木薯酒精废糟培养小球藻工艺及灵芝生物转化小球藻的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以节能环保、清洁发酵、提高经济效益为目的,研究了木薯酒精废水培养蛋白核小球藻,二次废水回用酒精生产的废水处理工艺,研究了各项工艺条件和参数。为了提高小球藻的应用价值,增加废水处理的效益,研究用灵芝对小球藻进行生物转化,采用动物体内抗肿瘤试验,评价了转化发酵液的药效,并对发酵液中可能的增效成分进行了研究。
     在250ml三角瓶中,用浓度为10-100%的木薯酒精废水培养钝顶螺旋藻、牟氏角毛藻、鱼腥藻、斜生栅藻和蛋白核小球藻。结果表明最适宜用此废水培养的微藻是蛋白核小球藻。用不加水稀释的木薯酒精废水培养该藻时,最适条件是初始pH6.0、温度27℃、光强3000 lux和光生物反应器中培养基循环速率110 ml min-1。
     在最适条件下用管式光生物反应器分别进行了间歇培养,分割培养和连续培养工艺的研究。在间歇培养(pH6.0)的对数期,流加pH自然的废水(pH3.8)进行连续培养,当D=0.17 day-1时,反应器能达到平衡,并维持较好的稳定达30天以上。pH、COD去除率和藻浓度分别稳定在6.22-6.47, 72.21-76.32%和3.55-3.73 g l-1范围内,废水中乳酸、醋酸、柠檬酸和琥珀酸的去除率分别为96.42%、100%、95.89%和39.44%,并能收获具有高附加值的藻细胞。此工艺解决了废水回用酒精生产使用碱调节pH和废水中物质浓度高的问题,处理后的废水可以直接回用到酒精生产中去。
     在灵芝基础培养基中添加不同浓度的小球藻粉,进行灵芝发酵,最适宜的添加量为10 g l-1,灵芝多糖等生物活性成分都有不同程度的增加。对比分析小球藻醇提物、灵芝基础培养基发酵液醇提物、灵芝生物转化小球藻发酵液中醇提物,组成成分的种类和含量的变化说明灵芝能对小球藻进行生物破壁并进行生物转化。生物转化发酵液以剂量为13 ml kg-1 d-1时,对小鼠肝癌的抑瘤效果最佳,达67.70%,与灵芝基础培养基发酵液(41.61%)和基础培养基发酵液配相同浓度小球藻水提液的抑瘤率(43.48%)相比,差异显著,体现了1+1>2的效果。
     灵芝生物转化小球藻发酵液中的转化多糖能显著提高荷瘤小鼠免疫学功能,从而显著提高抑瘤效果,在最适剂量(0.2 g kg-1d-1)时,抑瘤率为76.2%。不但明显高于灵芝基础培养基发酵液粗多糖,明显高于小球藻粗多糖,而且明显高于基础培养基所产多糖和小球藻多糖两者的叠加效应。发酵液中多糖含量的增加和转化多糖抗肿瘤效果的提高是灵芝生物转化小球藻发酵液抗肿瘤效果提高的原因之一。
     对灵芝生物转化小球藻发酵液中醇提物进行分析,保留时间为25.778min的组分增加量较高,经醇提、正丁醇萃取、大孔树脂柱分离、C-18柱精制,并经UV、LC/MS和IR图谱分析,是一种黄酮类化合物。黄酮类化合物通常具有抗肿瘤和其它生理活性功能,它的增加应该也是导致灵芝生物转化小球藻发酵液抗肿瘤效果提高的原因之一。
The dissertation was focused on the technics of using wastewater from cassava ethanol production to culture Chlorella pyrenoidosa, the determination of operation conditions and technological parameters, aimed to recycle the treated wastewater in ethanol fermentation to save energy, realize depurated fermentation, enhance economical benefit. In order to increase the applied value of C. pyrenoidosa, through anti-tumor experiment in vivo, the medicine effect of bioconversion ferment liquid was estimated after C. pyrenoidosa was bio-converted by Ganoderma lucidum. And the increased components of ferment liquid were also studied.
     After Spirulina platensis, Chactoceros muelleri, Anabaena sp., Scenedesmus obliquus and C. pyrenoidosa were cultured in 250-ml conical flasks, with wastewater from cassava ethanol production of different concentration (from 10 to 100%), C. pyrenoidosa was the optimum algae cultured in the undiluted wastewater through selection. The results showed that the optimum cultivation conditions were initial pH of 6.0, temperature at 27oC,continuous illumination at 3000 lux and cycle speed of 110 ml min-1 in a cycle tubular photobioreactor, when the undiluted wastewater was used to culture the algae..
     Batch, fed-batch and continuous culture was operated and researched in the cycle tubular photobioreactor under above optimum conditions. After the logarithmic phase of batch operation with wastewater of pH 6.0, the reactor could be continuously operated with pH natural (3.8) wastewater as feed solution. By a dilution ratio of 0.17 day-1, it could be operated stably for over 30 days in continuous operation. pH, removal rate of chemical oxygen demand and biomass (cell dried weight) concentration ranged from 6.22 to 6.47, 72.21 to 76.32 % and 3.55 to 3.73 g l-1, respectively. The removal rate of lactic acid, acetic acid, citric acid and succin acid in the wastewater were 96.42 %, 100 %, 95.89% and 39.44 %, respectively. And the algae which have high value were harvested. After treatment, the wastewater could be used again in the process of ethanol fermentation.
     C. pyrenoidosa powder was appended by different concentration into the basic medium of G. lucidum, the G. lucidum fermentation was studied. The optimum concentration was 10 g l-1, and the output of polysaccharides and other bioactivity matters in ferment liquid was enhanced significantly. The ethanol extraction from C. pyrenoidosa, from ferment liquid of G. lucidum in basic madium, from ferment liquid of bioconverted C. pyrenoidosa by G. lucidum were contrasted and analyzed by HPLC. The changes of component kinds and their concentration illustrated that G. lucidum could bio-broke the cell wall of C. pyrenoidosa and bioconversion was achieved. The high dose group (13 ml kg-1d-1) of bioconversion ferment liquid had the highest tumor inhibition (67.70%) which was higher than that of ferment liquid with basic media(41.61%) and that of mixture liquid(43.48%)contained ferment liquid with basic media and water extraction of C. pyrenoidosa at same concentration, significantly. The result showed 1+1>2.
     The bioconverted polysaccharides had the best activity of anti-tumor and immunological function. The anti-tumor inhibition was 76.2% at the optimum dose (0.2 g kg-1d-1). The polysaccharides from ferment liquid of bioconverted C. pyrenoidosa by G. lucidum had higher medicine effect not only than polysaccharides from ferment liquid of G. lucidum in basic madium, from C. pyrenoidosa, but also than the mixed polysaccharides. The increase of bioconversion polysaccharides in ferment liquid and the increase of its tumor inhibition was one of the reasons which resulted in the increase of anti-tumor of bioconversion ferment liquid.
     The increase of component whose retention time was 25.778 min was high. The component might play an important role and advanced action in the bioactivity of conversation ferment liquid, was separated from the crude butanol extraction of culture liquid and purified by macroporous resin HPD-400 and octadecyl silane column. It was likely conjectured as a flavone according to UV, HPLC/MS and IR. Flavone compound usually had anti-tumor and other bioactivity. The increase of flavone in ferment liquid was also one of the reasons which resulted in the increase of anti-tumor of bioconversion ferment liquid.
引文
1.孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望[J].可再生资源, 2006(2):78-82
    2.刘培良.从国家"能源安全"的战略高度认识发展我国的燃料酒精的重要性和必要性-巴西成功推行的《燃料酒精计划》给我们的启示[J].广西轻工业, 2005(2):15-17,23
    3.章克昌.发展"燃料酒精"的建议[J].中国工程科学, 2000(6):89-93
    4.谭显平.能源甘蔗-生产燃料酒精的最佳原料[J].甘蔗, 2004, 11(2):30-32
    5.马书霞,陈砺,王红林.发展新型能源--木薯燃料酒精[J].可再生能源, 2005(3):73-75
    6. Canizares-Villanueva R O, Dominguez A R, Cruz M S, etc. Chemical composition of cyanobacteria grown in diluted, aerated swine wastewater[J]. Bioresource Technology, 1995, 51:111-116
    7. Converti A, Scapazzoni S, Lodi A, etc. Ammonium and urea removal by Spirulina platensis [J]. Journal of Industrial Microbiology and Biotechnology, 2006, 33(1):8-16
    8.蒋培森,蒋加伦,汪富三,等.利用啤酒厂废水污泥培养钝顶螺旋藻和普通小球藻的研究[J].海洋湖沼通报, 2000(3):15-19
    9.岳振峰,高建华.罐头食品厂废水培养螺旋藻的研究[J].海洋通报, 1999
    10.王军锋,马金才,徐斌,等.酿酒废水培养钝顶螺旋藻与营养物质去除的研究[J].城市环境与城市生态, 2002, 15(5):42-44
    11.张绪霞,董海洲,侯汉学,等.燃料酒精制备及其开发前景[J].粮食与油脂, 2006(2):7-9
    12.方亚叶,石贵阳.酒精废糟液的综合处理[J].酿酒, 2003, 30(1):74-77
    13.程序.发展木薯酒精生产必须重视废液治理问题[J].中国热带农业, 2006(11):11
    14.冼萍,邓清华,张萍,等.木薯酒精废液的达标处理研究[J].工业用水与废水, 2006, 37 (6):21-22
    15.王新刚,吕锡武,戴世明,等. UASB接触氧化工艺处理酒精废醪[J].给水排水, 2007, 33(1):55-56
    16.罗刚,谢丽,周琪,等.高温厌氧CSTR反应器处理木薯酒精废水研究[J].中国给水排水, 2008, 24(9):13-16
    17.郑耀通.高效菌藻系统资源化处理畜牧养殖废水[J].武夷科学, 2004, 20:86-92
    18.罗刚,谢丽,周琪,等.木薯酒精废水资源化处理技术现状与进展[J].工业水处理, 2008, 28(8):1-5
    19.郭萍,蒋细良,田云龙,等.酒精废液清洁处理技术评析[J].农业环境科学学报, 2006, 25(增刊):378- 381
    20.章克昌,范志恒.酒糟粗滤液全回流酒精生产工艺[P].中国, 88101404.4. 1989
    21.张世军,李思健.酒精生产无废水排放工艺的研究[J].酿酒, 2002, 29(1):76-77
    22.王晓,高伟,王强.薯干类酒精废液全回用技术的研究与应用[J].山东环境, 2001, 2001(5):33-34
    23.郑伟,包存宽,陆雍森,等.基于系统动力学的推进酒精企业清洁生产政策模拟[J]. 四川环境, 2006, 25(1):100-105
    24.丁重阳,王玉红,张梁,等.膜过滤酒糟滤液回用的研究[J].酿酒, 2003, 30(1):61-63
    25. Ryther L H. Potential productivity of the sea[J]. Science, 1959, 130: 602-608
    26. Vincent W A. Algae for food and feed[J]. Process Biochen, 1969, 4(6):45-47
    27. Sorokin C. Tabular comparative data for the low-and high-temperature strains of Chlorella[J]. Nature, 1959, 184:613-614
    28. Martinez F, Orus M I. Interatctions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM 101[J]. Plant Physiol, 1991, 95:1150-1155
    29. Ogbonna J C, Masui H, Tanaka H. Sequential heterotrophic/autotrophic cultivation-an efficient method of producing Chlorella biomass for health food and animal feed[J]. J. Appl. Phycol, 1997, 9:359-366
    30.李师翁,李虎乾.植物单细胞蛋白资源-小球藻开发利用研究的现状[J].生物技术, 1997, 7(3):45-48
    31. Scott G T. The mineral composition of Chlorella pyreenoidosa grown in culture media containing varying concentration s of calcium, magnesium and sodium[J]. J. Cell and Comp. Physiol., 1943, 21:327-328
    32. Gill I, Valivety R. Polyunsaturated fatty acids, part 1:Occurrentce, biological activities and applications[J]. Tibtech., 1997, 15:401-409
    33.陈峰,姜悦.微藻生物技术[M].北京:中国轻工业出版社, 1999.
    34.刘学铭,梁世中.小球藻的保健和药理作用[J].中草药, 1999, 30(5):85-86
    35.李师翁,李虎乾.小球藻干粉的营养学与毒理学研究[J].食品科学, 1997, 18(7):48-51
    36.林芃,刘艳,杨海波.对小球藻蛋白质的提取及分离的研究[J].大连大学学报, 2002, 23(4):70-73
    37.陈颖,李文彬,孙勇如.小球藻生物技术研究应用现状及展望[J].生物工程进展, 1998, 18(6):12-16
    38.汪炬,蒲含林,洪岸,等.蛋白核小球藻提取物的抑瘤作用及对免疫功能的影响[J].营养学报, 2004, 26(2):136-148,143
    39.封会茹,李燕俊,李业鹏,等.蛋白核小球藻对小鼠细胞免疫系统的影响[J].中国卫生检验杂志, 2008, 18(8):1484-1185
    40.韩士群,张振华,刘海琴.小球藻生长因子对免疫功能的影响[J].中国生化药物杂志, 2004, 25(1):5-7
    41.胡萍,王雪青.海洋微生物抗菌物质的研究进展[J]. 2004, 25(11):397-401
    42.陈晓清,郑怡,林雄平.海水小球藻抗菌蛋白的分离纯化及性质研究[J].热带亚热带植物学报, 2008, 16(5):42-445
    43.江红霞,郑怡,雷红娟,等. 4种微藻提取物抗植物病原菌活性的研究[J].河南农业科学, 2008(10):83-85,89
    44. Honjoh K, Yoshimoto M, Joh T. Isolation and Characterization of Hardening-InducedProteins in Chlorella Vulgaris C227:Identification of Late Embryogenesis Abundant Proteins[J]. Plant Cell Physiol, 1995, 36(8):1421-1430
    45. Opekarova M, Caspari T, Tanner W. The HUP1 guen Product of Chlorella Kessleri: H + /Glucose Symport Studied in Vitro[J]. Biochim Biophys Acta, 1994, 1194(1):149-154.
    46.陈晓清,郑怡,林雄平.二种微藻多糖与蛋白质提取物的抗菌活性[J].福建师范大学学报(自然科学版), 2005, 21(2):76-79
    47.许倩倩,景建克,刘硕,等.利用异养小球藻USTB201生产二十碳五烯酸的研究[J].化学与生物工程, 2008, 25(8):34-37
    48.张建民,刘新宁.可利用微藻的种类及其应用前景[J].资源开发与市场, 2005, 21 (1):65-66,80
    49.魏文志,夏文水,吴玉娟.小球藻糖蛋白的分离纯化与抗氧化活性评价[J].食品与机械, 2006, 22(5):20-22
    50.田丽梅,王旻,陈卫.小球藻Chlorella vulgaris中α-葡糖苷酶抑制剂的提取和性质研究[J].中国海洋药物杂志, 2005, 24 (6):11-14
    51. Pirt S J, Lee Y K, Richmond A, etc. The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization[J]. J. Chem. Tech. Biotechnol., 1980, 30:25-34
    52. Day J G, Tsavalos A J. An investigation of the heterotrophic culture of the green alga Tetraselimis[J]. J. Appl. Phycol., 1996, 8:73-77
    53. Richmond A, Vonshak A. Preface of the special issue[J]. Biores. Technol., 1991, 38:83-84
    54.张登沥,何培民,周洪琪.不同方法培养小球藻的试验[J].上海水产大学学报, 1999, 8(1):1-5
    55.张丽莉,吴垠,孙建明,等.补充CO2对光生物反应器培养小球藻生长和光合作用的影响[J].水产科学, 2008, 27(11):570-573
    56. Oliveira M A, Reis E M, Nozaki J. Biological Treatment of Wastewater from the Cassava Meal Industry[J]. Environmental Research, 2001, Section A 85:177-183
    57. Travieso L, Hall D O, Rao K K, etc. A helical tubular photobioreactor producing Spirulina in a semicontinuous mode[J]. International Biodeterioration & Biodegradation, 2001, 47:151-155
    58.李师翁,李虎乾,张建军.小球藻大规模培养研究的进展[J].植物学通报, 1998, 15 (4)):45-50
    59. Samejima H, Myers J. On the heterotrophic growth of Chlorella pyrenoidosa[J]. J. Gen. Microbiol, 1958, 18:107-117
    60. Mayo A W, Noike T. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture[J]. Water Res., 1994, 28:1001-1008
    61. Takechi Y. Chlorella- From Foundation to Application[M]. Tokyo: Gakushukenkyusha, 1971.
    62. Chen F, Johns M R. Effect of C/N ratio and aeration on fatty acid composition of heterotrophic Chlorella sorokiniana[J]. J. Appl. Phycol., 1991, 3:203-209
    63. Glodue R M, Maxey J E. Microalgae feeds for aquaculture[J]. J. Appl. Phycol., 1994,6:131-141
    64. Shi X M, Chen F, Yuan J P, etc. Heterotrophic production of lutein by selected Chlorella strains[J]. J. Appl. Phycol., 1997, 9:445-450
    65.余若黔,刘学铭,梁世中,等.小球藻(Chlorella vulgaris)的异养生长特性研究[J].海洋通报, 2000, 19(3):57-62
    66.闫海,周洁,何宏胜,等.小球藻的筛选和异养培养[J].北京科技大学学报, 2005, 27(4):408-412
    67.张丽君,杨汝德,肖恒.小球藻的异养生长及培养条件优化[J].广西植物, 2001, 21 (4):353 - 357
    68.潘欣,李建宏,戴传超,等.小球藻异养培养的研究[J].食品科学, 2002, 23(4):28-33
    69.闫海,张宾,王素琴,等.小球藻异养培养的研究进展[J].现代化工, 2007, 27(4):18-21
    70.刘学铭,余若黔,梁世中.分批异养培养小球藻光密度值与干重的关系[J].微生物学通报, 1999, 26(5):339-343
    71.韩志国,欧阳昊,林娴,等.蛋白核小球藻光驯化的快速光曲线变化[J].生态科学, 2006, 25(1):32-33
    72.汪志平,钱凯先.螺旋藻遗传育种研究进展[J].微生物学通报, 2000, 27(4):288-291
    73.吴晓微,孙雪,陆开形,等.小球藻psbA基因的克隆与序列分析[J].水产科学, 2008, 27(7):360-362
    74.王义琴,尹良宏,王鹏,等.小球藻的分子生物学研究进展[J].遗传, 2004, 26(3):399-402
    75.韩兴梅,李元广,魏晓东,等.转兔防御素基因小球藻培养的营养模式研究[J].海洋科学, 2006, 30(7):48-52
    76.孙雪,马斌,周成旭.蛋白核小球藻核酮糖-1,5-二磷酸羧化/加氧酶小亚基部分基因序列的克隆与分析[J].海洋科学, 2008, 32 (3):40-43,48
    77.马美萍.微藻多糖生物合成的研究进展[J].水利渔业, 2006, 26 (3):19-20
    78.王逸云,王长海.无菌条件下的小球藻培养条件优化[J].烟台大学学报(自然科学与工程版), 2006, 19(2):125-129
    79. Borowitzka M A. Micro - algae Biotechnology[M]. Cambridge: Cambridge Univesity Press, 1990.
    80.李兴武,李元广,沈国敏,等.普通小球藻异养?光自养串联培养的培养基[J].过程工程学报, 2006, 6(2):277-280
    81.桂林,史贤明,李琳,等.蛋白核小球藻不同培养方式的比较[J].河南工业大学学报(自然科学版), 2005, 26(5):52-55
    82.王海英,郭祀远,郑必胜,等.自养、异养和混养下小球藻的生长及生化成分[J].华南理工大学学报(自然科学版), 2004, 32(5):47-50,55
    83. Valderrama L T, Campo C M D, Rodriguez C M, etc. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula[J]. Water Research, 2002, 36:4185-4192
    84. Hall D O. Solar energy use through biology-past, present and future[J]. Solar Energy, 1979, 22:307-328
    85. Shelef G, Soeder C J. Algae Binmass[M]. Amsterdam: Elsevier/North-Holland Biomdeical Press, 1980.
    86.黄魁,刘雷,董海丽.小球藻在污水处理中的研究[J].江西化工, 2007(1):25-26
    87.胡月薇,邱承光.小球藻处理废水研究进展[J].环境科学与技术, 2003, 26(4):48-49.
    88.周华伟,林炜铁,陈涛.小球藻的异养培养及应用前景[J].氨基酸和生物资源, 2005, 27(4):69~73
    89.马金才,陈甫华.乳制品厂污水中螺旋藻的生长及其对氮磷去除作用研究[J].农业环境保护, 2002, 21(5):456-458,464
    90.蒙沛南,郑鼎勋,周科.利用太阳能光生物反应器处理有机污水并培养饲料级螺旋藻实验研究[J].太阳能学报, 2002, 23(1):1-3
    91.王翠红,李日强,辛晓芸.钝顶螺旋藻处理氨氮废水的研究[J].上海环境科学, 2002, 21(12):728-731
    92. Villasclaras S S, Sancho M E M, Caballero M T E, etc. Production of microalgae from olive mill wastewater[J]. International Biodeterioration & Biodegradation, 1996, 38:245-247
    93.穆寄林,马华继,熊振湖.藻菌共生系统在城市污水处理中的研究与应用[J].南平师专学报, 2005, 24(2):64-67
    94.梁燕茹,李文权.小球藻饵料的研究进展[J].福建农业学报, 2005, 20(增刊):70-74
    95.毛彦景.藻类固定化技术在污水处理中的应用[J].四川环境, 2008, 27(5):99-102,113
    96.刘学铭,梁世中.小球藻在食品工业中的应用及小球藻食品的研制[J].武汉食品工业学院学报, 1999(1):47-52.
    97.罗平汉.共和国历史上一场特殊的代食品运动[J].炎黄春秋, 2006(6):30-34
    98.陈海儒.三年困难时期代食品运动探微[J].经济与社会发展, 2007, 5(2):155-157
    99. Terry K L, Raymond L P. System design for the autotrophic production of microalgae[J]. Enzyme and Microbial Technology, 1985, 7:474-487
    100.王雪青,苗惠,翟燕.微藻细胞破碎方法的研究[J].天津科技大学学报, 2007, 22(1):21-25
    101.何扩,张秀媛,李玉锋.小球藻破壁技术及其藻片研制[J].食品工业科技, 2006, 27(2):147-148,151
    102.胡开辉,周山勇.小球藻细胞活性物质的提取及对啤酒酵母的生理效应[J].应用生态学报, 2005, 16 (8):1572-1576
    103.范晓,严小军.海藻化学研究与展望[J].海洋科学, 1996, 2:24-25
    104.张建芬,胡忠策,薛亚平,等.叶黄素的微藻生物法生产技术[J].食品科技, 2006(12):106-109
    105.赵建成,吴跃峰.生物资源学[M].北京:科学出版社, 2002.
    106.郑利华,焦素珍.五倍子发酵炮制[J].中国中药杂志, 1998, 23(1):26-27
    107.庄毅.菌质-中药的一个新领域[J].中药新药与临床药理, 1992(8):49-51
    108.王兴红,李祺德,曹秋娥.微生物发酵中药应成为中药研究的新内容[J].中草药, 2001, 32:267-268
    109.吴炳新,牛纪江,孙筱林.中药发酵制药技术[J].山东中医杂志, 2001, 20:179-180
    110.王玉红.中药黄芪对灵芝液体发酵影响的研究[D]:[硕士学位论文].无锡:江南大学生工学院, 2004
    111.杨海龙.灵芝新型抗肿瘤发酵制剂的研究[D]:[博士学位论文].无锡:江南大学生工学院, 2004
    112.李雁群.中药的灵芝发酵及其产物抗乙肝活性的研究[D]:[博士学位论文].无锡:江南大学生工学院, 2004
    113.段明星,朱涛,徐文联.灵芝纤维素酶的分离纯化和性质[J].清华大学学报(自然科学版), 1998, 38(6):56-58
    114. D'souza T M, Merritt C S, Reddy C A. Lingnin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum[J]. Appl Environ Microb, 1999, 65(12):5307-5313
    115.马桔云,赵晶岩,姜颖.纤维素酶在黄连提取工艺中的应用[J].中草药, 2000, 31(2):103-104
    116. Cao Q-Z, Lin Z-B. Ganoderma lucidum polysaccharides peptide inhibits the growth of vascular endothelial cell and the induction of VEGF in human lung cancer cell[J]. Life Sciences, 2006, 78:1457-1463
    117. Chen H-S, Tsai Y-F, Lin S, etc. Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides[J]. Bioorganic & Medicinal Chemistry, 2004, 12:5595-5601
    118. Gao J-l, Leung K S Y, Wang Y-t, etc. Qualitative and quantitative analyses of nucleosides and nucleobases in Ganoderma spp. by HPLC-DAD-MS[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44:807-811
    119. Li X L, Zhou A G, Li X M. Inhibition of Lycium barbarum polysaccharides and Ganoderma lucidum polysaccharides against oxidative injury induced byγ-irradiation in rat liver mitochondria[J]. Carbohydrate Polymers, 2007, 69:172-178
    120.尤建良,赵景芳,章克昌,等.发酵型中药生物制剂"康复灵"抑瘤实验研究[J].实用临床医药杂志, 2005, 9(8):46-47
    121.王玉红,丁重阳,章克昌.苦乔对灵芝发酵生产灵芝酸的影响[J].食品与发酵工业, 2003, 29(9):95-97
    122. Morimoto T, Nagatsu A, Murakami N, etc. Anti-tumor-promoting glyceroglycolipids from the green alga Chlorella vulgaris[J]. Phytochemistry, 1995, 40:1433-1437
    123. Morris H J, Carrillo O, Almarales A, etc. Immunostimulant activity of an enzymatic protein hydrolysate from green microalga Chlorella vulgaris on undernourished mice[J]. Enzyme and Microbial Technology, 2007, 40:456-460
    124. Park J-Y, Cho H-Y, Kim J-K, etc. Chlorella dichloromethane extract ameliorates NO production and iNOS expression through the down-regulation of NFκB activity mediated by suppressed oxidative stress in RAW 264.7 acrophages[J]. Clinica Chimica Acta, 2005, 351:185-196
    125.胡勇有,吴超飞,叶万生,等.干木薯酒精废醪固液分离初探[J].环境科学研究, 1998, 11(1):45-48
    126. CHEN F, Johns M R. High cell density culture of Chlamydomonas reinhardtii on acetate using fed-batch and hollow-fiber cell-recycle systems[J]. Bioresearch and Technology, 1995, 55:103-110
    127. Borowitzka M A. Large scale algal culture systems: the next generation[J]. Australasian Biotechnology, 1994, 4:212-215
    128.余若黔,刘学铭,梁世中,等.低氮异养小球藻对氨氮的去除及其成分变化[J].华南理工大学学报(自然科学版), 2000, 28(8):11-15
    129.国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    130. Chen F, Johns M R. Substrate inhibition of Chamydomonas reinhardtii by acetrate in heterotrophic culture.[J]. Process Biochemistry, 1994, 29:245-252
    131. Shi X-m, Zhang X-w, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources[J]. Enzyme and Microbial Technology, 2000, 27:312-318
    132. Andreyeva V M. On the variability of taxomomic characters of unicellular green algae under the conditions of culture,Ⅰ.The dependence of cell size in Chlorella vulgaris on the type of nutrition, [J]. Botanicheskll zhurnal, 1967, 52:960-966
    133.韦金河,汪廷,冯伟民,等.小球藻大面积养殖技术[J].江苏农业科学, 2004, 2004(2):74-76
    134.康瑞娟,蔡昭铃,施定基.用于微藻培养的气升式光生物反应器[J].化学反应工程与工艺, 2001, 17(1):44-49
    135. Pirt S J, Lee Y K, Walach M R, etc. A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance[J]. Journal of Chenical Technology and Biotechnology, 1983, 33B:35-58
    136. Watanabe Y, Saiki H. Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas[J]. Energy Conversion and Mangement, 1997, 38(Supplement):S499-S503
    137. Scragg A H, Illman A M, Carden A, etc. Growth of microalgae with increased calorific values in a tubular bioreactor[J]. Biomass and Bioenergy, 2002, 23:67-73
    138. Walter C, Steinau T, Gerbsch N, etc. Monoseptic cultivation of phototrophic microorganisms--development and scale-up of a photobioreactor system with thermal sterilization[J]. Biomol Eng, 2003, 20(4-6):261-271
    139. APHA, AWW, WPCF. Standard methods for the examination of water and wastewater. 17th ed[M]. Madrid: Diaz de Santos, 1992.
    140. Goldman J C, Carpenter E J. A kinetic approach to the effect of temperature on algal growth[J]. Liminology and Oceanograthy, 1974, 19:756-766
    141. Gong X-d, Chen F. Optimisation of culture medium for growth of Haematococcus pluvialis[J]. Journal of Applied Phycology, 1997, 9(5):437-444
    142. Myers J, Growth characteristics of algae in relation to the problems of mass culture, inAlgal Culture -From Laboratory to Pilot Plant, J S Burlew, Editor. 1953, The Kirby Lithographic Company Inc: Washington D.C.
    143.张学成,信式祥,李清华,等.螺旋藻[M].青岛:青岛海洋大学出版社, 1999.
    144.李平作,徐柔,章克昌.灵芝胞外多糖深层发酵培养基的优化[J].无锡轻工大学学报, 1998, 17(4):26-30
    145.李刚,李宝健.灵芝发酵培养基的研究[J].中药材, 1998, 21(8):379-81
    146. Tang Y, Zhong J. Exopolysaccharide biosynthesis and related enzyme activities of the medicinal fungus , Ganoderma lucidum , grown on lactose in a bioreactor[J]. Biotechnology Letters, 2002, 24:1023-26
    147. Yang F, Liau C. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures[J]. Process Biochem, 1998, 33(5):547-553
    148. Lee K, Lee S, Lee H. Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermentor[J]. Journal of Bioscience and Bioengineering, 1999, 88(6):646-650
    149. Fang Q, Zhong J. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide[J]. Biochemical Engineering Journal, 2002, 10(1):61-65
    150. Yang F, Ke Y, Kuo S. Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures[J]. Enzyme and Microbial Technology, 2000, 27:295-301
    151.李平作.灵芝深层发酵生产生物活性物质的研究[D]:[博士论文].无锡:江南大学, 1997
    152.张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社, 1999.
    153. Dubois M, Gilles K, Hamilton J, etc. Colorimetric method for determination of sugars and related substances[J]. Analytical chemistry, 1956, 28(3):350-356
    154.冯礼金,姚汝华.红芝酸性物质的HPLC和薄层层析分析[J].中国食用菌, 1997, 17(1):3-4
    155.钱竹.灵芝酸液体发酵及其分离纯化的研究[D]:[硕士学位论文].无锡:江南大学生工学院, 2006
    156.吴细丕,钱林法.实验动物与肿瘤研究[M].北京:中国医药科技出版社, 2000.
    157.梁军,李予蓉,孙纪元,等.灵芝-912对小鼠移植性肿瘤的抑制作用[J].中国现代医学杂志, 2003, 13(9):11-13
    158.林志彬.灵芝抗肿瘤作用的研究[J].医学研究通讯, 2005, 34(11):1-2
    159.陈亚非,陈金显.灵芝多糖免疫调节及抗肿瘤作用综述[J].中国食品添加剂, 2002, 2002(4):36-41
    160.尚德静,李庆伟,崔乔,等.灵芝硒多糖SeGLP一1抗氧化与抗肿瘤作用的研究[J].营养学报, 2002, 24(3):249-251
    161.白晨,王淑珍,杨家峰,等.灵芝一松茸共酵多糖抗肿瘤活性实验的比较研究[J].微生物学通报, 2004, 3l(5):76-80
    162.王玉.多糖抗肿瘤作用的研究进展[J].中国优生与遗传杂志, 2003, 11(2):139
    163.林志彬.灵芝及其所含多糖在体内抗肿瘤作用的机制[J].中国药理通讯, 2002, 19(4):17
    164.生东明,马莺.灵芝多糖的研究进展[J].中国甜菜糖业, 2004, 2004(2):36-39
    165.杨其蒀.天然药物化学[M].北京:中国医药科技出版社, 1996.
    166.苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东理工大学出版社, 2002.
    167. Sariaslani F S, Kunz D A. Induction of cytochrome P450 in Streptomyces griseus by soybean flour[J]. Biochem. Biophys. Res. Commun., 1986, 141(2):405-410
    168.井乐刚,张永忠.微生物发酵制备大豆异黄酮的研究进展[J].微生物学通报, 2003, 30(2):86-88
    169. Esaki H, Watanabe R, Onozaki H, etc. Formation mechanism for potent antioxidative o-dihydroxyisoflavones in soybeans fermented with Aspergillus saitoi[J]. Biosci Biotechnol Biochem, 1999, 63(5):851-858
    170. Lee Y-W, Kim J-D, Zheng J, etc. Comparisons of isoflavones from Korean and Chinese soybean and processed products[J]. Biochemical Engineering Journal, 2007, 36:49-53
    171. Kwak C S, Lee M S, Park S C. Higher antioxidant properties of Chungkookjang, a fermented soybean paste, may be due to increased aglycone and malonylglycoside isoflavone during fermentation[J]. Nutrition Research, 2007, 27:719-727

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700