不同生长基质中叶状地衣及其共生藻的分子鉴定和系统发育分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地衣是由真菌和藻类共生联合而成的有稳定形态和特殊结构的复合体,是目前生物界中最突出、最成功的共生现象的典范,被称为“生物的开路先锋”。目前梅衣科地衣中还未见有报道存在共生蓝藻,而且藻菌共生与生长基质的关系也未见报道。因此本研究采用形态学方法、化学显色法与分子生物学方法相结合鉴定了采自云南省的10个地衣样品,并对其共生藻进行了分离纯化培养及鉴定;探讨了藻菌共生组合与其生长基质之间的关系。
     采用GADPH和ITS基因序列构建系统发育树分析10个地衣样品(实验室编号分别为D1、D2、D3、D4、D5、D6、D7、D8、D9、D10。其中D1、D4、D5、D6、D9为树生地衣,D2、D10为土生地衣,D3、D7、D8为石生地衣)。结果表明,10个地衣样品隶属于茶渍目(Lecanorales)梅衣科(Parmeliaceae)大叶梅属(Parmotrema),D1、D3、D4、D5、D6、D7、D8、D9与大叶梅(Parmotrema tinctorum)亲缘关系最近,其中D3、D4、D6隶属于大叶梅(Parmotrema tinctorum),D2、D10隶属于大叶梅属(Parmotrema)的同一个种Parmotrema perlatum。
     分离纯化10个地衣共生藻(实验室编号为Z1、Z2、Z3、Z4、Z5、Z6、Z7、Z8、Z9、Z10),对其进行形态鉴定及rbcL、ITS基因序列分析构建系统发育树。结果表明,5个树生地衣共生藻样品Z1、Z4、Z5、Z6、Z9为念珠藻目(Nostocales)念珠藻科(Nostocaceae)念珠藻属(Nostoc);2个土生地衣共生藻样品Z2、Z10为四孢藻目(Tetrasporales)胶球藻科(Coccomyxaceae)胶球藻属(Coccomyxa);3个石生地衣分离藻样品Z3、Z7、Z8是绿球藻目(Chlorococcales)栅藻科(Scenedesmaceae)链带藻属(Desmodesmus)。另外,尽管Z1、Z5、Z9分别是从采自不同区域(姚安县及南华县)的地衣中分离纯化的,但亲缘关系最近;同样Z4、Z6亲缘关系最近;Z2、Z10亲缘关系最近,Z7、Z8亲缘关系最近。所以地衣共生菌与共生藻的共生关系与其生存的地理区域关系不大,但却和其生长基质具有明显的相关性。
     许多学者曾试图实现地衣菌藻共生的人工重建,然而,除了Stahl、Ahmadjian等人的实验之外,几乎没有成功的报道。Ahmadjian及Heikkila曾重复了Stahl关于壳状地衣(Crustaceous lichen)石果衣(Endocarpon pusillum)的人工重建实验,从而进一步证实了由该地衣的无藻子囊孢子和无菌共生藻细胞重建了共生联合之后能够形成具有子囊壳的地衣体。Stocker-W(o|¨)rg(o|¨)tter等在实验室土壤基质中成功再合成蓝藻型地卷属地衣叶状菌体。只有存在足够数量的共生光合生物细胞才能在琼脂平板中形成地衣真菌菌丝体。地衣的重建在土壤基物上较为成功。本研究结果表明,地衣共生藻类型与地衣生长基质具有明显的相关性,而与生存的地理区域关系不大,因此可以推测地衣菌藻人工重建困难可能是因为人工重建条件与地衣生长的基质和实际环境条件不同所致。
     地衣中目前报道的共生蓝藻主要存在于地卷目(Peltigerales),如地卷科(Peltigeraceae)、肺衣科(Lobarlaceae)、胶衣科(Collemataceae)、猫耳衣科(Leptogiummenziesii)等,梅衣科(Parrneliaceae)地衣中还未见有报道。本研究显示树生梅衣科地衣中存在共生念珠藻(Nostoc),梅衣科地衣共生藻为绿藻的传统观点有待完善。
The lichen association is a mutualistic interaction between a mycobiont (fungal partner) and a phycobiont (cyanobacteria or green algal); the most successful example of symbiosis is known as the "pioneer organisms". Now there is cyanobacteria in Parmeliaceae which is not reported recently, furthermore, the relationship between algae-fungus symbiosis and growth matrix also has no reports. Ten specimens of lichens that collected from Yunnan province of China were identified by morphological identification, chemical development process and molecular biology method. Meanwhile, we isolated, purified and identified the phycobionts of the ten specimens. Furthermore, we discussed the relationships of phycobionts- mycobionts symbiosis on different growth matrixs.
     GADPH and ITS sequences were analyzed (The serial numbers of ten lichens specimens are respectively D1, D2, D3, D4, D5, D6, D7, D8, D9, D10 in the laboratory. D1, D4, D5, D6, D9 are corticolous lichens, D2, D10 are tecolous lichens, D3, D7, D8 are saxicolous lichens). The results show that the specimens of lichens are identified as Lecanorales, Parmeliaceae, Parmotrema. Thereinto, D1, D3, D4, D5, D6, D7, D8, D9 are closest affiliation with Parmotrema tinctorum, D3, D4, D6 are belonged to Parmotrema tinctorum, D2, D10 are belonged to Parmotrema perlatum.
     The phycobionts were isolated and purified (The serial numbers of ten phycobionts are Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10 in the laboratory) from ten specimens of lichens. Morphological identification and ITS, rbcL sequences were analyzed. The results show that five specimens of phycobionts from corticolous lichens, numbered Z1, Z4, Z5, Z6, Z9 respectively, are identified as Nostocales Nostocaceae Nostoc. Two specimens of phycobionts from tecolous lichens, Z2, Z10 are identified as Tetrasporales, Coccomyxaceae coccomyxa. Three specimens of phycobionts from saxicolous lichens, Z3, Z7, Z8 are identified as Chlorococcales Scenedesmaceae desmodesmus. Furthermore, the localities of lichens and phylogenetic analysis reveal that Z1, Z5, Z9 have closest affiliation. Similarly, it is closest affiliation that Z4, Z6 and Z2, Z10 and Z7, Z8. In concluding, mycobionts and phycobionts have rare relationships to the geographical origin, but it has obvious correlation with the growth matrix.
     Many scholars had tried to realize the artificial resynthesis of lichens. However, few successful experiments were reported besides Stahl and Ahmadjian. Ahmadjian and Heikkila repeated the Stahl's experiment about the artificial resynthesis of Endocarpon pusillum, it further confirmed that no-algae ascospores and sterile phycobionts were able to form the thallus of lichens which had perithecium. Stocker-W(o|¨)rg(o|¨)tter researched that the resynthesis of foliose thalli of the cyanobacterial lichen Peltigera praetextata was achieved on a soil substratum under laboratory conditions. On agar plates mycelia formation by this lichen fungus only occurred when a sufficient number of photobiont cells was present. The artificial resynthesis of lichens is very successful on a soil substratum under laboratory conditions. Our results show that mycobionts and phycobionts have rare relationships to the geographical origin, but it has obvious correlation with the growth matrix. Therefore, the artificial resynthesis of lichens is very difficult. We consider that the artificial resynthesis conditions are different with growth matrix and actual environment.
     So far, according to reports, the cyanobacterias existed in Peltigerales only, such as Peltigeraceae, Lobarlaceae, Collemataceae, Leptogiummenziesii. There was no cyanobacteria in Parrneliaceae. However, this results show that the phycobiont is Nostoc in Parrneliaceae (corticolous lichens), Which improve the traditional view that all the phycobionts are green algae in Parrneliaceae.
引文
[1]魏江春.地衣.见:裘维蕃,余永年.菌物学大全[M].北京:科学出版社.1998, 445-481.
    [2]木合塔尔·阿不都克力木,阿不都拉·阿巴斯,赛买提等.三种地衣在污染环境下的敏感度[J].干旱区研究. 2001, 18 (4).
    [3]客绍英.地衣-大气污染的指示灯[J].生物学通报. 2001.36(8): 20-21.
    [4]李冬雪,丁雨龙.地衣协同进化研究进展[J] .南京林业大学学报, 2001, 25(1): 56-60.
    [5]邓红,魏江春.地衣标本的采集、制作与保存[J].菌物研究, 2007, 5(1): 55-58.
    [6] Yuan Xunlai, Xiao Shuhai, Taylor T N. Lichen like Symbiosis 600 Million years ago[J]. Journal Science, 2005, 308(5724): 1017-1020.
    [7]陈建斌.地衣的二元性及其概念的双重理解与思考[J].生物多样性. 1994, 2(4): 228-230.
    [8]陈建斌.地衣特殊性、多样性及其重要性[J].生物多样性. 1995, 3(2): 113-117.
    [9]陈春丽,李颖,赵遵田.重庆金佛山梅衣科地衣研究[J].山东科学. 2008, 21(1): 39-40.
    [10]李颖,陈春丽,赵遵田.沂山地衣研究[J].菌物研究. 2008, 6(2): 71-73.
    [11]颜其德.南极高等植物-地衣[J].科学中国. 2007, (11): 38-39.
    [12]姜山,周先宝.贵州地衣资源及其分布规律[J].贵州师范大学学报(自然科学版). 2001, 19(4): 17-21.
    [13]张峰,赵遵田,刘华杰等.蒙山地衣调查初报[J].山东林业科技. 1999, (2): 76-79.
    [14]苗晓琳,孟庆峰,魏江春.中国文字衣科(厚顶盘目、子囊菌门)地衣之稀有种和新记录种[J].菌物学报. 2007, 26(4): 493-506.
    [15]陈建斌.刘晓娟.黄永青.北京东灵山地区主要树生地衣调查初报[J].生态学报. 1999, 19(1): 76-79.
    [16]程光中,吴兴亮.贵州地衣资源及其生态特征[J].贵州林业科技. 1995, 23(3): 26-29.
    [17]杨桂兰,王顺建,张亚玲等.河北雾灵山地衣的研究II(松萝科Usneaceae、石蕊科Cladoniaceae)[J].首都师范大学学报(自然科学版). 2005, 1: 73-78.
    [18]李学东,王琛,华振玲等.河北雾灵山地衣的研究III (石耳科Umbilicariaceae、黄枝衣科Teloshistaceae、蜈蚣衣科Physciaceae)[J].首都师范大学学报(自然科学版). 2006, 1: 67-72.
    [19]俞森华,吴继农.湖北神农架鸡皮衣属(Pertusaria DC.)地衣初步研究[J].武汉植物学研究. 1997, 15(4): 331-335.
    [20]赵遵田,李可峰,王宏.山东地衣的初步研究[J].山东科学. 2002, 15(3): 4-8.
    [21]赵遵田,刘华杰,李家涛.山东省徂徕山地地衣研究[J].山东科学. 1998, 11(4): 28-31.
    [22]赵遵田,刘华杰,姜纯连.山东省崂山地衣研究[J].山东师大学报(自然科学版). 1999, 14(4): 426-428.
    [23]艾尼瓦尔·吐米尔,阿不都拉·阿巴斯,努尔巴依·阿不都沙勒克等.新疆地衣植物生态特征的研究[J].新疆大学学报(自然科学版). 2002, 19(1): 61-66.
    [24]朱圣潮.丽水松萝科地衣[J].丽水师范专科学校学报. 2001, 23(5): 32-34.
    [25]吴剑峰.江苏南通地衣新发现[J].生物学杂志. 1996, (69): 22-23.
    [26]牛东玲,王立松,张颖君等.地衣次生代谢产物及其生物活性研究进展[J].天然产物研究与开发. 2007, 19: 1079-1086.
    [27]古丽仙·买买提,木合塔尔·阿不都克里木.地衣作为监测环境污染指标的意义[J].新疆大学学报(自然科学版). 2004, 21: 100-101.
    [28]常见梅衣科( Parmeliaceae )分属描述http://www.sdau.edu.cn/life/sites/diyi/xitongxueyanjiu/
    [29] Thell A., Feuerer T., Stenroos S.,et al.. Monophyletic groups within the parmeliaceae identified by ITS rDNA,β-tubulin and GADPH sequences[J]. Mycological Progress. 2004, 3(4): 297-314.
    [30] Eriksson OE., Hawksworth DL.. Outline of the ascomycetes[J]. Systema Ascomycetum. 1998, 16: 83-296.
    [31] Eschweiler FG. Systema lichenum, genera exhibens rite distincta, pluribus novis adaucta[J]. Norimbergiae. 1824, 26.
    [32] Adanson M.. Families des Plants. Paris. 1763.
    [33] Acharius E.. Methodus lichenum. Stockholm. 1803, 394.
    [34] Nylander W.. Les lichens des environs de Paris. P.Schmidt/Paris. 1896, 142.
    [35] Persohd., Ramboldg.. Phacopsisa lichenicolous genus of the Parmeliaceae[J]. Mycological Progress. 2002, 1: 43-55.
    [36] Henssen A., Jahns HM.. Lichens Eine Einfuhrung in die Flechtenkunde. G.Thieme Verlag, Stuttgart. 1973.
    [37]刘华杰.中国肾盘衣属及其邻近属地衣的分类学研究[D].山东师范大学硕士论文. 2001.
    [38]赵小钒,弭忠祥.雀石蕊地衣体形态的扫描电镜研究[J].电子显微学报. 1991, 20(4): 505-506.
    [39]胡光荣,陈建斌.中国蜈蚣衣科(子囊菌门)IV.黑蜈蚣衣属-新种[J].菌物系统. 2003, 22(4): 534-535.
    [40]王玉良,阿地里江·阿不都拉,张元明等.蜈蚣衣科的中国地衣新记录[J].云南植物研究. 2005, 27(2): 147-148.
    [41]李学东.揭开地衣中的共生奥秘(二)[J].植物杂志. 1996, (2): 24-26.
    [42]赵小钒,邵铁华,兰小霞.两种地衣植物的化合物分析[J].植物研究. 2000, 20(1): 86-88.
    [43]李炜. DNA分析与基因组序列和植物系统学研究[J].生物技术通报. 2006, (2): 43-49.
    [44] Baruffi L.. Popumorphsim comparison bewteen RAPD and multliocus enzyme electrophoresis data[J]. Hered. 1995, 74: 425-437.
    [45] Welsh J., Mmcell M.. Fingerprinting genomes using PCR with arbtirary primers. Nucl. Acid. Res[J]. 1990, 18: 7213-7218.
    [46] Murtagh GJ.,Dyer PS., Mcclure PC., et al.. DNA markers as a tool to study variation in lichen-forming fungi[J]. Lichenologist. 1999, 31(3): 257-267.
    [47] Seymour FA., Crittenden PD., Dikinson MJ., et al.. Breeding systems in the lichen-forming fungal genus cladonia[J]. Fungal Genetics and Biology. 2005, 42: 554-563.
    [48] Lopandic K., Molnar O., Prillinger H.. Application of ITS sequence analysis, RAPD and AFLP fingerprinting in characterizing the yeast Genus Fellomyces[J]. Microbiological Research. 2005, 160(1): 13-26.
    [49]张志华,洪葵,兰小霞.核酸序列直接分析在真菌鉴定方面的应用[J].华南热带农业大学学报. 2006, 12(2): 39-43.
    [50] Blanco O., Crespo A., D., Divakar PK., et al.. Molecular phylogeny of parmotremoid lichens ( Ascomycota, Parmeliaceae ) [J]. Mycologia. 2005, 97(1):150-159.
    [51] Bruns TD., Vilgalys R., Barns SM., et al.. Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences[J]. Molecular phylogenetic and evolution. 1992, 1(3): 231-241.
    [52] Gargas A., Taylor JA.. Phylogeny of Discomycetes and early radiations of the apothecial ascomycotina inferred from SSU rDNA sequence[J]. Experimental Mycology. 1995, 19(1): 7-15.
    [53] Schultz M., Budel B.. On the systematic position of the lichen genus Heppia[J]. Lichenologist. 2003, 35(2): 151-156.
    [54] Cubero OF., Paul D., Bridge., et al.. Terminal-Sequence Conservation Identifies Spliceosomal Introns in Ascomycete 18S RNA Genes[J]. Molecular Biology and evolution. 2000, 17(5): 751-756.
    [55] García-martínez MJ., Martínez-murcia A., Antón I., et al.. Comparison of the small 16S to 23S intergenic spacer region(ISR) of the rRNA operons of some Escherichia coli strains of the COR collection and E-coli K-12[J]. Bacteriology. 1996, 178(21): 6374-6377.
    [56] Helms G., Friedl T., Rambold G.. Phylogenetic relationhships of the Physciaceae inferred from rDNA sequence data and selected phenotypic characters[J]. Mycologia. 2003, 95(6): 1078-1099.
    [57] Zoller S., Lutzoni F.. Slow alage, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Molecular Phylogenetics and Evolution[J]. 2003, 29: 629-640.
    [58] Liu Y J., Whelen S., Hall B D.. Phylogenetic Relationships among ascomycetes: Evidence from an RNA Polymerse II Subunit[J]. Molecular Biology and evolution. 1999, 16(12): 1799-1808.
    [59] Matheny PB.. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales)[J]. Molecular Phylogenetics and Evolution. 2005, 35(1): 1-20.
    [60] Reeb V., Lutzoni F., Roux C.. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-froming Acarosporaceae and evolution of polyspory[J]. Molecular Phylogenetics and Evolution. 2004, 32: 1036-1060.
    [61] Tang AM., Jeewon RC., Hyde KD.. Phylogenetic utility of protein (RPB2,β-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi)[J]. Antonie van Leeuwenhoek. 2007, 91(4): 327-349.
    [62] Svenning M., Eriksson T., Rasmussen U.. Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rRNA sequence analyses[J]. Archives of Microbiology. 2005, 183(1): 19-26.
    [63] Laamanen M. Forsstrom L., Sivonen K.. Diversity of Aphanizomenon flos-aquae(cyanobacterium)populations along a Baltic Sea sality gradient[J]. Applied and Environmental Microbiology. 2002,68:5296-5303.
    [64] Rocap G., Distel D., Waterbury J., et al.. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences[J]. Applied and Environmental Microbiology. 2002,68(3): 1180-1191.
    [65] Rasmussen U., Svenning M.. Characterization by genotypic methods of symbiotic Nostoc strain isolated from five species of Gunnera[J]. Archives of Microbiology. 2001, 176(3): 204-210.
    [66] Lu W., Evans EH., Mccoll SM., et al.. Identification of cyanobacteria by polymorphisms of PCR-amplified ribosomal DNA spacer region[J]. FEMS Microbiology Letters. 1997, 153(1): 141-149.
    [67] Iteman I., Rippka R., Marsac NT., et al.. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria[J]. Microbiology. 2000, 146: 1275-1286.
    [68]史全良,卜复鸣,韩梅.地衣中共生念珠藻多拷贝序列的初步分析[J].苏州大学学报(自然科学版). 2005, 21(4): 75-79.
    [69] Baker JA., Entsch B., Mckay DB.. The cyanobiont in an Azolla fern is neither Anabaena nor Nostoc[J]. Microbiology Letters. 2003, 229(1): 43-47.
    [70] Rajaniemi R., Hrouzek P., Kastovska K., et al.. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria)[J]. International Journal of Systematic and Evolutionary Microbiology. 2005, 55: 11-26.
    [71]刘晶晶,康升云,曹建国等.利用16S rRNA基因分析3种念珠藻的亲缘关系[J].西北植物学报. 2008, 28(3): 0459-0464.
    [72] Li L., Tabita R.. Maxiumum activity of recombinant ribulose-1,5-bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcX gene[J]. The Journal of Bacteriology. 1997, 179(11): 3793-3796.
    [73] Clegg MT., Gant BS., Learn GH.. Rates and patterns of chloroplast DNA evolution[J]. Proceedings of the National Academy of Sciences. 1994, 91(15): 6795-6801.
    [74] Kellogg EA., Juliano ND.. The structure and function of rubisco and their implication for systematic studies[J]. American Journal of Botany. 1997, 84: 413-421.
    [75] Bousquet J., Strauss SH., Doerksen AH.. Extensive variation in evolutionary rateof rbcL gene sequences among seed plants[J]. Proceedings of the National Academy of Sciences. 1992, 89(16): 7844-7848.
    [76] O'Brien H, Miadlikowska J, Lutzoni F. Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera[J]. European Journal of Phycology, 2005, 40: 363-378.
    [77] Rudi K., Skulberg O., Jakobsen K.. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains[J]. The Journal of Bacteriology. 1998, 180(13): 3453-3461.
    [78] Lyra C., Laamanen M., Lehtimaki J., et al.. Benthic cyanobacteria of the genus Nodularia are toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia[J]. International Journal of Systematic and Evolutionary Microbiology. 2005, 55: 555-568.
    [79] Rudi K., Jakobsen K.. Cyanobacterial tRNALeu(UAA) group I introns have polyphyletic origin[J]. FEMS Microbiology Letters. 1997, 156(2): 293-298.
    [80] Rudi K., Jakobsen K.. Complex evolutionary pattern of tRNALeu(UAA) group I introns in cyanobacterial radiation[J]. The Journal of Bacteriology. 1999, 181(11): 3445-3451.
    [81] Pausrud P., Rikkinen J., Lindblad P.. Cyanobiont specificity in some Nostoc-containing lichens and in a Peltigera aphthosa photosymbiodeme[J]. New Phytologist. 1998, 139(3): 517-524.
    [82] Paulsrud P.. The Nostoc symbiont of lichens[M]. Uppsala University. Sweden. 2001, 32-34.
    [83] Rikkinen J., Oksanen I., Lohtander K.. Lichen guilds share related cyanobacterial symbionts[J]. Science. 2002, 297(5580): 357.
    [84] Costa J., Paulsrud P., Lindblad P.. The cyanobacterial tRNA(UAA) intron: evolutionary pattern in a genetic marker[J]. Molecular Biology and evolution. 2002, 19(6): 850-857.
    [85] Oksanen I., Lohtander K., Sivonen K., et al.. Repeat-type distribution in trnLintron does not correspond with species phylogeny: comparison of the genetic markers 16S rRNA and trnL intron in heterocystous cyanobacteria[J]. International Journal of Systematic and Evolutionary Microbiology. 2004, 54: 765-772.
    [86] Zhou R., Wei X., Jiang N., et al.. Evidence that HetR protein is an unusual serine-type protease[J]. Proceedings of the National Academy of Sciences. 1998, 95(9): 4959-4963.
    [87] Lundgren P., Janson S., Janasson S., et al.. Unveiling of novel radiations within Trichdesmium cluster by HetR gene sequence analysis[J]. Applied and Environmental Microbiology. 2005, 71(1): 190-196.
    [88] Mes T., Stal L.. Variable selection pressures across lineages in Trichodesmim and related cyanobacteria based on the heterocyst differentiation protein gene hetR[J]. Gene. 2005, 346(14): 163-171.
    [89] Bergsland KJ., Haselkorn R.. Evolutionary relationships among eubaeteria, cyanobacteria, and chloroplasts: evidence from the rpoC 1 gene of Anabaena sp strain PCC 7120[J]. The Journal of Bacteriology. 1991, 173(11):3446-3455.
    [90] Toledo G., Palenik B.. Synechococcus diversity in the California current as seen by RNA polymerase(rpoC1) gene sequences of isolated strains[J]. Applied and Environmental Microbiology. 1997,63(11): 4298-4303.
    [91] Wilson K., Schembri M., Baker P., et al.. Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR[J]. Applied and Environmental Microbiology. 2000, 66(1): 332-338.
    [92] Lindblad P., Haselkorn R., Bergman B., et al.. Comparison of DNA restriction fragment length polymorphism of Nostoc strains in and from cycads[J]. Archives of Microbiology. 1989, 152(1): 20-24.
    [93] Brett A., Neilan BA., Jacobs D., et al.. Genetic Diversity and Phylogeny of Toxic Cyanobacteria Determined by DNA Polymorphisms within the Phycocyanin Locus[J]. Apples and environmental microbiology. 1995, 61(11): 3875-3883.
    [94] Baker JA., Neilan BA., Entsch B.. Identification of vanteria and their toxigenicityin environmental samples by rapid molecular analysis[J]. Environ. 2001, 16: 472-482.
    [95] Lindemuth R., Wirtz N., Lumbsch HT.. Phylogenetic analysis of nuclear and mitochondrial rDNA sequences supports the view that loculoascomycetes (Ascomycota) are not monophyletic[J]. Mycological Research. 2001, 105(10): 1176-1181.
    [96] Lumbsch HT., Wirtz N., Lindemuth R., et al.. Higher level phylogenetic relationships of Euascomycetes (Pezizomycotina) inferred from a combined analysis of nuclear and mitochondrial sequence data[J]. Mycological Progress. 2002, 1(1): 57-70.
    [97] Hofstetter V., Miadlikowska J., Kauff F., et al.. Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: A case study of the Lecanoromycetes (Ascomycota)[J]. Molecular Phylogenetics and Evolution. 2007, 44(1): 412-426.
    [98] Stenroos S., Hyvonen J., Myllys L., et al.. Phylogeny of the genus Cladonia s.lat (Cladoniaceae, Ascomycetes) inferred from molecular, morphological and chemical data[J]. Cladistics. 2002, 18(3): 237-278.
    [99]陈国忠,李文均,徐丽华等. 16S rRNA二级结构的研究进展及其在系统分类中的应用[J].微生物学杂志. 2005, 25(5): 54-57.
    [100]刘超洋,庄文颖. rRNA二级结构序列应用于真菌系统学研究的方法初探[J].菌物学报. 2007, 26: 22-31.
    [101]刘杨,崔晓龙,李文均等. RNA二级结构在微生物系统发育分析上的应用[J].生物学通报. 2006, 33(2): 147-150.
    [102] Beiggi S., Piercey-Normore MD.. Evolution of ITS ribosomal RNA secondary structures in fungal and algal symbionts of selected species of Cladonia sect. Cladonia (Cladoniaceae, Ascomycotina)[J]. Journal of Molecular Evolution. 2007, 64(5): 528-542.
    [103] Fitch WM.. Toward defining the course of evolution: Minimum change for aspecific tree topology[J]. Sestematic Zoology. 1971, 20(4): 406-416.
    [104] Hartigan JA.. Minimum evolution fits of a given tree[J]. Biometrics. 1973, 29(1): 53-65.
    [105] Sober E.. Reconstructing the past: parsimony, evolution,and inference[M]. MIT press. Cambridge. MA. 1998.
    [106] Miyamoto MM., Cracraft J.. Phylogenetic inference, DNA sequences analysis and the future of molecular systematics. Phylogenetic analysis of DNA sequence. Oxford university press. New York. 1991,3-17.
    [107] Sordis J., Nei M.. Relative efficiencies of the maximum parsimony and disentance matrix methods in obtaining the correct phylogenetic tree[J]. Molecular Biology and Evolution. 1988, 5(3): 298-311.
    [108] Nei M.. Relative efficiencies of different tree making methods for molecular data. In recent advances in phylogenetic studies of DNA sequences. Oxford university press. 1991, 133-147.
    [109] Haseagwa M., Kishino H., Yano T.. Dataing of the human-ape splitting by a molecular clock of mitochondrial DNA[J]. Journal of Molecular Evolution. 1985, 22(2): 160-174.
    [110]郝梅珍,丝状蓝藻的系统发育关系研究[D].苏州大学硕士学位论文. 2007.
    [111] Saitou N., NeiM,, The neighbor-joining method: A new method for reconstructing phylogenetic trees[J]. Mol.Biol.Evol.. 1987, 4: 406-425.
    [112] Rzhetsky A., Nei M.. Theoretical foundation of the minimum-evolution method of phylogenetic inference[J]. Mol. Biol. Evol.. 1993, 10: 1073-1095.
    [113]崔桂友,段海.中国食用地衣种类的研究[J].江苏农业研究, 2000, 21(3): 59-62.
    [114] Ohmura Y., Kawachi M., Kasai F., et al.. Genetic combinations of symbionts in vegetatively reeproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences[J]. The Bryologist. 2006, 109(1): 43-59.
    [115] Myllys L., Stenroos S., Thell A., Kuusinen M.. High cyanobiont selectivity of epiphyticlichens in old growth boreal forests of Finland[J]. New Phytologist.2007, 173(3): 621-629.
    [116]雷海燕.蓝藻型地衣及其共生念珠藻的分子鉴定和系统发育分析[D].苏州大学硕士学位论文. 2009.
    [117] Myllys L., Stenroos S., Thells A.. New genes for phylogenetic studies of lichenized fungi: glycera;dehyde-3-phosphate dehydrogenase and beta-tubulin genes[J]. Lichenologist. 2002, 34(4): 237-246.
    [118] H?gnabba F.. Phylogenetic studies of cyanobacterial lichens[D]. Academic dissertation. 2007, 5-17.
    [119] Myllys L., H?gnabba F., Lohtander K., et al.. Phylogenetic relationships of Stereocaulaceae based on simultaneous analysis of beta-tubulin, GADPH and SSU rDNA sequences[J]. Taxon. 2005, 54(3): 605-618.
    [120] H?gnabba F.. Molecular phylogeny of the genus Stereocaulon (Stereo-zcaulaceae, lichenized ascomycetes). Mycological Research. 2006, 110: 1080-1092.
    [121] Piercey-Normore MD., Depriest PT.. Algal switching among lichen symbiosis[J]. American Journal of Botany. 2001, 88: 1490-1498.
    [122] Thompson J., Gibson T.. Multiple sequence alignment. Clustal X1.83. Germany[M]. European Molecular Biology Laboratory. 1997.
    [123] Swofford DL.. PAUP. Phylogenetic analysis using parimony (and other methods)[M]. Version4. Sunderland, Massachusetts. Sinauer Associates. 2000.
    [124] Paulsrud P., Rikkinen J., Lindblad P.. Spatial patterns of photobiont diversity in some Nostoc-containing lichens[J]. New Phytolist, 2000, 146(2): 291-299.
    [125] Miadlikowska J , Lutzoni F. Phylogenetic classification of peltigeralean fungi (Peltigerales , Ascomycota) based on ribosomal RNA small and large subunits[J]. American Journal of Botany , 2004 ,91 :1181-1203.
    [126]付伟,赵遵田,郭守玉.从近年PNAS, Nature, Science发表的涉及地衣的文章看地衣学进展[J].菌物研究. 2007, 5(3): 176-182.
    [127] Wiklund E., Wedin M.. The phylogeneticrelationships of the cyanobacterial lichens in the Lecanorales suborder Peltigerineae[J]. Cladistics. 2003, 19(5):419-431.
    [128] Beck A., Friedl T., Rambold G.. Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies[J]. New Physiologist. 1998, 139(4): 709-720.
    [129] White T J, Bruns T, Lee S, et al. Amplification and direct scquencing of fungal ribosomal RNA genes for phylogenetics[C].//INNIS M A, GELFAND D H, SNINSKY J J, et al. PCR Protocols: a Guide to Methods and Application. San Diego: Academic Press, 1990: 3l5-322.
    [130] ?lapeta J., López-garcia P., Moreira D.. Global dispersal and ancient cryptic species in the smallest Marine Eukaryotes[J]. Molecular Biology and Evolution. 2006, 23(1): 23-29.
    [131]胡鸿钧,魏印心.中国淡水藻类-系统、分类及生态[M].北京:科学出版社, 2006: 173, 588, 650.
    [132] Ahmadjian V, Russell L A, Hildreth K C. Artificial re-establishment of lichens. I. Morphological interactions between the phycobionts of different lichens and the mycobionts of Cladonia cristatella and Lecanora chrysoleuca [J ]. Mycologia, 1980, 72(1): 73-89
    [133] Paulsrud P, Rikkinen J, LindbladI P. Field investigations on cyanobacterial specificity in Peltigera aphthosa[J]. New Phytologist, 2001, 152(1): 117-123.
    [134] Summerfield TC., Eaton-Rye JJ.. Pseudocyphellaria crocata, P. Neglecta and P.perpetua from the Northern and Southern Hemispheres are a phylogenetic species and share cyanobionts[J]. New Phytologist. 2006, 170(3): 597-607.
    [135] Wedin M., Wiklund E.. The phylogenetic relationships of Lecanorales suborder Peltigerineae revisited. Symbolae Botanicae Upsalienses. 2004, 34: 469-475.
    [136] Stahl, E.. Beitrage zur Entwicklungsgeschichte der Flechte: Heft II. Uber die Bedeutung der Hymenialgonidien. Felix, Leipzig. 1877, 32 .
    [137]Ahmadjian V., Heikkil? H.. The culture and synthesis of Endocarpon pusillum and Staurothele clopima[J]. Lichenologist . 1970, 4: 259-267.
    [138] Stocker-W?rg?tter E., Türk R.. Artificial Resynthesis of Thalli of theCyanobacterial Lichen Peltigera Praetextata Under Laboratory Conditions[J]. Lichenologist, 1991: 23: 127-138.
    [139]胡征宇.蓝藻念珠藻属系统发育和分子进化研究[D].中国科学院博士论文. 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700