黄土地表藻类结皮形成的环境因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原丘陵区是世界上水土流失最严重的地区之一,在黄土高原半干旱区局部地段生长的土壤藻类能在严重干旱缺水、营养贫瘠、生境条件恶劣的环境中生长、繁殖,通过其生活代谢方式影响并改变环境。当前,对于环境因子影响藻类结皮形成与生长的研究涉及较少,因此,研究环境因素对藻类结皮的形成及生长有着重要意义。
     本研究通过野外调查和室内培养相结合的方式对环境因子进行测定,评价藻类结皮对各种环境条件变化的适应能力。室内培养运用单因素实验和完全组合实验,分析了氮素水平、水分,温度,光照等对土壤藻类生长的影响,确定了土壤藻类培养的优化营养条件和环境条件。本研究旨在揭示环境因素对藻类结皮形成过程的影响,从而为水土流失的治理提供科学依据。主要研究成果如下:
     1.植被类型对土壤藻类结皮盖度和厚度的影响呈现出不同的规律性。植被类型不同,藻类结皮盖度不同,荒坡>樟子松林>油松林。但结皮厚度表现出相反的特点,即油松林>樟子松林>荒坡地。
     2.坡向对土壤藻类结皮分布有极显著影响,阴坡藻类结皮盖度和厚度均大于阳坡;坡度对藻类结皮盖度的影响差异不显著;但对结皮厚度有明显的影响,即平缓坡>缓坡>陡坡>极陡坡。
     3.地貌部位对土壤藻类结皮分布有明显影响,林地结皮盖度表现为坡上部>坡中部>坡下部,结皮厚度无显著差异。荒坡地上、中、下坡藻类结皮盖度和厚度差异不大。干扰程度对藻类结皮分布具有极显著影响,干扰程度弱,藻类结皮盖度和厚度均较大,反之则小。
     4不同水分处理下,以土壤最大持水量的100%供水时藻类盖度最大,达到40.7%,其次为80%供水、60%供水、40%供水。20%供水时由于严重水分亏缺,藻类基本不生长。不同水分条件下,60%供水比40%供水藻类盖度大70.2%,80%供水比60%供水藻类盖度大87.5%,100%供水比80%供水藻类盖度大33.3%。
     5.土壤藻类在25℃时生长最好,15℃时的生长明显受到抑制,而50℃时土壤藻类基本不生长。从生长趋势来看,35℃下的土壤藻类生长速度很快,30d的培养已达到生长最高点,而15℃下的生长较缓慢,但如果延长培养时间,其生长量还可以增加。室内培养土壤藻类最适生长温度为15~35℃。在不同光照培养下,以7000lx光照强度和以18h/d的光照时间对土壤藻类的生长最有利。
     6.氮素水平对土壤藻的生长影响显著,不同氮素培养时以CO(NH2)2盖度、密度和株高均最高,分别为55%、36株/cm2和4.2mm。不同浓度培养时,随着NaNO3浓度提高,生长速率逐渐增大,提高氮素的浓度能促进土壤藻类的生长。
     7.温度、pH值、氮磷比三因素不同水平完全组合试验条件下,土壤藻生长量达到最大时的条件是温度25℃、氮磷比16∶1、初始pH值设定为8.2。
The Loess Plateau Hilly and Gully Regions is one of the most serious soil erosion areas in the world. Soil algae which is grows in the Loess Highlands semi-arid region can not only endure the drought and barren conditions, but also can alter the environment. Presently, the research which is focus on the environment factors how to effect the algae’s formation and growth are few. Therefore, study on the effect of environmental factors in algae’s formation and growth have great meanings.
     This paper determinate the environment factors through the methods of the indoor rising and the open country investigation, to appraise the adaptive ability which algae mantle effect environmental. The indoor raising utilized the single factor experiment and the complete combination experiment, analyzed the constant element, the nutritional conditions, the moisture content, the temperature, the illumination, how to influence the growth of the soil-dwelling algae, and determined the soil algae’s optimism nutritional condition and the environmental condition. The purpose of research is for promulgating the environmental factor how to influence the algae mantle forming process, thus providing the scientific basis for soil loss control. The main conclusion was following:
     1. The different vegetation structures present the different regularity to the algae mantle’s degree of cover and thickness. When the vegetation structure was different, the algae mantle degree of cover was different. The soil aglae’s coverage under different vegetation structures ranked in order of barren slopes> Mongolian pine forest> Chinese pine forest. But the mantle thickness displaied the opposite characteristic, ranked in order of Chinese pine forest > Mongolian pine forest > barren slopes.
     2. The effect of different slopes on soil algae crust distribution were extremely obvious, the coverage and thickness of soil algae crust in the shady slope were bigger than that in the sunny slope; The different slope was not remarkable to soil algae crust’s distribution. The degree of disturbance had extremely obvious effection to the algae mantle degree of cover, the degree of disturbance was weak, the algae mantle degree of cover was bigger, otherwise was small.
     3. Parts of different landforms crust of algae had a significant effect on the distribution, in the woodland, the crust cover the performance of the Department for the slope> slope central> lower slope. Crust thickness had no significant difference. In the slopes, the upper, middle and downhill algae crust cover and thickness difference.
     4. Under different moisture content, the 100% water supply's algae degree of cover was the biggest, achieves 40.7%, next was the 80% water supply, 60% water supply, 40% water supply. 20% water supply under the serious moisture content owes lacks, the algae did not grow. Under different moisture content condition, the 60% water supply was bigger 70.2% than 40% water supply degree of cover, the 80% water supply was bigger 87.5% than 60% degree of cover, and the 100% water supply was bigger 33.3% than 80% water supply.
     5. The soil-dwelling algae growth most well in 25℃, at 15℃, the growth suppresses of the soil-dwelling algae was inhibited. Moreover, the soil-dwelling algae dies basically at 50℃. Look from the long growth tendency, soil-dwelling algae growth speed was very quick at 35℃, the 30d raising had achieved the growth peak, but at 15℃the growth was slow, but if the time was prolong, its biomass could increase. Under the different illumination condition under the 7000lx strength of illumination and the 18h/d illumination time, soil-dwelling algae growth very well.
     6. The nitrogen level influence the soil algae's growth remarkably, when took the CO(NH2)2 as the nitrogen source, the degree of cover, the density and plant height was most high, respectively was 55%, 36 /cm2 and 4.2mm. Under the different density of raising condition, when the NaNO3 density strengthened, the nitrogen assimilation also strengthened, the growth rate increases strengthened gradually, increase the density of nitrogen source can promoted the soil-dwelling algae's growth.
     7. Temperature, pH, nitrogen and phosphorus levels of three different combination of factors under the condition of orthogonal experiment, soil algae growth conditions at the time of maximum temperature 25℃, nitrogen and phosphorus than 16:1, the initial pH value was set to 8.2.
引文
[1]胡霞,刘连友,蔡强国.土壤结皮的研究进展及其评述[J].干旱区资源与环境,2005,19(3):145-149.
    [2]吴玉环,高谦,程国栋.生物土壤结皮的生态功能[J].生态学杂志,2002(4):41-45.
    [3]张元明,潘惠霞,潘伯荣.古尔班通古特沙漠不同地貌地位生物结皮的选择性分布[J].水土保持学报,2004,18(4):61-64.
    [4]胡春香,刘永定,张德禄等.荒漠藻结皮的胶结机理[J].科学通报,2002,47(12):931-937.
    [5]徐杰,白学良,杨持等.固定沙丘结皮层藓类植物多样性及固沙作用研究[J].植物生态学报,2003,27(4):545-551.
    [6]胡春香,张德禄,刘永定.干旱区微小生物结皮中藻类研究的新进展[J].自然科学进展,2003,13(8):791-795.
    [7]李新荣,贾玉奎,龙力群等.干旱半干旱地区土壤微生物结皮的生态学意义及若干研究进展[J].中国沙漠,2001,21(l):4-11.
    [8]胡春香,刘永定,宋立荣等.半荒漠藻结皮中藻类的种类组成和分布[J].应用生态学报,2000,11(l):61-65.
    [9]陈兰周,刘永定,李敦海等.荒漠藻类及其结皮的研究[J].中国科学基金,2003,2:90-93.
    [10]张元明,曹同,潘伯荣.干旱与半干旱地区苔藓植物生态学研究综述[J].生态学报,2002,22(7):1129-1134.
    [11]李新荣,张景光,王新平等.干旱沙漠区土壤微生物结皮及其固沙植被影响的研究[J].植物学报,2000,42(9):965-970.
    [12] HuChuXninag,LiuYongding,Berit Smestad Paulsen et al..Extracellular carbohydrate polyers from five desert soil algae with different cohesion in the stabilization of fine sand grain[J]. Carbohydrate polymers,2003,54:33-42.
    [13]刘永定,黎尚豪.土壤藻类及其生理生态[J].水生生物学报,1993,17(3):272-277.
    [14] Durrell L.W.and Shields L.W.Characteristics of soil algae relation to crust formation. Trans Am Microbiol Soc[J],1961,80(1):73-79.
    [15] Ali.S and G.R.Sandhu.Blue~green algae of the saline soils of the Punjab[J].Oikobs 22:268-272.
    [16] Anantani Y.S.and D.V.Marathe. Observations on algae of some arid semi-arid of Rajasthan[J].Journ.Of Univ.of Bombay,1974(a),41(68):88-100.
    [17] Fletcher,J.E.and Martin CW.P. Some effects of algae and molds in the rain-crusts of desert soils[J].Ecology,1948,29(1):95-100.
    [18] Fletcher J.E. and Martin W.P. Some effects of algae and molds in the rain-crusts of desert soils[J]. Ecology, 1948, 29(1):95-100.
    [19] Hawkes C.V., Flechtner V.R. Biological soil crusts in a Xeric Florida Shrubland: Composition, Abundance, and Spatial Heterogeneity of crusts with different disturbance histories[J]. Microbial Ecology, 2001,43:1-12.
    [20] Ferran Garcia-pichel, Alejandro lopez-cortes & Ulrich Nubel. Phylogenetic and orphological diversity of ayanobacteria in soil desert crusts from the Colorado Plateau[J]. Applied and Environmental Microbiology, 2001,67(40):1902-1910.
    [21] Rogers R.W.,Lange R.T.,Nicholas D.J.D.Nitrogen fixation by lichens of arid zone crusts[J]. Nature,1966,209:96-97.
    [22] West N.E.Structure and function of microphytic soil crusts in wild land ecosystem of arid and semi-arid regions[J].Advances in Ecological Research,1990,20179-223.
    [23] Mayland H.F., Mclntosh T.H. Availability of the rehabilitation of Paraho processed oil shale in arid environment[M]. In:R.A. Wright(Editors),The reclamation of arid lands. University of new mexico,Albuquerque,NM,pp.13-22.
    [24] Beymer R.J.,Klopatek J.M.,Potential contribution of carbon by microphytic crusts in pinyon juniper woodlands[J].Arid soilres.rehab.,1991,5:187-198.
    [25] King J.M.,A suvey of the edaphic algae of western Wisconsin[J].Ttansaction of the Wisconsin academy of sciences,1975,63:200-205.
    [26] Shubert L.E.& Starks,T.L.,Algea succession on orphaned coal mine spoils.In:M.K.Wali(Editor), Ecology and Coal Development[M].Pergamon press,New York,1979,pp.661-669.
    [27] King J.M.,and Ward C.H.,Ditribution of edaphic algae as related to land useage[J].Phycology,1977, 16:23-30.
    [28] Bailey D.,Mazurak A.P.&Rosowski,Aggrigation of soil particles by algae[J].Journal of phycology, 1973,9:99-101.
    [29] Nebeker,G.T.& Tt.Clair,L.L.,Enhancement ofseed germination and seedling development by ctyptogamic soil crusts[J].Botamical society of America,Miscellaneous Seride,1980,158:81.
    [30] Hunt M.E, Floyd G.L and Stout B.B. Soil algae in field and forest environments[J]. Ecology,1979,60(2):362-375.
    [31] Prosperi ,.Environmental factors affecting in vitro nitrogenase activity of cyanobacteria solated from rice fields[J].Journal Applied Phycology,1992,4:197-204.
    [32] Sharma P.and T.Rosswall. Stimulation of growth and nitrogen fixation of Anabaena spp.,by montmorillonite clay in ail Indian soil.P kos,1992,31(1~2):43-53.
    [33] Otto L,Lange,Jayne Belnap,Hans Reichenberger et al.Photosynthesis of green algal soil crest lichens from ared lands in southern Utah, USA:role of water content on light and temperature reponses of CO2 exchange[J].Flora,1997,192:1-15.
    [34] Doemel W.N.and T.D.Brock.The physiological ecology of Cyanidium caldarium.J Gen.Microbiol, 1971,67:17-32.
    [35] Dubois J.D.and C.A.Kapustka. Frezz-Recovery physiology of nitrogenase activity in terrestrial Nostoc sp colonies.Applied Environ.Microbiol.,1983,46(4):773-778.
    [36] Davey M.C.The effects of freezing and desiccation on photosynthesis and survival of terrestrial Anatarctic algae and cyanobacteria.Polar Biol.,1989,10:29-36.
    [37] Emst A.Carbohydrate formation in rewetted terrestrialcyanobacteria[J].Oecologia,1987,72:574~576.
    [38] Flaibani A,Olsen Y.and T.J. Painter.Polysaccharides in desert reclamation compositions of exocellular proteoglycan complexes produced by filamentous bluegreen and unicellular green edaphic algae[J].CARBOHYDR.Res.,1989,190:235-248.
    [39] Hellebust J.A.and Ahmad.Nitogenmelabolism and amino acid nutrition in the soil algae(Stichococcusbacillarls Chlorophyceae)[J].Journal Phycology,1989,25:48-5.
    [40] San Jose J.J.,C.R Bravo.CO2 exchange in soil algal crusts occurring in the Trachypogon Savannas of the Orinoco Llanos Venezuela[J].Plant and Soil,1991,135(2)233-244.
    [41]胡春香.荒漠藻类及其结皮机理研究[D],博士论文,中国科学院武汉水生生物研究所,1999.
    [42]陈荷生.沙坡头地区生物结皮的水文物理特点及环境意义[J].干旱区研究,1992,(1):31-38.
    [43]陈兰周,刘永定,宋立荣,等.微鞘藻胞外多糖在沙漠土壤成土中的作用[J].水生生物学报,2002,(2):155-159.
    [44]王雪芹,张元明,张伟民,等.古尔班通古特沙漠生物结皮对地表风蚀作用影响的风洞实验[J].冰川冻土,2004,(5):632-638.
    [45]张元明,陈晋,王雪芹,等.古尔班通古特沙漠生物结皮的分布特征[J].地理学报,2005,(1):52-60.
    [46]张丙昌,张元明,赵建成,等.准噶尔盆地古尔班通古特沙漠生物结皮蓝藻研究[J].地理与地理信息科学,2005,21(5):107-109
    [47]徐杰,白学良,田桂泉,等.腾格里沙漠固定沙丘结皮层藓类植物的生态功能及与土壤环境因子的关系[J].中国沙漠,2005.2:234-242.
    [48]洪英,李尧英,黎尚豪.柴达木盆地荒漠土壤蓝藻群落的初步研究明[J].植物学报,1992,34(3):161-168.
    [49]胡春香,刘永定,宋立荣.宁夏沙坡头地区藻类及其分布[J].水生生物学报,1999b,23(:5)443-448.
    [50]胡春香,刘永定.土壤藻类生物量及其在荒漠结皮的影响因子[J].生态学报,2003,23(2):284-291.
    [51]胡春香,刘永定,黄泽坡等.荒漠藻壳的精细结构与发育[J].水生生物学报,2000,24(1):11-18.
    [52]胡春香,刘永定,黄泽坡等,荒漠藻类的精细结构与发育[]J.水生生物学报,2000,24(1):11-18
    [53]闫德仁,季蒙,薛英英.沙漠生物结皮土壤发育特征的研究[J].土壤通报,2006,(5):990-993.
    [54]唐东山,卿人韦,傅华龙,等.利用土壤微藻改良贫瘠土壤的研究[J].四川大学学报(自然科学版),2003,(2):352-355.
    [55]陈祝春.不同地带沙丘结皮层的土壤酶活性[J].中国沙漠,1989,(1):85-92.
    [56]张元明.荒漠地表生物土壤结皮的微结构及其早期发育特征[J].科学通报,2005,(1):42-47.
    [57]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:88-133.
    [58]周礼恺.土壤酶学[M].北京:科学出版社,1987:167-208.
    [59]陈祝春.沙丘结皮层形成过程的土壤微生物和土壤酶活性[J].环境科学,1991,12(1):19-23.
    [60]顾峰雪,文启凯,潘伯荣,等.塔克拉玛干沙漠腹地人工绿地风沙土的土壤酶活性研究[J].中国沙漠,2000,20(3):293-297.
    [61]陈祝春.不同地带沙丘结皮层的土壤酶活性[J].中国沙漠,1989,9(1):85-92.
    [62]赵吉,邵玉琴.库布齐沙地土壤的生物学活性研究[J].内蒙古大学学报(自然科学版),1997,28(5):664-666.
    [63]王新平,肖洪浪,张景光,等.荒漠地区生物土壤结皮的水文物理特征分析[J].水科学进展,2006,(5):592-598.
    [64]李守中,肖洪浪,罗芳,等.沙坡头植被固沙区生物结皮对土壤水文过程的调控作用[J].中国沙漠,2005,(2):228-233.
    [65]杨佩国,吕贻忠.荒漠结皮对土壤水分状况的影响[J].干旱区资源与环境,2004,18(2):76-79.
    [66]闫德仁,杨俊平,安小亮等.荒漠藻固沙结皮试验研究[J].干旱区资源与环境,2004,18(5):147-150.
    [67] Evans R D and Johansen J R. Microbiotic crusts and ecosystem processes. Critical Review s in Plant Sciences,1999,18(2):183-225.
    [68] Johansen J R. Cryptogamic crusts of semiarid and arid lands of North America. J. P hy col. , 1993,29:140-147.
    [69]杨晓晖,张克斌,赵云杰.生物土壤结皮——荒漠化地区研究的热点问题[J].生态学报,2001,21(3):474-480.
    [70]陈兰周,刘永定,李敦海,等.荒漠藻类及其结皮的研究[J].中国科学基金,2003,17(2):90-93.
    [71] M etting B. The systematic and ecology of soil algae. The Bot. Rev. , 1981, 47 (2) : 195-312.
    [72] Stark s T L , Shubert L E and Trainor F R. Eco logy of soil algae: a review. Phycologia,1981,21(1):65-80.
    [73]胡春香,刘永定,宋立荣等.半荒漠藻结皮中藻类的种类组成和分布[J].应用生态学报,2000,11(1):61-65.
    [74]胡春香,刘永定,黄泽波等.荒漠藻壳的精细结构与发育[J].水生生物学报,2000,24(1):11-18.
    [75]蒋定生等编著.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997.
    [76].邹厚远,关秀琪,韩蕊莲等.黄土高原丘陵区造林技术研究[J].水土保持研究,1994,1(3):48-55.
    [77]韩蕊莲,侯庆春.黄土丘陵典型地区植被建设中有关问题的研究.立地条件类型划分及小流域造林种草布局模式[J].水土保持研究,2000,7(2):111-118
    [78]胡春香,刘永定,宋立荣.宁夏沙坡头地区藻类及其分布[J].水生生物学报,1999,23(5):443-448.
    [79]胡春香,刘永定,宋立荣,等.半荒漠藻结皮中藻类的种类组成和分布[J].应用生态学报,2000,11(1):61-65.
    [80] Sanya Hokputsa, Hu Chunxiang, Berit Smestad Paulsen, et al. Aphysicochemical comparative study on extracellular carbohydrate polymers from five desert algae[J].Carbohydrate Polymers,2003,54:27-32.
    [81] Hu Chunxiang, Liu Yongding, Berit Smestad Paulsen, et al. Extracellular carbohydrate polyers from five desert soil algae with different cohesion in the stabilization of fine sand grain[J]. Carbohydrate Polymers,2003,54:33 - 42.
    [82] Chen Lanzhou, Li Dunhai, Liu Yongding. Salt tolerance of Microcoleus vaginatus Gom. , a cyanobacterium isolated from desert algae crust, was enhanced by exogenous carbohydrates[J]. Journal of Arid Environments, 2003, 55: 645 - 656.
    [83]陈兰周,刘永定,宋立荣.微鞘藻胞外多糖在沙漠土壤成土中的作用[J].水生生物学报,2002,26(2):155-159.
    [84]周志刚,程子俊,刘志礼.沙漠结皮中藻类生态的研究[J].生态学报,1995,15(4:)385-391.
    [85]高俊芳.偏关县的水土保持对策与建议[J].山西水土保持科技,2006,(3):9-10.
    [86]吴楠,梁少民,王红玲等.动物践踏干扰对生物结皮中微生物生态分布的影响[J].干旱区研究,2006,23(1):50-51.
    [87]张国盛,王林和,董智等.毛乌素沙区风沙土机械组成及含水率的季节变化[J].中国沙漠,1999,19(2):145-150.
    [88]范春梅,廖超英等.放牧对黄土高原丘陵沟壑区林草地土壤理化性状的影响[J].西北林学院学报,2006,21(2):1-4.
    [89]宋立荣,黄泽波,刘永定,等.荒漠藻壳的精细结构与发育[J].水生生物学报,2000,24(1):11-18.
    [90]段争虎,刘新民,屈建军.沙坡头地区土壤结皮形成机理的研究[J].干旱区研究,1996,13(2):31-36.
    [91]李新荣,贾玉奎,龙利群,等.干旱半干旱区地区土壤微生物结皮的生态学意义及若干研究进展[J].中国沙漠,2001,21(1):4-11.
    [92] Shapiro J. Current beliefs regarding dominance by blue-greens: The case for the importance of CO2 and pH. International Vereinigung fuer Theoretische und Angewandte Limnologie,1990,24(1):38-54.
    [93]施丽丽,刘昕雁,刘瑶等.黄花水龙克藻效应的研究及其野外应用[J].南京大学学报(自然科学),2006,42(5):499-505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700