城市污水处理菌藻共生系统中影响藻类生长的因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国面临着十分严峻的环境问题:一方面,水污染严重,大量污水得不到处理及合理的资源化利用;另一方面,随着温室效应的加剧,CO_2的减排与固定技术亟待应用。如果能在污水处理系统中构建微藻培养单元,通过将藻细胞从培养系统中分离,从而获得低氮磷含量的出水,在净化污水的同时利用微藻吸收固定CO_2,可以有效实现污水的资源化和CO_2减排的要求。
     本文通过单因素实验、均匀实验等实验方法,采用人工污水、城市生活污水,考察了影响二形栅藻生长的各环境因素,包括光照、营养物质、pH值、CO_2加富量等。本研究还设置了小试验证试验,在验证先前实验结论的同时,考察了在各种试验条件下藻类对水中污染物的去除情况。
     本研究得到以下主要研究成果:
     1)初沉池出水要比二沉池出水更加适合藻类生长,这是由于初沉池出水中的营养物质更加丰富,更加利于藻类吸收。另外初沉池出水中含有较多细菌,细菌与藻类的生长呈现相互促进的作用。
     2)污水中的微藻能放出大量的活性氧,使得水中溶解氧浓度高达20mg·L~(-1)以上。但若进行曝气,由于曝气的吹脱作用,最终溶解氧含量就维持在7-9mg·L~(-1)之间。并且曝气强度越大,溶解氧含量越低。
     3)加富CO_2对藻类生长有显著的促进作用。加富低浓度的CO_2能有效地增加藻产量,但是加富高浓度的CO_2也会对藻类生长产生抑制。建议采用加富2%(0.004v·v·min~(-1))CO_2。
     4)光照强度与光照周期对藻类的影响存在复杂的交互作用,并且还受到藻液深度,水的透光性等因素的影响。在培养初期,藻液透光性良好,SS对藻类生长的影响并不显著。但是进入稳定期后,藻类生长的最大藻密度会受到水中SS的限制。水中SS越大,藻液能达到的最大藻密度越低。
     5)尿素作为氮源最利于藻类生长。另外,高浓度的无机氮会对藻类的生长产生抑制作用。在20mg·L~(-1)~85mg·L~(-1)范围内,无机氮浓度越高,藻类生长越慢。在典型生活污水磷浓度范围内(2mg·L~(-1)~8mg·L~(-1)),磷浓度为4mg·L~(-1)时最适合藻类生长。pH值对藻类生长的影响十分显著。二形栅藻生长的最佳pH值为7.5。磷浓度与pH值之间无明显交互作用。
Environmental problems are very serious in our country: on the one hand, large amount of wastewater discharge in rivers without treatment and reasonable reuse; On the other hand, with the intensification of the greenhouse effect, the reduction CO_2 emission and the application of CO_2 fixing method are in urgent. Once microalgae can be used in wastewater treatment system, it can absorb CO_2 while the purification of wastewater. It is able to effetely achieve wastewater recycling and CO_2 emission reduction requirements.
     This thesis has used some experiment method (single factor experiment method, uniform experiment method, etc.) to investigate various environmental factors, on the growth of algae in artificial wastewater and real wastewater, including light, nutrients, pH, CO_2 enrichment, etc. This study also set up a laboratory scale experiment, to verify the previous results and investigated the pollutants removal in various experimental conditions.
     The conclusions of this thesis are as follows:
     1) The primary sedimentation tank effluent is more suitable for algae growth than the secondary sedimentation tank effluent. Firstly, this is because the primary sedimentation tank effluent enriches more nutrients which are more suitable for algae uptake. Secondly, primary sedimentation tank effluent contains more bacteria, which can promote the growth of the algae.
     2) Algae can release a large number of active oxygen, which can make the DO up to 20 mg·L~(-1). Once aeration, due to aeration stripping effect, the final dissolved oxygen will reduce to 7-9 mg·L~(-1). And the greater the aeration intensity, the lower the DO in the solution is.
     3) The enrichment of CO_2 can facilitate on algal growth significantly. Low concentration enrichment of CO_2 can increase algae production significantly, but high concentrations of CO_2 enrichment will inhibit on algal growth. Recommended enrich 2% (0.004 v·v-1·min~(-1)) CO_2
     4) Light intensity and photoperiod have complex interaction effect on algae growth, and also affected by the water depth, light transmission and other factors. In the initial cultivation, because of a good translucent of liquid algae, the effect of SS is not significant on the algae growth. But when the algae grow into the stable period, the maximum cell density will be restricted by the SS concentration. Greater SS concentration is, the lower the maximum cell density can reach.
     5) Urea as a nitrogen source is the most conducive to algae growth. In addition, high concentrations of inorganic nitrogen inhibit the growth of algae. At 20mg·L~(-1) ~ 85mg·L~(-1) range, the higher the concentration of inorganic nitrogen, the slower growth of algae. In a typical wastewater phosphorus concentration range (2mg·L~(-1)~8mg·L~(-1)), algae grow the fastest when the phosphorus concentration is 4mg·L~(-1). pH can significantly affect on the growth of algae. The best pH for Scenedesmus dimorphus growth is 7.5. There is not significant interaction between phosphorus concentration and the pH value.
引文
1刘昌明,李丽娟.解决我国水问题的途径.科学对社会的影响, 1999, (03): 65~69.
    2 Mezrioui N, Oudra B, Oufdou K, et al. Effect of microalgae growing on waste-water batch culture on escherichia-coli and vibrio-cholerae survival. Water Science And Technology, 1994, 30(8): 295~302.
    3 Park K Y, Lim B R, Lee K. Growth of microalgae in diluted process water of the animal wastewater treatment plant. Water Science And Technology, 2009, 59(11): 2111~2116.
    4 Larsdotter K, Jansen J, Dalhammar G. Biologically mediated phosphorus precipitation in wastewater treatment with microalgae. Environmental Technology, 2007, 28(9): 953~960.
    5 Touchette B W, Burkholder J M. Review of nitrogen and phosphorus metabolism in seagrasses. Journal Of Experimental Marine Biology And Ecology, 2000, 250(1-2): 133~167.
    6秦延平.浅谈我国城市污水处理的现状与发展.科技促进发展, 2009, (04): 76~79.
    7 Mulbry W, Kondrad S, Buyer J. Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. Journal Of Applied Phycology, 2008, 20(6): 1079~1085.
    8 Kebede-Westhead E, Pizarro C, Mulbry W W. Treatment of swine manure effluent using freshwater algae: Production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. Journal Of Applied Phycology, 2006, 18(1): 41~46.
    9王忻宇.温室效应问题浅析.网络财富, 2009, (5): 191~192.
    10刘宏文,夏秀丽.浅析温室效应及控制对策.中国环境管理干部学院学报, 2008, 18(3): 49~51.
    11 Bogner J, Pipatti R, Hashimoto S, et al. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the IntergovernmentalPanel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Management & Research, 2008, 26(1): 11~32.
    12裴克毅,孙绍增,黄丽坤.全球变暖与二氧化碳减排.节能技术, 2005, 23(3): 239~243.
    13 Vanotti M B, Szogi A A, Vives C A. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms. Waste Management, 2008, 28(4): 759~766.
    14 Wang B, Li Y Q, Wu N, et al. CO_2 bio-mitigation using microalgae. Applied Microbiology And Biotechnology, 2008, 79(5): 707~718.
    15杨忠华,陈明明,曾嵘等.利用微藻技术减排二氧化碳的研究进展.现代化工, 2008, 28(8): 15~19.
    16 Cakir F Y, Stenstrom M K. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology. Water Research, 2005, 39(17): 4197~4203.
    17 Su J J, Liu B Y, Chang Y C. Emission of greenhouse gas from livestock waste and wastewater treatment in Taiwan. Agriculture Ecosystems & Environment, 2003, 95(1): 253~263.
    18 Masunaga T, Sato K, Senga Y, et al. Characteristics of CO_2, CH4 and N2O emissions from a multi-soil-layering system during wastewater treatment. Soil Science And Plant Nutrition, 2007, 53(2): 173~180.
    19 Keller J, Hartley K. Greenhouse gas production in wastewater treatment: process selection is the major factor. Water Science And Technology, 2003, 47(12): 43~48.
    20 Yun Y S, Lee S B, Park J M, et al. Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal Of Chemical Technology And Biotechnology, 1997, 69(4): 451~455.
    21 Shahabadi M B, Yerushalmi L, Haghighat F. Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. Water Research, 2009, 43(10): 2679~2687.
    22邹树平,吴玉龙,杨明德等.微藻的综合开发利用.水产科学, 2007, 26(3): 179~181.
    23张建民,刘新宁.海洋微藻的利用现状和开发前景.齐鲁渔业, 2006, 23(4): 6~8.
    24 Beer L L, Boyd E S, Peters J W, et al. Engineering algae for biohydrogen and biofuel production. Current Opinion In Biotechnology, 2009, 20(3): 264~271.
    25 Um B H, Kim Y S. Review: A chance for Korea to advance algal-biodiesel technology. Journal Of Industrial And Engineering Chemistry, 2009, 15(1): 1~7.
    26 Amin S. Review on biofuel oil and gas production processes from microalgae. Energy Conversion And Management, 2009, 50(7): 1834~1840.
    27 Li Q, Du W, Liu D H. Perspectives of microbial oils for biodiesel production. Applied Microbiology And Biotechnology, 2008, 80(5): 749~756.
    28 Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3): 294~306.
    29穆寄林,马华继,熊振湖.藻菌共生系统在城市污水处理中的研究与应用.南平师专学报, 2005, (02): 70~73.
    30 Hosetti B B, Frost S. A review of the sustainable value of effluents and sludges from wastewater stabilization ponds. Ecological Engineering, 1995, 5(4): 421~431.
    31 Babu M A, Mushi M M, van der Steen N P, et al. Nitrification in bulk water and biofilms of algae wastewater stabilization ponds. Water Science And Technology, 2007, 55(11): 93~101.
    32 Zimmo O R, Van der Steen N P, Gijzen H J. Quantification of nitrification and denitrification rates in algae and duckweed based wastewater treatment systems. Environmental Technology, 2004, 25(3): 273~282.
    33 Bernal C B, Vazquez G, Quintal I B, et al. Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water Air And Soil Pollution, 2008, 190(1-4): 259~270.
    34李朔.藻类在污水处理中的角色及价值.节能与环保, 2005, (04): 18~20.
    35黄翔峰,闻岳,何少林等.高效藻类塘对农村生活污水的处理及氮的迁移转化.环境科学, 2008, (08): 2219~2226.
    36况琪军,谭渝云.活性藻系统对氮、磷及有机物的去除研究.中国环境科学, 2001, 21(3): 212~216.
    37邢丽贞,李飞,张向阳等.固定化微藻在解决环境问题方面的应用.水资源保护, 2006, (05): 9~12.
    38 Shi J, Podola B, Melkonian M. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. Journal Of Applied Phycology, 2007, 19(5): 417~423.
    39 De-Bashan L E, Moreno M, Hernandez J P, et al. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research, 2002, 36(12): 2941~2948.
    40 Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. Biometals, 2002, 15(4): 377~390.
    41 Noüe J, Proulx D. Biological tertiary treatment of urban wastewaters with chitosan-immobilizedPhormidium. Applied Microbiology and Biotechnology, 1988, 29(2): 292~297.
    42 Robinson P K, Reeve J O, Goulding K H. Kinetics of phosphorus uptake by immobilizedChlorella. Biotechnology Letters, 1988, 10(1): 17~20.
    43 Ca Nizares R O, Domínguez A R, Rivas L, et al. Free and immobilized cultures of Spirulina maxima for swine waste treatment. Biotechnology Letters, 1993, 15(3): 321~326.
    44任长江.光强对雨生红球藻生长的影响.河南师范大学学报(自然科学版), 2008, (06): 111~113.
    45何振平,王秀云,樊晓旭等.温度和光照对塔胞藻生长的影响.水产科学, 2007, (04): 218~221.
    46梁英等编著.海水生物饵料培养技术,青岛海洋大学出版社, 1998. 137.
    47曾艳艺,黄翔鹄.温度、光照对小环藻生长和叶绿素a含量的影响.广东海洋大学学报, 2007, (06): 36~40.
    48 Peter J R R G. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany, 2005, 82(3): 222~237.
    49张曼,曾波,王明书等.温度升高对高光强环境下蛋白核小球藻(Chlolorella pyrenoidosa)光能利用和生长的阻抑效应.生态学报, 2007, (02): 662~667.
    50冯竞楠,曾昭琪,杨永华.不同培养基、温度、光照及pH值对卵形隐藻生长的影响.河南大学学报(自然科学版), 2005, (02): 63~66.
    51沈英嘉,陈德辉.不同光照周期对铜绿微囊藻和绿色微囊藻生长的影响.湖泊科学, 2004, (03): 285~288.
    52陈明耀主编.生物饵料培养,中国农业出版社, 1995. 187.
    53 Spoehr H A, Milner H W. The chemical composition of Chlorella; effect of environmental conditionsplantphysiol. Plant Physiol, 1949, 24(1): 120~149.
    54 Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 2006, 40(15): 2799~2815.
    55 Ruiz-Marin A, Mendoza-Espinosa L G, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 2010, 101(1): 58~64.
    56 Kitaya Y, Azuma H, Kiyota M. Effects of temperature, CO_2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis. Space Life Sciences: Closed Ecological Systems: Earth And Space Applications, 2005, 35(9): 1584~1588.
    57 Tseng K F, Huang J S, Liao I C. Species control of microalgae in an aquaculture pond. Water Research, 1991, 25(11): 1431~1437.
    58赵颖,张永春.流速与温度的交互作用对铜绿微囊藻生长的影响.江苏环境科技, 2008, (01): 23~26.
    59刘玉生,韩梅,梁占彬等.光照、温度和营养盐对滇池微囊藻生长的影响.环境科学研究, 1995, (06): 7~11.
    60 Benider A, Tahiri M, Belkoura M, et al. Interacting effect of heliothermic factors on the growth rate of 3 Scenedesmus species. Annales De Limnologie-International Journal Of Limnology, 2001, 37(4): 257~266.
    61唐兴本,赵新生.中肋骨条藻的室内筛选室外培养技术.河北渔业, 2005, (02): 47~49.
    62蒋霞敏.温度、光照、氮含量对微绿球藻生长及脂肪酸组成的影响.海洋科学, 2002, (08): 9~13.
    63张学成,孟振,时艳侠等.光照、温度和营养盐对三株盐生杜氏藻生长和色素积累的影响.中国海洋大学学报(自然科学版), 2006, (05): 754~762.
    64朱明,张学成,茅云翔等.温度、盐度及光照强度对海链藻(Thalassiosira sp.)生长的影响.海洋科学, 2003, (12): 58~61.
    65杨桂娟,栾忠奇,周笑辉.温度对小球藻生长量和溶氧量影响研究.农机化研究, 2009, (09): 157~158.
    66潘辉,熊振湖,孙炜.共固定化菌藻对市政污水中氮磷去除的研究.环境科学与技术, 2006, (01).
    67刘德启,牛明改,丁梅香等.利用菌—藻体系高效快速脱除生活污水中氮、磷的技术研究.苏州大学学报(工科版), 2002, (01): 29~33.
    68徐年军,张学成.温度、光照、pH值对后棘藻生长及脂肪酸含量的影响.青岛海洋大学学报(自然科学版), 2001, (04): 541~547.
    69 Jacob-Lopes E, Gimenes Scoparo C H, Cacia Ferreira Lacerda L M, et al. Effect of light cycles (night/day) on CO_2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering And Processing, 2009, 48(1): 306~310.
    70于娟,唐学玺,张培玉等. CO_2加富对两种海洋微绿藻的生长、光合作用和抗氧化酶活性的影响.生态学报, 2005, (02): 197~202.
    71梁文懂,米本年邦.绿藻的光培养及其生长机理研究.武汉科技大学学报(自然科学版), 1999, (03): 248~251.
    72 Travieso L, Benitez F, Sanchez E, et al. Assessment of a microalgae pond for post-treatment of the effluent from an anaerobic fixed bed reactor treating distillery wastewater. Environmental Technology, 2008, 29(9): 985~992.
    73 Martinez M E, Sanchez S, Jimenez J M, et al. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 2000, 73(3): 263~272.
    74 Jespersen A, Christoffersen K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv Fur Hydrobiologie, 1987, 109(3): 445~454.
    75 Gonzalez L E, Canizares R O, Baena S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technology, 1997, 60(3): 259~262.
    76 Toro J E. The growth rate of two species of microalgae used in shellfish hatcheries cultured under two light regimes. Aquaculture Research, 1989, 20(3): 249~254.
    77 Woertz I, Feffer A, Lundquist T, et al. Algae Grown on Dairy and Municipal Wastewater for Simultaneous Nutrient Removal and Lipid Production for Biofuel Feedstock. Journal Of Environmental Engineering-Asce, 2009, 135(11): 1115~1122.
    78刘伟娜,吴垠,徐哲等.气升式光生物反应器培养微藻溶氧和pH值变化规律研究.渔业现代化, 2008, (02): 6~10.
    79 Vijayaraghavan S, Goswami D Y. Photocatalytic oxidation of toluene in water from an algae pond with high dissolved oxygen content. Journal Of Solar Energy Engineering-Transactions Of The Asme, 2003, 125(2): 230~232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700