、纯化及鉴定的研究工作。通过实验研究,优化了MC的提纯方法,该方法具有提取效率高、重现性好、提取毒素中杂质含量低等特点,可有效从水华蓝藻中提纯MC;调查发现,天津富营养化表层原水中的水华蓝藻主要由微囊藻组成,其在富集后藻浆液中所占比例超过90%;利用优化的提纯方法从水华蓝藻中提取出MC,并利用HPLC及HPLC-ESI/MS方法对提纯的MC样品进行了定性和定量分析,结果表明原水中的藻类可产生MCRR和MCLR两种毒素,且产毒强度较高,分别为432.89和322.51μg/g藻干重。
     通过对去除MC的单元工艺及其组合技术的研究发现:常规水处理工艺对MC的去除率较低,一般在50%以下,混凝甚至可导致水中DMC含量增加而出现负去除率;考察的三种预氧化剂氯、高锰酸钾和臭氧在适宜的投加量下均能较好地去除MC,且增加投加量可提高去除效果;常规工艺前设置预氧化工艺可提高对MC的去除率,且可避免由单独预氧化或单独混凝工艺造成的水体中DMC增加的现象;单独PAC吸附对DMC去除效果较好,对IMC去除效果较差,但整体对TMC的去除效果较差,去除率在30%左右,PAC经氧化改性后表面结构和表面化学性质发生变化,对藻毒素的去除效果有所提高;O_3和PAC的协同作用提高了对MC的去除率,去除效果好于两者单独应用;O_3预氧化+PAC吸附+混凝沉淀的联合工艺对水中TMC的去除率超过80%,可有效控制水中MC的含量;O_3预氧化+常规气浮、O_3预氧化+PAC吸附+常规气浮以及O_3预氧化+氧化改性PAC吸附+常规气浮三种组合工艺均能有效去除水中MC,对TMC的去除率分别达到85.3%、91.6%和96.2%;经组合工艺处理后,过滤出水中藻毒素的含量已很低,甚至在水体中消失,且后两种工艺能更好的去除水体中有机物;中试系统中常规工艺后的中间氧化、催化氧化、生物活性碳、消毒等深度处理工艺对水体中残留的MC有明显的去除效果,可将水中MC降至检测限以下,有效的保障了水厂出水的安全性;最后通过综合比较单元工艺及其组合工艺对MC、藻类以及有机物的去除效果,提出了针对富营养化原水制水工艺的选择依据。
     通过考察不同条件下氯、高锰酸钾和臭氧对MCLR的降解特性发现:三种氧化剂对MCLR的降解过程均呈准一级动力学模式,即ln(C/C_0)=-kt,且相关性较好;反应速率与MCLR的起始浓度无关,而受氧化剂初始浓度影响较大,与氯和高锰酸钾初始浓度成正比,与臭氧初始浓度的1.5次方成正比。提高反应温度有利于加速氧化剂对MCLR的降解,但影响并不显著,有效氯、高锰酸钾和臭氧降解MCLR的反应活化能分别为15.86、18.17、25.38kJ/mol;臭氧对MCLR的降解受pH值影响较大,随着pH值的增大降解速率迅速提高。
     通过对降解产物分子量及结构的分析,发现三种氧化剂降解MCLR的机理有所不同:有效氯可先与MCLR发生亲电加成反应生成氯乙醇-MCLR,再通过亲质子置换反应生成二羟基-MCLR;而高锰酸钾可直接将MCLR氧化成二羟基-MCLR,并在高锰酸钾过量的情况下可进一步氧化成二羰基—MCLR;臭氧可迅速将MCLR氧化成二羟基-MCLR,并瞬间将其进一步氧化成酮类或醛类有机物,在此过程产生的H_2O_2催化作用下,上述降解产物可被进一步氧化成羧酸类有机物。
Cyanobacterial blooms in the eutrophic water could direct cause the concentration of Microcystin (MC) increases. MC is hepatotoxin and tumor promoter, its chemical property is so stable that conventional water treatment processes can not remove it effectively. This brought a great threat to the safety of drinking water. Around MC in Tianjin's eutrophic water , the research were carried out successfully which included analytical method, purification and identification means , removal technique, oxidative degradation kinetics and mechanism.
     The high performance liquid chromatography (HPLC) detection of MC and the solid phase extraction (SPE) enrichment of MC were optimized, and then the highly effective and sensitive SPE-HPLC method was established, which have good reproducibility, precision and returns-ratio. The minimum detection limit could achieve 0.1μg/L. So it adapts to analysis the trace MC in water. After the optimization of mass spectrum examination parameter according to the MC molecule properties, the organic combination of HPLC with MS formed the HPLC-ESI/MS analytical method which increased the sensitivity further, cut down the detecting limit to pg level. This method is also able effectively to carry out the qualitative analysis of MC and its degradation product, which lays the foundation for the in-depth study of MC.
     The research was carried on about the extraction, purification and identification of MC. Through the experimental study, the purification method of MC was optimized, which has the characteristics of high extraction rate, good reproducibility and low impurity content and can effectively purify MC from water blooms. The investigation discovered that the microcystis is major intergrant of cyanobacteria in Tianjin's eutrophic water and its content is over 90 percent. Using the HPLC and HPLC/ESI-MS method to analyze qualitatively and quantitatively of MC sample purified from cyanobacteria, it indicated that the alga in the raw water may produce two kind of microcystin such as MCRR and MCLR, and each intensity was higher, respectively 432.89 and 322.51μg / g dry weight of algae.
     Through the comparison of MC removal effects in unit technologies and their combination, several conclusions achieved as follow: MC could be only removed by less than 50 percent in conventional water treatment process, and coagulation even resulted in deficit removal efficiency because of the DMC content increasing. Three pre-oxidants such as chlorine, potassium permanganate and ozone could remove MC effectively with appropriate dosage, and increase of the dosage may improve the removal efficiency. Setting up pre-oxidation before conventional process can increase the removal rate of MC; it eliminates the phenomenon of MC's increase which due to the separate pre-oxidation or coagulation process. The adsorption of a single PAC was efficiency to the removal of DMC and inefficiency to IMC, while it was inefficiency to TMC for about 30 percent removal rate; The surface texture and chemical properties of PAC was modified by oxidation to enhance the removal of MC. The synergistic action of ozone and PAC was more conductive to the removal of MC than their application alone. The combined process of pre-oxidation of ozone + PAC adsorption + coagulation and sedimentation had over 80 percent removal rate of TMC to control the MC content in water effectively; three kinds of combined process such as pre-oxidation of ozone + conventional gas floatation, pre-oxidation of ozone + PAC adsorption + conventional gas floatation and pre-oxidation of ozone + modified PAC adsorption + conventional gas floatation could remove the MC effectively and the removal rate of TMC was 85.3, 91.6 and 96.2 percent in turn. After treated by combined processes, the MC in filtered water was very low even disappeared, and the two later could remove organic more effectively. In experiment system, the deep treatment followed conventional processes, such as medial oxidation, catalysis oxidation, biological active carbon, disinfection and so on, could ensure the water from plant safety because the removal effects to the residual MC were clear as to detecting limit below. Finally, through the comprehensive comparison of the removal effects of MC, alga and organic in unit and combined processes, it suggested a basis for the selection of water treatment processes suitable to eutrophia source water.
     Through the comparison of degradation properties of MCLR by chlorine, potassium permanganate and ozone under different conditions, it was found that the MCLR degradation processes of three oxidants complied with pseud-first-order kinetics mode as ln(C/C_1) =-kt. reaction rate had nothing to do with initial concentration of MCLR, while influenced greatly by oxidant initial concentration that were direct ratio to chlorine and KMnO_4 and 1.5 power direct ratio to ozone. Increase temperature did well to accelerating degradation but not outstanding. Reaction activation energy between MCLR and active chlorine, KMnO_4 and ozone were 15.86, 18.17, 25.38kJ/mol in turn. pH had great influence on the degradation of MCLR by ozone and increase of pH accelerated degradation.
     The analysis of the molecular weight and texture of degradation products discovered that mechanism of MCLR degradation by three oxidants were different. Active chlorine could take place additive reaction with MCLR to generate chlorohydrin-MCLR, and the halogen in the chlorohydrin may then undergo a nucleophilic substitution reaction with the solvent to form dihydroxyl-microcystin. While KMnO_4 could oxidize MCLR to dihydroxyl-MCLR directly, and under the condition of excessive KMnO_4, it could further oxidize to dicarbonyl-MCLR. Ozone could quickly oxidize MCLR to dihydroxyl-MCLR and further oxidize to alkone or aldehyde organic immediately. Under H_2O_2 catalysis action which generated during the course, above degradation products could further oxidize to carboxylic acid organic.
引文
[1] 金丹越,黄艳菊.天津于桥水库主要环境问题及其防治对策[J] 环境科学研究,2004,17 (Supply):77-79.
    [2] 杜玉凤.于桥水库水体富营养化及防治对策[J].海河水利,2005.1:36-38.
    [3] Kunimitsu K, Yoshizawa S, Matsushima R, et al. Chemistry and Toxicology of Cyclic Hepatapetide Toxins, the Microcystins from Cyanobacteria [J]. Microbiol.Cult.Coll. 1994.10: 5.
    [4] WHO. Guidelines for drinking-water quality[S]. Third edition, Geneva: World Health Organization, 2004:195.
    [5] 中华人民共和国卫生部卫生法制与监督司.生活饮用水卫生规范[S],2001.6.
    [6] 中华人民共和国建设部.城市供水水质标准[M],北京:中国标准出版社,2005.4.
    [7] Chow C W K, Drikas M, House J, et al. The impact of conventional water treatment processes on cells of the cyanobaeterium Mieroeystis aeruginosa [J].Water. Res., 1999, 33 (15) :3253-3262.
    [8] Haider S, Naithani V, Viswanathan P N, et al. Cyanobacterial toxins: a growing environmental concern [J]. Chemosphere, 2003, 52 (1):1-21.
    [9] Fromme Hermann, et al Occurrence of cyanobaetedal toxins-microeystins and anatoxina in Berlin water bodies with implications to human health and regulations[J]. Environmental Toxicology, 2000, 15 (2):120-130.
    [10] Vezie C, et al. Variation of mieroeystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu [J] Microbial Ecology 1998, 35 (2):126-135.
    [11] Wirsing Birgit,et al. First report on the identification of microcystin in a water bloom collected in Belgium [J] Systematic & Applied Microbiology, 1998, 21 (1):23-27.
    [12] Mahakhjant Aparat, et al. Detection of microcystins from cyanobaeterial water blooms in Thailand fresh water[J]. Physiology Research, 1998, 46 (Suppl):25-29.
    [13] Park Ho-dong, et al. Hepatotoxin microcystins and neurotoxic anatoxin-a in cyanobactcrial bloom from Korean lakes[J]. Environmental Toxicology & Water Quality, 1998 13 (3) :225-234.
    [14] Lee Tzong Huei,et al. First report of microeystins in Taiwan [J] Toxicon, 1998, 36 (2):247-255.
    [15] 顾岗.太湖蓝藻暴发原因及其控制措施[J].上海环境科学,1996,15(12):10-11.
    [16] 沈建国.微囊藻毒素的污染状况、毒性机理和检测方法[J].预防医学情报杂志,2001,17 (1):10-11.
    [17] 张维吴,徐晓清,丘昌强。水环境中微囊藻毒素研究进展。环境科学研究,2001,14(2):57-61.
    [18] 李开源,丁明.云南程海蓝藻毒性研究.云南大学学报(自然科学版),1998,20(3):193-196.
    [19] 赵以军,王旭,谢青等.滇池蓝藻“水华”微囊灌毒素的分离和鉴定.华中师范大学学报(自然科学版),1999,33(2):250-254.
    [20] 陈艳,俞顺章,林玉娣等.太湖流域水中微囊藻毒素含量调查[J].中国公共卫生,2002,18 (12):1455-1456.
    [21] 穆丽娜,陈传炜,俞顺章等.太湖水体微囊藻毒素含量调查及其处理方法研究.中国公共卫生,2000,16(19):803-804.
    [22] 许秋瑾,高光,陈伟民.太湖微囊藻毒素年变化及其与浮游生物的关系[J].中国环境科学,2005,25 (1):28-31.
    [23] 赵影,杨志平,王志强等.巢湖水藻类毒性及对饮用水水质影响[J].环境与健康杂志,2003,20(4):219-222.
    [24] 徐海滨,孙明,隋海霞等.江西鄱阳湖微囊藻毒素污染及其在鱼体内的动态研究[J].卫生研究, 2003,32(3):192-194.
    [25] 张志红,赵金明,蒋颂辉等.淀山湖夏秋季微囊藻毒素-LR和类毒素-A 分布状况及其影响因素.卫生研究,2003,32(4):316-319.
    [26] 连民,陈传炜,俞顺章等.淀山湖夏季微囊藻毒素分布状况及其影响因素[J].中国环境科学,2000,20(4):323-327.
    [27] 孟玉珍,张丁,王兴国等.郑州市黄河水源水藻类和藻类毒素污染状况调查[J].中华预防医学杂志,2000,34(2):92-94.
    [28] 史本林,余国忠.河南省饮用水中藻毒素污染与控制对策.河南科学,2000,18(1):90-93.
    [29] 史红星,曲久辉,王爱民等.官厅水库蓝绿藻及藻毒素初步研究[J].高等学校化学学报,2005,26 (9):1653~1655.
    [30] Sivonen K. Cyanobacterial toxins and toxin production [J].Phycologia, 1996, 35 (1):12-24.
    [31] Rinehart K L, et al. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria) [J]. Appl.Physiol, 1994, 76 (6):1759-1762.
    [32] Lawton L A, Robertson P K J, Cornish B J P A, et al. Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts[J]. Catal, 2003, 213 (1):109-113.
    [33] 吴静等.藻毒素与健康效应的研究进展[J].上海环境科学,1999,18(7):331-334.
    [34] Watanabe M F, Tsuji K, et al. Release of Heptapeptide toxin (Microcystin) during the decomposition process of Microcystis aeraginosa. Natural Toxins. 1992, 1:48-53.
    [35] Rivasseau C, Martins S, Hennion M C. Determination of some physiochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography. J. of Chromatography, 1998, 799 (1-2):155-169.
    [36] Maagd G, Hendriks J, Sijm D, et al. pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR. Wat.Res. 1999, 33 (5):677-680.
    [37] Tsuji K, Watanuki T. Stability of Microcystins from cyanobacterial-Ⅳ: Effect of chlorination on decomposition. Toxicon. 1997, 35 (7): 1033-1041
    [38] Ones G J.Orr P T. Release and degradation of Microoystin following algaecide treatment of a Microcysfis aeruginosa bloom in a recreational lake. As determined by HPLC and protein phosphatase inhibition assay. Wat. Res, 1994, 28 (4) : 871-876.
    [39] Tsuji K, Naito S. Stability of Microcystins from cyanobacteria: Effect of light on decomposition and isornerization. Environ. Sci. Technol. 1993, 28 (1):173-177
    [40] Kaya K, et al. A photodetoxification mechanism of the cyanobacterial hepatotoxin Microcystin-LR by ultraviolet irradiation.Chem.Res.Toxicol.1998, 11 (3) : 159-163.
    [41] 陈一萍.Fenton作用去除藻毒素的效能与机制[D].福州大学硕士研究生学位论文,2005,1:6.
    [42] Van der Westhuizen A J, Eloff J N, Kruger G H J. Effects of temperature and light (fluence rate) on the composition of the Cyanobacterium Mieroeystis aeruginosa (UV-006) [J]. Arch Hydrobiol, 1986, 108 (2):145-154.
    [43] Utkilen H, Gjolme N. Energy the dominating controlling factor for microcystin production in Mieroeystis aeruginosa? Compilation of abstracts, 4th International Conference on Toxic Cyanobacteria, 1998, 63.
    [44] 连民,刘颖,俞顺章.氮、磷、铁、锌对铜绿微囊藻生长及产毒的影响[J].上海环境科学,2001,20 (4):166-170.
    [45] Borner T. Microcystins synthetase: gene and enzyme. 4th International Conference on Toxic Cyanobacteda. 1998,58.
    [46] Meipner K, Kittmann E, Borner T. Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain, sequences homologous to peptide synthetase genes. FEMS Microbiology Letters.1996, 135:295-303.
    [47] 朱光灿.饮用水中微囊藻毒素降解机理与去除技术研究【D】.河海大学博士学位论文,2004,6:5.
    [48] Nishizawa T, Asayama M,Fujii K,et al. Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J.of Biochemistry, 1999,126 (3) :520-529.
    [49] Otsuka S,Suda S,Li R,et al. Phylogenetie relationship between toxic and non-toxic strains of genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiology Letters, 1999,172:15-21.
    [50] Watanabe M F, et al. Fate of the toxic cyclic heptaptides from blooms of microcystins (cyanobacteria) in a hypertrophic lake. Phycology, 1992.28:761-767.
    [51] Lahti K, Rapala J, Fardig M, Niemela M, et al. Persistence of cyanobacterial hepatotoxin, microcystin-LR in particulate material and dissolved in lake water. Water Res., 1997, 31(5): 1005~1012
    [52] Lawton L A, Cornish B J P A, Macdonald A W R. Removal of cyanobacterial toxins (microcystins) and cyanobacterial cells from drinking water using domestic water filters. Water Res., 1998, 32(3): 633~638.
    [53] 张维吴,宋立荣,徐小清等.天然水体中微囊藻毒素归宿的初步研究.长江流域资源与环境,2004,13(1):84~88
    [54] Feitz A, Walte D, Jones G, et al. Photocatalytic degradation of the blue green algal toxin Microcystin-LR in a natural organic aqueous matrix. Environmental Science and Technology, 1999,33(2):243-249.
    [55] 金丽娜,张维吴,郑利等.滇池水环境中微囊藻毒素的生物降解.中国环境利学, 2002,22(2):189-192.
    [56] Cousins I T, Beating D J, James H A, et al. Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Wat.Res., 1996,30(2):481-485.
    [57] Botes D.P.,Kruger H.and Viljoen C.C.Isolation and characterization of 4 toxins from blue-grin-alga, Microcystis-aeruginosa[J].Toxicon;1982,20(6):945-954.
    [58] Harada K., Suzuki M. et al, Improved method for Purification of toxic Peptides Produced by cyanobacteria[J].Toxicon.1988, 26(5):433-439.
    [59] Ward C.J,Beattie K.A..et al.1997. Colorimetric protein phosphatase inhibition assay of laboratory strains and natural blooms of cyanobacteria: Comparisons with high-performance liquid chromatographic analysis for microcystins[J]. Fems mtcrobiol, lett. 153 (2):465-473.
    [60] 张维昊.滇池微囊藻毒素的环境化学行为研究[D].中国科学院水生生物研究所博士学位论文,2001,56-60.
    [61] Metcalf J, Bell S., et al. Production of novel polyclonal antibodies against the cyanobacterial toxin microcystin-LR and their application for the detection and quantification of microcystins and nodularin[J]. War. Res. 2000, 34(10):2761-2769.
    [62] 张杭君,张建英,焦荔等,微囊藻毒素的快速提取方法研究[J] 浙江大学学报(农业与生命科学版)2005,31(6):736-740.
    [63] Fastner J, Flieger I, Neumann U. Optimized extraction of microcystins from field samptes-a comparison of different solvents and procedures[J]. Water Res., 1998, 32(10): 3177~3181.
    [64] 郑雪琴,苑宝玲,邢核等.高效液相色谱法测定蓝绿藻中微囊藻毒素[J].理化检验-化学分册,2005,41(2):104-106.
    [65] Ingrid C, Jamie B. Toxic cyanobacteria in water. London and New York: E&FN Spon Publisher, 1999,416.
    [66] 许敏,赵以军等.水华和赤潮的霉素及其检测与分析.湖泊科学,2001,13(4):376-384.
    [67] Kiviranta J, Sivonen K,et al. Detection of toxicity of cyanobacteria by Artemia salina bioassay. Environ. Toxicol. Water Quai,1991,6:423-436.
    [68] Hiripi L, Nagy L, et al. Insect (Locusta migratoria migratorioides) test monitoring the toxicity of cyanobacteria[J].Neurotoxicology, 1998,19 (4):605-608.
    [69] Lawton L A, Campbell D L, et al. Use of a rapid bioluminescence assay for detecting cyanobacterial microcystin toxicity [J]. LettAppl Microbiol,1990,11 (4) : 205-207.
    [70] Pelander A, Ojanpera I, et al. Screening for eyanobacterial toxins in bloom and strain samples by thin layer chromatography. Wat.res. 1996,30 (6) :1464-1470
    [71] Pelander A, Ojanpera I, et al. Visual detection of cyanobacterial hepatotoxins by thin-layer chromatography an application to water analysis. Wat.res. 2000,34 (10):2643-2652.
    [72] Lawton L A, Edwards C, Codd G A. Extraction and high-performance liquid chromatographic method for the determination of microcystius in raw and treated waters. Analyst, 1994, 119:1525-1530
    [73] Lee H S, Jeong C K, Lee H M,et al.On-line Trace Enrichment for the Simultaneous Determination of Microcystins in Aqueous Samples Using High-performance Liquid Chromatography with Diode-an'ay Detection[J].J Chromatogra. A, 1999,848 (2): 179-184.
    [74] Ortea P M, Allis O, Healy B M, et al. Determination of toxic cyclic heptapeptides by liquid chromatography with detection using ultra-violet, protein phosphatase assay and tandem mass spectrometry. Chemosphere, 2004, 55 (10): 1395-1402
    [75] Lawrence J F, Menard C. Determination of microcystins in blue-green algae, fish and water using liquid chromatography with ultraviolet detection after sample clean-up employing immunoaffinity chromatography. J Chromatogra.A.,2001,922(1):111-117.
    [76] Trogen G, Edlund U, et al. The solution NMR structure of a blue-green algae hepatotoxin, microcytin-RR, a comparison with the strcture of microcystin-LR [J]. Eur. J. Biochem.1998,258:301-312
    [77] Dahimann J, Budakowski W R, Luckas B. Liquid chromatography-electrospray ionisation-mass spectrometry based method for the simultaneous determination of algal and cyanobacteriai toxins in phytoplankton from marine waters and lakes followed by tentative structural elucidation of microcystins[J]. J. Chromatogra. A., 2003, 994 (1): 45-57
    [78] Ruangyuttikam W, Miksik I, Pekkoh J, et al. Reversed-phase liquid chromatographic-mass spectrometric determination of microcystin-LR in cyanobacteria blooms under alkaline conditions. J. Chromatogra. B., 2004, 800 (2) : 315~319.
    [79] Maizels M, Budde W L. A LC/MS method for the determination of cyanobacteria toxins in water. Anal.Chem, 2004, 76 (5) : 1342-1351.
    [80] Sano T, Nohara K, Shiraishi F. A Method for Microdetermination of Total Microcytin Content in Waterblooms of Cyanobacteria[J].Int J Environ Anal Chem,1992,49 (3):163-170.
    [81] 雷腊梅 甘南琴 张小明等.三种检测微囊藻毒素的ELISA方法比较研究[J].高技术通讯, 2004,7:89-92.
    [82] Pyo D, Lee J, Choi E. Trace analysis of microcystins in water using enzyme-linked immunosorbent assay. J Microc, 2004, 15 (7) :1-5.
    [83] XU L H, LAMP K, CHEN J P, et al. Use of protein phosphatase inhibition assay to detect microcystins in Donghu lake and a fish pond in China [J].Chemosphere, 2000, 41 (1):53-58.
    [84] 王晓峰,郭宗楼,王燕等.用蛋白磷酸酶抑制法-比色法检测水中微囊藻毒素类物质[J].水生生物学报,2003,27(4):431-433。
    [85] Robillot C, Vinh J, Puiseux-Dao S, et al. Hepatotoxin production kinetics of the cyanobacterium Miorocystis aeruginosa PCC 7820, as determined by HPLC-mass spectrometry and protein phosphatase bioassay. Environ. Sci. Technol., 2000, 34 (16) : 3372~3378.
    [86] Miura G A. Hepatotoxicity of microcystin-LR in fed and fasted rates. Toxicon, 1991, 29 (3): 337-346.
    [87] 吴伟,瞿建宏,陈家长等.藻毒素对鱼类肝脏的毒理学效应.中国环境科学,2002,22(1):67-70.
    [88] Harada K. Trace analysis of Microcystins[J]. PhyCologia, 1996, 35 (Suppl 6):36-41.
    [89] Humpage A R and Falconer I R. Microcystin-LR and liver tumor promotion: Effects on cytokinesis, ploigy, and apoptosis in cultured hepatocytes. Environmental Toxicology, 1999, 14:61-75.
    [90] Rao P V, et al. The cyanobacterial toxin Microcystin-LR induced DNA damage in mouse liver in vivo. Toxicology, 1996, 114 (1) :29-36.
    [91] Boudrez A, Evens K, Beullens M, et al. Identification of MYPT1 and NIPP 1 as subunits of protein phosphatase 1 in rat liver eytosol [J]. FEBS Letters, 1999, 455:175-178.
    [92] Guzman R E and Solter P F. Hepatic oxidative stress following prolonged sublethal Microcystin-LR exposure. Toxicological Pathology, 1999, 27:582-588.
    [93] Vasconcelos V M and Pereira E. Cyanobaeteria diversity and toxicity in a wastewater treatment plant (Portugal). War. Res., 2001, 35:1354-1357.
    [94] Lawton L A, Codd G A: Cyanobacterial (blue-green algae) toxins and their significance in U. K. and European waters. J Inst Water Environ Manage, 1991, 5:460-465
    [95] Hirooka Elisa Yoko, et al. Survey of Microcystins in water between 1995 and 1996 in Parana, Brazil using ELISA. Natural Toxins, 1999, 7 (3) :103-109.
    [96] Jochimsen E M, Carmichael W W, An J S, et al. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med, 1998, 338:873-878
    [97] Yu S Z. Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol, 1995, 10:674-682
    [98] Ueno Y, Nagata S, Tsutsumi T, et al. Detection of microcystins, a blue-green algal hepatotoxins, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in china, by highly sensitive immunoassay. Carcinogenesis, 1996, 17:1317-1321.
    [99] 戎文磊,周圣东,奚稼轩.水厂常规处理工艺去除藻毒素的研究[J].净水技术,2004,23(1):1-4.
    [100] Himberg K, Keijola A M, Hiisvirta L. The effect of water treatment processes on the removal of hepatotoxins from microcystis and oscillatoria cyanobacteria: a laboratory study [J]. War. Res., 1989, 23 (8): 979-984.
    [101] Angeline K.Y, Ellie E, et al. Chemical control of hepatotoxic phytoplanton blooms: implications for human health [J].Wat. Res., 1995, 29:1845-1854.
    [102] Gayle N, David C. Influences on the removal of tastes and odors by Powdered Activated Carbon [J]. Water Supply: Research and Technology, 2002, 51 (8): 463-474.
    [103] Jose A H S. Benzene Removal by Powdered Activated Carbon in Jet Flocculation System [J]. Environmental Engineering, 1997, 10:1011-1018.
    [104] Hoffman J. R. H, Removal of Microqvstis toxins in water purification process [J]. Water S.A, 1976, 2: 58-60.
    [105] Falconer I R, Runnegar M, Bucldey T, et al. Using activated carbon to remove toxicity from drinking water containing cyaobactefial bloom [J]. J AWWA, 1989, 81 (1):102-105.
    [106] Neumann U, Weckesser J. Elimination of microcystin peptide toxins from water by reverse osmosis [J].Toxicol and Water Qual.1998, 13 (2) :143-157,
    [107] Niehohon B. C, Rositano J and Burch M. D. Destruction of cyanobacterial pepfide hepatotoxins by chlorine and chloramines [J]. Water Research, 1994, 28 (6) :1297-1303.
    [108] Fawell J., Hart J., James H. et al. Blue-green algae and their toxins: analysis, toxicity, treatment, and environmental control. Water.Supply, 1993, 11 (3-4) : 109-121.
    [109] Rositano J, Nicholson B, Pieronne P. Destruction of cyanobacterial toxins by ozone [J]. Ozone Science Techno, 1998, 20 (3) : 223-238.
    [110] Kamer D., Standridge J., Harrington G. et al. Microcystin algal toxins in source and finished drinking water. Am.WaterWorks Assoc. J. 2001, 93 (8) :72-81.
    [111] Shawwa A.R., Smith D.W. Kinetics of microcystin-LR oxidation by ozone. Ozone Sci Eng. 2001, 23:161-170.
    [112] Rositano J, Newebcombe G, Nicholson B, et al. Ozonation of NOM and algal toxins in four treated waters [J]. Wat. Res., 2001, 35 (1) :23-32.
    [113] Hoeger S.J., Dietrich D.R., and Hitzfeld B.C. Effect of Ozonation on the Removal of Cyanobacterial Toxins during Drinking Water Treatment. Environmental Health Perspectives, 2002, 110 (11) :1127-1132.
    [114] Tsuji k, Watanuki T, Kondo F, et al. Stability of microcystins from cyanobacteria Ⅱ: efect of UV light on de, composition and isomerization [J]. Toxicon, 1995, 33 (12) :1619-1631.
    [115] Welker M, Steinberg C. Indirect photolysis of cyanotoxins: one possible mechanism for their low persistence [J].Water Research, 1999, 33 (5) :1159-1164.
    [116] Welker M, Steinberg C. Rates of hnmic substance photosensitized degradation of microcystin-LR in natural waters [J]. Environmental Science and Technology, 2000, 34 (16) :3415-3419
    [117] Linda A.L, Peter K.J, Benjamin J.P, et al.Detoxification of microcystins (cyanobacterial hepatotoxins) using TiO2 photocatalytic oxidation [J]. Environ. Sci.Technol. 1999, 33: 771-775.
    [118] Shepard GS, Stockenstrom S, Villiers D.De, Engelbrecht W.J,et al. Photocatalytic degradation of cyanobacterial microcystin toxins in water [J] Toxicon, 1998, 36 (12) :1895-1901.
    [119] Dong-Keun Lee, Sung-Chul Kim, In-Cheol Cho, et al. Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO2-coated activated carbon [J] Separation and Purification Technology,2004,34: 59-66.
    [120] Andrew J, Feitz T, Waite D, Jones G, et al.Photocatalytic degradation of the blue green algal toxin Mierocystin-LR in a natural organic-aqueous matrix[J]. Environ. Sci.Technol.1999, 33:243-249.
    [121] Harada K-I, Imanishi S, Kato H, et al. Isolation of Adda from microcystin-LR by microbial degradation [J]. Toxicon, 2004, 44 (1): 107-109.
    [122] 吴振斌,陈辉蓉,雷腊梅等.人工湿地系统去除藻毒素研究[J].长江流域资源与环境,2000,9 (2):242-247.
    [123] 吕锡武,稻森悠平,丁国际.有毒蓝藻及藻毒素生物降解的初步研究[J].中国环境科学,1999,19(2):138-140.
    [124] 朱光灿,吕锡武.饮用水中微囊藻毒素限值与生物预处理控制[J].给水排水,2005,31(2):17-20.
    [125] Maatouk I., Bouaicha N., Fontan D. et al. Seasonal variation of microcystin concentrations in the Saint-Caprais reservoir (France) and their removal in small full-scale treatment plant. Wat.Res.2002, 36:2891-2897.
    [126] Lee H. S., Jeong C. K., Lee H. M. et al. On-line Trace Enrichment for the Simultaneous Determination of Microcystinsin Aqueous Samples Using High-performance Liquid Chromatography with Diode -array Detection. J. of Chromatography A, 1999, 84 8:179-184.
    [127] Moollan R.W., Rae B., Verbeek A. Some comments on the determination of microcystin toxins in water by high-performance liquid chromatography.Analyst. 1996, 121:233-238.
    [128] 张维昊,张光明,张锡辉等.微囊藻毒素的提取纯化方法比较[J].中山大学学报(自然科学版), 2003,42(6)增刊:144-146.
    [129] 张维昊,徐小清.固相萃取高效液相色谱法测定水中痕量微囊藻毒素.分析化学,2001,29 (5):522~525
    [130] 高立勤,刘文英.固相萃取技术及其在生物样本分析中的应用与进展[J].药进展学,1997,21 (1):8-11.
    [131] 刘耀,孙静,封世珍等.固相萃取技术在药(毒)物样本分析中的应用[J] 中国法医学杂志.1997, 12(3):182-185
    [132] 宁永成.有机化合物结构鉴定与有机波谱学(第二版)[M].北京:科学出版社,2001.
    [133] Yuan M., Namikoshi M., Otsuki A et al. Low-energy collisionally activated decomposition and structural characterization of cyclic heptapeptide microcystins by electro-spray ionization mass spectrometry. J. Mass Spectrom. 1999, 34:33-43.
    [134] Kondo F., Ikai Y., et al. Reliable and sensitive method for determination of microcystins in complicated matrices by frit-fast atom bombardment liquid chromatography/mass spectrometry. Natural Toxins, 1995,3 (1) :41-49.
    [135] Robillot C., Vinh J. et al. Hepatotoxin production kinetics of the cyanobacterium Microcystis aeruginosa PCC 7820, as determined by HPLC-Mass spectrometry and protein phosphatase bioassay. Environ. Sci. Technol. 2000, 34:2272-2278.
    [136] 汪正范,杨树民,吴侔天等.色谱联用技术[M].北京:化学工业出版社,2001
    [137] 何美玉.观代有机与生物质谱[M].北京:北京大学出版社,2002
    [138] Pramamk B.N.,Ganguly A.K.,Gross M.L,主编.蒋宏键,俞克佳,译.电喷雾质谱应用技术[M].北京:化学工业出版社,2005。
    [139] Caprioli R M. Continuous flow fast atom bombardment mass spectrometry [M].New York: Wiley, 1990.
    [140] 金相灿等编著.中国湖泊环境.第三册[M].1995.海洋出版社.
    [141] 陈霄,北方城市供水水源藻类高发特征及化学杀藻实验研究[D].西安建筑科技大学硕士学位论文,2004。
    [142] 虞锐鹏.微囊藻毒素的分离、分析及制备[D].江南大学硕士学位论文,2003。
    [143] 赵东旭,王利波,杨新林等.灵芝子实体抗肿瘤成分提取的研究[J].北京理工大学学报,1999, 19(6):23-25.
    [144] 李亚琴,吴守一,马海乐.用乙醇萃取卵黄油的试验研究[J].江苏理工大学学报(自然科学版), 2000,21(2):30-32.
    [145] 薛伟明,张效林.酶-膜法药用植物有效成分提取分离过程应用研究[J].西北大学学报(自然 科学版),1997,27(6)::494-498.
    [146] 闫海,潘纲,张明明等.微囊藻毒素的提取和提纯研究[J].环境科学学报,2004,24(2):355-360.
    [147] 张维昊,方涛,徐小清.滇池水华蓝藻毒素光降解的研究[J].中国环境科学,2001,21,(1):1-3.
    [148] 张维昊,肖邦定,方涛等.天然水华蓝藻中微囊藻毒素的提取和净化研究[J].环境污染与防治 2003,25(5):265-267.
    [149] 董宏平,李建宏等.水华微囊藻多糖复合物的提取[J].南京师范大学学报(自然科学版).1999, 3:91-94.
    [150] 殷刚,刘铮,等.钝顶螺旋藻中藻蓝蛋白的分离纯化及特性研究[J].清华大学学报, 1999,4(6):20-22.
    [151] 史红星,曲久辉,王爱民等.官厅水库蓝绿藻及藻毒素初步研究[J].高等学校化学学报,2005,26(9):1653-1655.
    [152] Mez K,, Hanselmann K., Preisig H.R. Environmental Conditions in High Mountain Lakes Containing Toxic Benthic Cyanobacteria. Hydrobiologia, 1998, 368:1-15.
    [153] Vasconcelos V. M., Sivonen K., Evans W.R., et al. Hepatotoxic Microcystin Diversity in Cyanobacterial Blooms Collected in Portuguese Fresh waters. Wat.Res. 1996, 30 (10):2377-2384.
    [154] Song L. R, Sano T., Li R., et al. Microcystin production of Microcystis viridis(cyanobacteria) under diferent culture conditions[J]. Phycological Res., 1998, 46 (Suppl.), 19-23.
    [155] Park H., Iwami C., Watanabe M.F., et al. Temporal Variabilities of the concentrations of Intraand extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan[J]. Environ Toxicol Water Qual., 1998, 13:61-72.
    [156] Rapala J, Sivonen K, Lyra C, et al. Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli[J]. Appl. and Environ Micro biol.1997, 63 (7):2206-2212.
    [157] Kunimitsu K, Yoshizawa S, Matsushima R, et al. Chemistry and Toxicology of Cyclic Hepatapetide Toxins, the Microcystins from Cyanobacteria [J]. Microbiol. Cult.Coll. 1994.10: 5.
    [158] Dawson. M. The toxicology of microcystin [J]. Toxicon, 1998, 36 (7): 953-962
    [159] Barco M., Flores C., Rivera J., et al. Determination of microcystin variants and related peptides present in a water bloom of Planktothrix (Oscillatoria) rubescens in a Spanish drinking water reservoir by LC/ESI-MS [J]. Toxicon 2004, 44:881-886.
    [160] 许川,舒为群,曹佳等.重庆市及三峡库区水体微囊藻毒素污染研究[J].中国公共卫生,2005, 21(9):1050-1052.
    [161] 曾力,刘丽君等.S 市水源水及饮用水中微囊藻毒素的污染状况研究[J].净水技术, 2003,22(6):1-3.
    [162] Lawton L A. and Robertson P K J. Physico-chemical treatment methods for the removal of microcystins from potable waters [J]. Chem. Soc. Rev, 1999, 28, 217-224.
    [163] 刘成.粉末活性炭在微污染源水处理中的应用[D].西安建筑科技大学硕士学位论文,2004.6.
    [164] 黄祥飞,陈伟民,蔡启铭.湖泊生态调查观测与分析[M].北京:中国标准出版社,2000.
    [165] 国家环境保护总局编,《水和废水监测分析方法》(第四版)[M].北京:中国环境科学出版社,2002.
    [166] Tsuji K, Watanuki T, Kondo F, et al. Stability of Microcystins from cyanobacteria-iv. Effect of chlorination on decomposition [J] Toxicon, 1997, 35(7): 1033-1041.
    [167] 孙韶华,贾瑞宝.含藻水库水中微囊藻毒素的混凝处理研究[J].净水技术,2005,24(1):18-20.
    [168] 李爽,张晓健等.水源水中不同分子量区间对有机物的分布及控制对策[J].环境科学学报,2003,23(3):327-331.
    [169] 王琳,王宝贞.饮用水深度处理技术[M].化学工业出版社,2003.1.
    [170] Pendleton P, Schumann R , Shiaw H W. Microcystin-LR Adsorption by activated carbon. Journal of Colloid and Interface Science, 2001, 240(1):1-8.
    [171] 范延臻,王宝贞,王琳等.改性活性炭对有机物的吸附性能[J].环境化学,2001,20(5):444-448.
    [172] 金鹏康,王晓昌,白帆.腐植酸臭氧氧化和过氧化氢催化氧化处理特性比较[J].环境化学,2005,24(5):533-537.
    [173] 冯亚鹏,张延青,刘鹰.利用活性炭吸附去除海水中残余臭氧生成氧化物[J].渔业现代化,2005,5:14-16.
    [174] Camel V, Bermond.A. The Use of Ozone and Associated Oxidation Processes in Drinking Water Treatment. [J].Water Research, 1998, 32(11):3208-3222.
    [175] 何文杰主编,安全饮用水保障技术[M].北京:中国建筑工业出版社,2006.
    [176] Juan L. Acero, Eva R, et al. Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins [J]. Water Research, 2005, 39:1628-1638.
    [177] Xiaoguo Chen, Bangding Xiao, Jiantong Liu,et al.Kinetics of the oxidation of MCRR by potassium permanganate[J]. Toxicon, 2005, 45:911-917.
    [178] Lawton L A. and Robertson P K J. Physico-chemieal treatment methods for the removal of microcystins from potable waters [J]. Chem. Soc. Rev, 1999, 28, 217-224.
    [179] 罗康碧,罗明河,李沪萍编著,反应工程原理[M].北京,科学出版社,2005.
    [180] 徐新华,赵伟荣编,水与废水的臭氧处理[M].北京,化学工业出版社,2003.
    [181] 朱炳辰主编,化学反应工程(第三版)[M].北京,化学工业出版社,2001.
    [182] 王宝贞主编,水污染控制工程[M].北京,高等教育出版社,1990.
    [183] 储金宇,吴春笃,陈万金等主编,臭氧技术及应用[M].北京,化学工业出版社,2002.
    [184] Johannes staehelin, Decomposition of ozone in water in the presence of organic solutions acting as promoters and inhibitors of radical chain reactions[J].Environment science technology. 1985,19.
    [185] 金鹏康,腐殖酸的臭氧化特性和机理研究[D].西安建筑科技大学硕士学位论文,1999.
    [186] lain Liu, Linda A. L, et al. Mechanistic Studies of the Photocatalytic Oxidation of Microcystin-LR: An Investigation of Byproducts of the Decomposition Process [J]. Environ. Sci. Technol. 2003, 37:3214-3219.
    [187] Jennifer L. O, Wayne W. C. LC/ESI/MS method development for the analysis of hepatotoxic cyctie peptide microcystins in animal tis ues [J].Toxicon, 2006, 47:734-741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700