青藏高原东缘沙化区生物结皮中荒漠藻抗旱生理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱和盐碱化是人类面临的世界性问题,也是制约生物结皮中荒漠藻类生长的主要环境因子。特别是我国西北干旱半干旱地区,随着水资源的日益缺乏,干旱和土壤盐碱化已成为该地区结皮演替和生态环境的严重威胁。
     本研究通过对青藏高原东缘沙化区生物结皮中荒漠藻类的野外考察、采样和实验室的培养,对该沙化区中藻类的抗旱性进行了详细的研究和综合性的评价,从而为筛选出抗旱性强的藻种奠定了基础。主要研究结果如下:
     1.渗透调节与脯氨酸、可溶性蛋白含量的变化。随着PEG渗透胁迫强度的增大,四种藻种体内游离脯氨酸的含量和可溶性蛋白的含量都呈现出先上升后下降的趋势。藻种一和藻种二体内游离脯氨酸的含量和可溶性蛋白的含量分别在20%PEG和30%PEG渗透胁迫下最高,藻种三体内游离脯氨酸的含量和可溶性蛋白的含量都在30%PEG渗透胁迫下最高,藻种四体内游离脯氨酸的含量和可溶性蛋白的含量都在10%PEG渗透胁迫下最高。增加幅度越大,渗透调节能力越强,则抗旱性就越强。通过对比发现四种藻种中,藻种三体内的游离脯氨酸含量和可溶性蛋白的含量增加幅度最大,渗透调节能力最强,其抗旱性也最强,藻种四的渗透调节能力最弱,其抗旱性最弱。
     2.膜透性与丙二醛含量的变化。藻种一在10%PEG渗透胁迫下体内丙二醛的含量最高,藻种二、藻种三、藻种四在40%PEG渗透胁迫下体内丙二醛的含量最高,且膜透性与MDA的质量摩尔浓度在水分胁迫处理的过程中增幅最大,这说明干旱胁迫在10%PEG和40%PEG渗透胁迫条件下分别对藻种一和藻种二、三、四膜系统的伤害最大,膜脂过氧化程度最大,其抗旱性最弱;在20%PEG和30%PEG渗透胁迫条件下,藻种二、藻种三和藻种四体内的MDA质量摩尔浓度较小,膜透性较小,其抗干旱的能力较强,而藻种一随着渗透胁迫强度的增强,藻种一体内的MDA质量摩尔浓度呈现下降的趋势。通过对比发现藻种一在水分胁迫下,细胞膜的透性最小,膜脂过氧化程度最低,对藻种膜系统的伤害最小,其抗旱性最强。
     3.保护酶活性的变化。藻种一SOD和CAT的活性分别在30%PEG和20%PEG时最高,藻种二和藻种三SOD和CAT的活性都在20%PEG时最高,而藻种四SOD和CAT的活性在10%PEG时最高,说明藻种一、二、三消除氧自由基的能力较藻种四强,能够减轻活性氧自由基对藻种膜系统的伤害,使藻种表现出较强的抗旱性,藻种四的抗旱性较弱。随着PEG胁迫强度的增大,四种藻种SOD和CAT的酶活力降低,膜脂过氧化进一步加重,致使O_2-、H_2O_2过多积累,使藻种体内的保护酶体系在维护膜的稳定性和清除自由基上不能够充分发挥作用,也不能够积极地消除氧自由基对藻种膜系统的伤害,从而导致藻种较弱的抗旱性。对比四种藻种体内SOD和CAT的活性变化,发现藻种一较其他三种藻种有着较强的抗干旱能力。
Drought and salinity are not only global problems, but also the major environmental factors limiting the growth of biological desert crust algae. With the growing shortage of fresh water resources, drought and soil salinity have been threatening the development of crust succession and the environment in the arid and semi-arid areas of northwest China particularly.
     In this study, drought resistance of desert algal crusts in the eastern margin desert region of Tibetan Plateau was researched by field studies, sampling and laboratory cultivation, so as to filter out the algae species which have strong drought resistance. The main results were showed as follows:
     1. The changes of osmotic adjustment, proline and soluble protein content. With the increased intensity of PEG osmotic stress,free proline content and soluble protein content of the four algae species increased and then emerged in a downward trend.Free proline content and soluble protein content of the first and the second algal species is the highest in 20% PEG and 30% PEG osmotic stress respective, the third algal species has the highest content in30% PEG osmotic stress and the forth algal species in 10% PEG osmotic stress. The rate of increase is greater, the osmotic adjustment is stronger, so the drought resistance is stronger also. By comparing the four algal species, it found that the increase of free proline content and soluble protein content of the third algae species is the highest, the osmotic adjustment is the strongest, so the drought resistance is also the strongest, osmotic adjustment ability of the forth algae is the weakest, so its drought resistance is the weakest.
     2. The change of membrane permeability and MDA content. the MDA content of the first algae species is the higest in 10% PEG osmotic stress,while the second, third and forth species have the highest MDA content in 40% PEG osmotic stress, the membrane permeability and the MDA molar mass concentration increased obviously during the treatment of water stress,indicating that the membrane systems of the first algal species have maximal damage in 10% PEG, while the second, the third and the forth algal species have maximal damage in 30% PEG osmotic conditions, the lipid peroxidation is the highest respectively, so the drought resistance is the weakest.In 20% PEG and 30% PEG osmotic stress conditions, the second, third and forth algal species have lower MDA molar mass concentration and membrane permeability, so they have higher drought resistance. With the increasing intensity of PEG osmotic stress,theMDA content of the first algae species showed a downward trend. By comparing the four algal species, it found that the membrane permeability and the lipid peroxidation of the first algal species is the weakest, so it has the highest drought resistance.
     3. The change of protective enzyme activities .The first algae species has the highest CAT and SOD activities in 30% PEG and 20% PEGrespectively, the second and the third algae species have the highest SOD and CAT activities in 20% PEG,while the forth algae species in 10% PEG, indicating that the first, the second and the third algae species have higher ability to eliminate oxygen free radicals than the forth algae species, it can reduce the damage to the membrane system of algae species,so that the three algae species have stronger drought resistance, the forth algae species has lower drought resistance. With the increase of PEG stress intensity,SOD and CAT enzyme activities of the four algae species aredecreased, lipid peroxidation is further increased,resulting in O_2-, H_2O_2 excessive accumulation, and the protective enzyme systems of the four algae species are not able to fully play their role inmaintaining membrane stability and removing oxygen free radicals actively,which result in weaker drought resistance of the four algae species. By comparing SOD and CAT enzyme activities of the four algal species, it found the first algae species has the highest drought resistance.
引文
[1] Eldridge D.J.,Greene R.S.B.Micorbiotic Soil Crusts:A Review if their Roles in Roles and Ecological Processes in the Rangeland of Australi[J]..Aust.J.Soil Res.,1994,32:389~415.
    [2] Hawkes C V.,Flechtner V.R. Biological soil crusts in a Xeric Florida Shrubland: Composition,Abundance,and Spatial Heterogenity of crusts with different disturbance histories[J].Microbial Ecology,2002,43:1~12.
    [3] Smith S.M.,Abed R.M.M.﹠Garcia-Pichel F.Biological Soil Crusts of Sand Dunes i n C a p e C o d N a t i o n a l S e a s h o r e , M a s s a c h u s e t t s , U S A [ J ] . Microbial Ecology,2004,48:200~208.
    [4] Belnap J,Sanford R L,Lungu L.Ecological roles and responses to fire in Miombo Woodlands of Zimbabwe.Transactions of Zimbabwean Scientific.Association[J]. Biological soil crusts,1997a,70:14~20.
    [5] Eldridge D.J.,Bradstock R.A.The effect of time since fire on the cover and composition of cryptogamic soil crusts on a eucalypt shrubland soil[J].Cunnighamia,1994,3:521~527.
    [6] Evans R.D.,Johansen J.R.Microbiotic crusts and ecosystem processes[J].Critical Reviews in Plant Sciences,1999,18:183~225.
    [7] Zaady E,Groffman P,Shachak M.Nitrogen fixation in macro-and microphytic patches in the Negev desert[J].Soil Biology and Biochemistry,1998,30:449~454.
    [8] Issa O.M.,Stal L.J.,Defarge C.et al.,Nitrogen fixation by microbical crusts from desiccated Sahelian soils(Niger) [J].Soil biology﹠biochemistry,2001b,33:1425~1428.
    [9] Aranibar J.N.,Anderson I.C.,Ringerose S.et al.,Importance of nitrogen fixation in soil crust of southern African arid ecosystems:acetylene reduction and stable isotope studies[J].Journal of Arid Environment,2003,54:345~358.
    [10]陈荷生.沙坡头地区生物结皮水文物理特点及其环境意义[J].干旱区研究,1992,9 (1):31~38.
    [11]张元明.荒漠地表生物土壤结皮的微结构及其早期发育特征[J].科学通报,2005,50 (1):42~47.
    [12]崔燕,吕贻忠,李保国.鄂尔多斯沙地土壤生物结皮的物理性质[J].土壤,2004,36(2):197~202.
    [13]胡春香,张德禄,刘永定.干旱区微小生物结皮中藻类研究的新进展[J].自然科学进展,2003,13(8)791~795.
    [14]李新荣,张景光,王新平等.干旱沙漠区土壤微生物结皮及其对固沙植被影响的研究[J].植物学报,2000,42(9):965~970.
    [15]李新荣,贾玉奎,龙力群等.干旱半干旱地区土壤微生物结皮的生态学意义及若干研究进展[J].中国沙漠,2001,2,1(1):4~11.
    [16]吴玉环,高谦,程国栋.生物土壤结皮的生态功能[J].生态学杂志,2002,21(4):41~45.
    [17]胡春香,刘永定,张德禄.荒漠藻结皮的胶结机理[J].科学通报,2002,47(12): 931~937.
    [18]胡春香,刘永定.荒漠藻壳的精细结构与发育[J].水生生物学报,2002,24(1): 18~22.
    [19] Zhang Yuanming.The microstructure and formation of biological soil crusts in their early developmental stage[J].Chinese Science Bullein.2005,50(1):1~5.
    [20]张丙昌,张元明,赵建成等.古尔班通古特沙漠生物结皮藻类的组成和生态分布研究[J].西北植物学报,2005,25(10):2048~2055.
    [21] Belnap J,Harper K.T.,Warren S D..Surface disturbance of cryptobiootic soil crusts: nitrogennase activity, chlorphyll content and chlorophyll degradation[J].Arid soil Research and Rehabilitation,1994,8:1~8.
    [22]胡春香,刘永定.土壤藻类生物量及其在荒漠结皮的影响因子[J].生态学报,2003,23 (2):287~291.
    [23]张元明,曹同,潘伯荣.干旱与半干旱地区苔藓植物生态学研究综述[J].生态学报, 2002,22(1),1129~1134.
    [24]周志刚,程子俊,刘志礼.沙漠结皮中藻类生态的研究[J].生态学报,1995,15(1): 385~391.
    [25]李守中,肖洪浪,李新荣等.干旱、半干旱地区微生物结皮土壤水文学的研究进展[J].中国沙漠,2004,24(4):500~506.
    [26] Rogers R.W.,Lange R.T.,Nicholas D.J.D.,Nitrogen fixation by lichens of arid zone crusts[J].Nature,1996,209:96~97.
    [27] Zulpa de Caire G,Stormi de Cano M.,Zaccaro de Mule M.C.etal.Exopolysaccharide ofNostoc muscorum(Cyanobacteria)in the aggregation of soil particles[J].Journal of Applied Phycology, 1997,9:249~253.
    [28] Ferran Garcia-pichel, Alejandro Iopez-cortes﹠UIrich Nubel.Phylogenetic and orphological diversity of ayanobacteria in soil desert crusts from the Colorado Plateau[J].Applied and Environmental Microbiology,2001,67(40):1902~1910.
    [29] Mazor G et al. The role of cyanobacterial exopolysaccharides in structuring desertmicrobial crusts[J].FEMS Microbiology Ecology,1996,21:121~130.
    [30] Johansen J.R.,Cryptogamic crusts of semiarid and arid lands of North America[J]. Phycol,1993,29:140~147.
    [31] Belnap J.,Budel B. and Lange O.L. Biological soil crusts: Characteristics and distribution, in Biological Soil Crusts: Structure, Function and Management(Eds Belnap J. and Lange O.L.), Springer Berlin, 2001,3~30.
    [32] Belnap J.,Lange O.L., Structure and functioning of biological soil crusts: a synthesis.In: Belnap J., Lange O.L.(Eds.) Biological Soil Crusts: Structure, Function and Management. Springer Berlin,2003,471~473.
    [33] Belnap J., Prasse R., Harper K.T., Influence of biological soil crusts on soil environments and vascularplants. In:Belnap J., Lange O.L.(Eds) Biological Soil Crusts: Structure, Function and Management. Springer Berlin,2003b,281~302.
    [34] Belnap J.,Warren S.restoration success:a lesson from Patton’s tank tracks. Ecological Bulletin,1998,79:33.
    [35] Belnap J.,The world at your feet:desert biological soil crusts.Frontiers in Ecological Environmengts,2003,1(5):181~189.
    [36]张丙昌,赵建成,张元明等.不同生态因子对生物结皮中土生绿球藻生长的影响[J].2007,24(5):641~645.
    [37]冯宪栋,蒋霞敏,符方尧.理化因子对原绿球藻生长及其色素含量的影响[J].水产科学,2007,26(12):643~647.
    [38]李梦琴,张秋会,马莺.不同pH值和NaCl水平对新月菱形藻生长及EPA含量的影响[J].现代食品科技,2005,84(2):74~76.
    [39]张宝玉,李夜光,李中奎.温度、光照强度和pH对雨生红球藻光合作用和生长速率的影响[J].海洋与湖沼,2003,35(5):558~564.
    [40]冯竞楠,曾昭琪,杨永华.不同培养基、温度、光照及pH值对卵形隐藻生长的影响[J].河南大学学报(自然科学版), 2005,35(2):63~66.
    [41]胡春香等.半荒漠藻结皮中藻类的种类组成和分布[J].应用生态学报,2000,11:61~65.
    [42]周志刚等.沙漠结皮中藻类生态的研究[J].生态学报,1995,13:385~391.
    [43] Bailey D., Mazurak A P.﹠ Rosowski, Aggregation of soil particles by algae[J].Journal of phycology,1973,9:99~101.
    [44] Shubert L.E, Starks T.L. Algal succession on oprhnaed coal mine spoils[A].Wail K.M. Ecology and Coal Resoucrce Development[C]. NewYokr:Pergamon Perss,1979,661~667.
    [45] Starks T L. Shubert. Colonization and succession of algae and soil algal interactions as sociated with disturbed areas[J].Journal of Phycology,1982,18:99~107.
    [46]刘永定等.土壤藻类及其土理生态[J].水生生物学报,1993,17(3):272~277.
    [47]胡春香,马红樱,庞海龙等.兰州五泉山的藻类及其分布[J].西北植物学报,2003, 23(12):2099~2106.
    [48] Prosperi C.Environmental factors affecting in vitro nitrogenase activity of cyanobacteria solated from rice fields[J].Journal Appliedphycology,1992,4:197~204.
    [49] Chris M. Yeager, Jennifer L. Kornoky, David C. Housman, et al. Diazortophic community structuer and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Applied and Environmental Microbiology, 2004,70(2):973~983.
    [50]宋铁英,包晓东,郑伟文,Rasmussen ULLa.DGGE法检测稻田兰细菌及硅藻的遗传多态性[J].厦门大学学报,2002,41:669~673.
    [51] Rasmussen ULLa,Characterization by genotypic methods of symbiotic Nostoc strains isolated from five spicies of Gunnera. Arch. Microbiol.,2001,176:204~210.
    [52] Garcia Pichel F, Lopez-Cortes A, Nubel U. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau[J]. Applied and Environmental Microbiology,2001,67:1902~1910.
    [53]胡春香等.半荒漠藻结皮中藻类的种类组成和分布[J].应用生态学报,2000,11:61~65.
    [54]张丙昌,张元明,赵建成等.古尔班通古特沙漠生物结皮藻类的组成和生态分布研究[J].西北植物学报,2005,25(10):2048~2055.
    [55]张元明.荒漠地表生物土壤结皮的微结构及其早期发育特征[J].科学通报,2005,1,42~47.
    [56]胡春香,刘永定.宁夏回族自治区沙坡头地区半荒漠土壤中藻类的垂直分布[J].生态学报,2003,23(1):38~44.
    [57]张丙昌,张元明,赵建成等.准格尔盆地古尔班通古特沙漠生物结皮蓝藻研究[J].地理与地理信息科学,2005b,21(5):107~109.
    [58]张丙昌,赵建成,张元明等.新疆古尔班通古特沙漠南部沙垄不同部位藻类的垂直分布特征[J].植物生态学报,2008,32,456~464.
    [59]张丙昌,赵建成,张元明等.不同生态因子对生物结皮中土生绿球藻生长的影响[J].2007,24(5):641~645.
    [60]冯宪栋,蒋霞敏,符方尧.理化因子对原绿球藻生长及其色素含量的影响[J].水产科学,2007,26(12):643~647.
    [61]李梦琴,张秋会,马莺.不同pH值和NaCl水平对新月菱形藻生长及EPA含量的影响[J].现代食品科技,2005,84(2):74~76.
    [62]张宝玉,李夜光,李中奎.温度、光照强度和pH对雨生红球藻光合作用和生长速率的影响[J].海洋与湖沼,2003,35(5):558~564.
    [63]冯竞楠,曾昭琪,杨永华.不同培养基、温度、光照及pH值对卵形隐藻生长的影响[J].河南大学学报(自然科学版),2005,35(2):63~66.
    [64]陈兰周,刘永定,宋立荣.微鞘藻胞外多糖在沙漠土壤成土中的作用[J].水生生物学报,2002,26(1):155~159.
    [65]段争虎,刘新民,屈建军.沙坡头地区土壤结皮形成机理的研究[J].干旱区研究,1996,13(1):31~36.
    [66]吴玉环,程国栋,高谦.苔藓植物的生态功能及在植被恢复与重建中的作用[J].中国沙漠,2003,23(1):215~220.
    [67]朱震达,刘恕,邸醒民.中国的沙漠化及其治理[M].北京∶科学出版社,1989,9~17.
    [68]潘瑞炽,董愚得编.植物生理学[M].北京:高等教育出版社,1995.
    [69]王邦锡,黄久常,王辉.不同植物在不同水分条件胁迫下脯氨酸的积累与抗性的关系[J].植物生理学报,1992,15(1): 46~51.
    [70]肖用森.在渗透胁迫下稻苗中游离脯氨酸的积累与膜质过氧化的关系[J].武汉植物学研究,1996,14(4):334~340.
    [71]贾利强.金沙江热河谷造林树种抗旱特性的研究[D].北京:北京林业大学,2003.
    [72]王霞,候平.植物对干旱胁迫的适应机理[J].干旱区研究,2001,18(2):42~46.
    [73]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,260~261.
    [74] HAN R L (韩蕊莲),LI L X(李丽霞),LIANG Z S(梁宗锁).Seabuckt horn relative membrane conductivity and osmotic adjustment under drought stress[J]. Acta Bot.Boreal.-Occident.Sin.(西北植物学报),2003,23(1):23~27.
    [75]邹奇.植物生理学实验指导[M].北京:中国农业出版社,2000,161~162.
    [76]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444~448.
    [77]肖用森.在渗透胁迫下稻苗中游离脯氨酸的积累与膜质过氧化的关系[J].武汉植物学研究,1996,14(4):334~340.
    [78]龚吉蕊,张立新,赵爱芬等.油蒿抗旱生理生化特性研究初报[J].中国沙漠,2002, 22(4):387~392.
    [79]唐连顺,李广敏.水分胁迫下玉米叶肉细胞超微结构的变化及其与膜脂过氧化伤害的关系[J].植物学报,1994,36:43~49.
    [80]蒋明义,荆家海,王韶唐.干旱胁迫与植物膜脂过氧化[J].陕西杨凌:西北农业大学学报,1991,19(2):88~93.
    [81]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32:144~150.
    [82]吕庆,郑荣梁.干旱及活性氧引起小麦膜质过氧化与脱酯化[J].中国科学,1996, 26(1):26~30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700