对SAR/InSAR侦察与干扰方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以扰乱和破坏合成孔径雷达(SAR)成像为目的的干扰技术是当前电子对抗领域的一个研究热点和难点。现有SAR干扰技术虽已初具规模体系,但在应对新体制SAR成像和SAR抗干扰方面仍存在诸多不足,发展新的SAR干扰技术任务紧迫且意义重大。本文以现阶段SAR干扰所面临的挑战为着眼点,以提高地面目标的电子防护能力为目的,深入研究SAR干扰的新方法和新技术,主要工作包括:
     一、SAR信号截获与参数估计方面
     (1)针对低信噪比条件下单比特FFT难以检测线性调频(LFM)信号的问题,提出了基于单比特相位差计数的检测方法。该方法通过正交单比特相位差计数器估计单个时段的中心频率,再根据多个时段的频率估计结果检测LFM信号。分析表明:单个时段频率估计的均方差与信噪比成正比,与积累时间的均方根成反比;该方法检测概率和虚警率均可通过改变积累时间和时段个数来灵活控制。
     (2)针对传统脉冲重复间隔(PRI)估计方法只利用信号上升/下降沿信息的缺点,提出了基于循环互相关的PRI精确估计方法。该方法通过检测相邻两个脉冲互相关的峰值点位置来间接地估计PRI。理论和实验均表明:该方法的估计精度随着信号时宽带宽积的增大而提高,其精度要优于传统方法。
     (3)针对多普勒调频斜率估计的难点,提出了基于相位双差的估计方法。该方法通过提取相邻两个来波信号互相关峰值点的相位来估计瞬时多普勒频率,通过比较两个不同时刻的多普勒频率得到多普勒调频斜率的估计。分析表明:在经过互相关峰值位置检测、质心频率补偿和克服收发隔离耦合之后,该方法可以获得较好的估计性能。
     二、SAR二维相参调制干扰方面
     (1)针对低侦察依赖度相参调制干扰的需求,提出了周期调制干扰方法。该方法通过对SAR信号在快/慢时间上调制任意周期波形来形成干扰,通过改变调制波形的周期和形状来控制干扰的能量分布。轨道SAR对抗实验表明:该方法可形成由离散点构成的线/面假目标,对侦察的依赖度较低,适用于区域遮蔽和对目标成像特征的破坏。
     (2)针对高分辨成像条件下卷积干扰运算量大、难以实时实现的问题,提出了乘积调制干扰方法。该方法根据虚假目标的散射系数模型来确定干扰的调制波形,而后仅对SAR信号做乘积调制来形成干扰。分析和实验均表明:该方法可形成任意形状的虚假目标,与卷积干扰相比其所需实时运算量要大为降低,尤其适用于在高分辨大场景条件下的欺骗假目标生成。
     (3)针对SAR成像处理的薄弱环节,提出了误导PGA自聚焦的干扰方法。该方法通过在不同的距离分辨单元形成虚假特显点来误导PGA的相位误差估计,通过改变误导相位来控制干扰之后图像的散焦效果。分析表明:该方法是一种既区别于欺骗干扰又区别于压制干扰的新型干扰方法,其所需的干扰发射功率较低,对侦察的依赖度也很低。
     三、InSAR干扰方法研究方面
     (1)针对二维干扰的InSAR成像特性分析需求,研究了单天线干扰的“斜坡”效应。对比单天线干扰的InSAR主/辅通道成像结果得到了干扰的干涉相位,通过分析数字高程反演得到了“斜坡”效应的形成机理。分析表明:采用单天线的任意波形相参调制干扰均存在“斜坡”效应,并且“斜坡”坡度仅取决于干扰机真实位置相对于InSAR的几何位置关系,而与干扰自身的波形调制无关,也与InSAR的基线长度、基线倾角以及发射信号参数无关。
     (2)针对单天线干扰难以控制InSAR高程反演的问题,提出了基于双天线幅相控制的干扰方法。该方法通过改变双天线干扰的幅度比和相位差来控制虚假目标的合成干涉相位,通过限定幅度比变化范围和设定相位差选取点来实现对合成干涉相位的最优控制。分析表明:该方法可形成逼真度较高的虚假目标,且还可干扰InSAR的图像配准。
With the purpose of jamming and obstructing the hostile imaging, SyntheticaAperture Radar (SAR) Electronic Counter Measures (ECM), which has been developeddecades ago, is still a hot and challenging topic in the area of ECM. However, the rapiddevelopments of both new SAR systems and SAR Electronic Counter-CounterMeasures (ECCM) may obsolesce the out-of-date SAR ECM technologies who arepreviousely designed only to counter the old version SAR systems. So the need todevelp new SAR ECM technologies is indubitable and of great significance. With thepurpose to improve the ECM ability of ground targets and also to face the challengesbringed by both new SAR systems and SAR ECCM, this dissertation is dedicated to thedevelopment of new theries and new thechnologies of SAR ECM. The main work ofthis dissertation is presented as follows.
     Ⅰ.The intercept and parameter estimations of SAR signal
     (1) Linear Frequency Modulation (LFM) signal detection based on monobitquantification technology. The carrier frequency of LFM signal is estimated byutilizing monobit phase-gradient counters. And the performance of this method is alsoanalyzed to demonstrate that, the standard deviation of the frequency estimation error isproportional to Signal-to-Noise Ratio (SNR), and is reversely proportional to the squareroot of cumulate time. To support the signal detection method, the frequency estimationresults of Gaussian white noise is also researched and demonstrated that, its frequencyestimation result follows a uniform distribution with a width equal to the channelbandwidth in volume. The LFM signal detection based on multiple time segments isproposed, and the relationship between the Probability of Detection (PD) and theProbability of False Alarm (PFA) is analyzed with respect to the number of timesegments.
     (2) Precise Pulse Repetition Interval (PRI) estimation based on Circular Crosscorrelation Function (CCCF). The probability of CCCF peak detection is deducedwith respect to different SNRs, LFM pulse widths, and the channel bandwidths. Thevalidity of CCCF method is further proved by the Instant Polarization Radar (IPR)experiment to demonstrate that, although the SNR is worsened, the informationincluded by the whole LFM pulse can be sufficiently utilized by CCCF method, whichpromises a higher estimation precision than that of regular PRI estimation methods.
     (3) Doppler chirp rate estimation based on double-difference method. Thedouble difference method is proposed to solve the problem of Doppler chirp rateestimation. A thorough description of this method is also given by this dissertation. Theperformances of CCCF method influenced by CCCF peak position estimation error, thecentroid frequency estimation error, and the no ideal transmit-receive isolation are all analyzed in detail, and the methods to solve the problems above are also proposed inthis dissertation.
     Ⅱ. Two-dimensional coherent modulated jamming against SAR
     (1) Periodic modulated jamming. The SAR imaging results of this jammingmethod with arbitrary periodic modulated waveforms are proved in theory to be discretepoints. The imaging results of the jamming are analyzed under four different cases(namely, the periodic jamming in slant-range direction, the periodic jamming in azimuthdirection, the two-dimensional periodic jamming, and the periodic jamming caused byrange-azimuth coupling), and their dependence on SAR parameter estimation precisionare also given in detail. A new inner-field test method of the jamming is proposed tofacilitate the debugging procedures of the jammer. And a rail-way SAR ECMexperiment is designed to test the performances of the jamming. It has been proved theECM experiment that, periodic modulated jamming can be utilized to shield or toobstruct the real targets being imaged by SAR.
     (2) Multiplication modulated jamming. The mathematical model ofmultiplication modulated jamming is given. By controlling the multiplication modulatedwaveform of this jamming method, the false targets can then be generated with arbitraryshape in SAR image. More analyses are also given to the performances of this jammingmethod, e.g., the jamming’s energy efficiency, the real-time computational burden, andits dependence on SAR parameter estimation precisions. Both the theoretical analysisand the experiment result have demonstrated that, the multiplication modulatedjamming has the ability to forge decoys which look like the real targets. Thecomputational burden of this method is not sensitive to either the decoy size or SARresolution. Therefore, multiplication modulated jamming is especially suitable to workin the circumstance of large imaging field and high imaging resolution.
     (3) PGA-misleading jamming. The jamming model in phase history domain isgiven, and the method to generate the false prominent points is also given in detail. Therelationship between the PGA error phase estimation result and the amplitude of falsedominant point is analyzed to calculate the needed transmit power of the jammer. Boththeoretic analysis and the simulation result have demonstrate that, PGA-misleadingjamming is new kind of jamming method which is different from both the oppressivejamming and the deceptive jamming. The advantages of this jamming method comefrom the fact that, the needed transmit power of this jamming method is relatively lowand its performances is not sensitive to the parameter estimation precisions of SARsignals.
     ⅢThe jamming methods against InSAR
     (1) The “slope” effect of jamming with single transmit antenna. The frequencyspectrum of the jamming with arbitrary waveform modulation is given, and the imaging result of the jamming in both master and slave channels are derived. The interferometricphase of the jamming can be obtained by comparing the phase difference between theimaging results of master and slave channels. Digital Elevation Model (DEM) of thejamming is researched, and the mechanism of “slope” effect is then derived. Thetheoretical anlaysis shows that, the gradient of the “slope” only depends on the relativegeometric relationship between the InSAR and the jammer, but is independent of thewaveform modulation of the jamming, InSAR baseline length, InSAR baseline inclindangle, and the parameters of InSAR transmit signals.
     (2) Three-dimension jamming based on amplitude and phase control of twojammer antennas. The analytical expression of the combined interferometric phasegenerated by two jammer antennas is deduced as a function of the jamming’s amplituderatio and phase difference. The control of combined interferometric phase by utilizingboth the amplitude ratio transformation method and the equivalent phase differencemethod is researched, and their detailed procedures are also given. It has been shownthat, this method has the ability to control the combined interferometric phase, togenerate the three-dimensional decoy, and at the same time to influence the imageregistration of InSAR.
引文
[1] A.R. Brenner, J.H.G. Ender. Demonstration of advanced reconnaissancetechniques with the airborne SAR/GMTI sensor PAMIR [J]. IEE Proc.-RadarSonar Navig.,2006,153(2):152~162.
    [2]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003.
    [3]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989.
    [4]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [5]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [6]吴晓芳.SAR-GMTI运动调制干扰技术研究[D].长沙:国防科学技术大学,2009
    [7]刘阳.基于微动特性的SAR干扰方法研究[D].长沙:国防科学技术大学,2012
    [8] Walter W. GOJ. Synthetic Aperture Radar and Electronic Warfare [M]. ArtechHouse, Boston London.1993.
    [9] Curlander John C., Mcdonough Robert N.合成孔径雷达——系统与信号处理[M].北京:电子工业出版社,2006.
    [10]宋建社,郑永安,袁礼海.合成孔径雷达图像理解与应用[M].北京:科学出版社,2008.
    [11] Touzi R, Boerner W M, Lee J S, et al. A review of polarimetry in the context ofsynthetic aperture radar: concepts and information extraction[J]. CanadianJournal of Remote Sensing,2004,30(3):380-407.
    [12] Zebker H A,Van Zyl. Imaging radar polarimetry: a review[C]. Proc. of IEEE,1991,79(11):1583-1606.
    [13] P. Rosen, S. Hensley, I. R. Joughin, F. K. Li, et al, Synthetic Aperture RadarInterferometry. IEEE Proceedings,2000,88(3):333~382
    [14] Entzminger J N, Fowler C A, Kenneally W J. Joint STARS and GMTI: past,present and future [J]. IEEE Trans. on Aerospace and Electronic Systems.1999,35(2):748~761.
    [15] Ender,J.H.G.,Brenner,A.R.PAMIR: a wideband phased array SAR/MTIsystem[C]. IEE Proc of Radar, Sonar and Navigation,2003,165~172.
    [16] V. Mrstik. Agile-beam synthetic aperture radar opportunities. IEEE Trans. onAerospace and Electronic Systems,1998.34(2):500~507.
    [17] M. Younis. Digital beamforming in SAR systems. IEEE Trans. on Geoscienceand Remote Sensing,2003.41(1):1735~1749
    [18]吴晓芳,代大海,王雪松,等.合成孔径雷达电子对抗技术综述[J].信号处理,2010,26(3):424-435.
    [19]甘荣兵.合成孔径雷达对抗及目标检测技术研究[D].成都:电子科技大学,2005.
    [20]李伟.分布式星载SAR干扰与抗干扰研究[D].长沙:国防科学技术大学,2006.
    [21]唐波.合成孔径雷达的电子战研究[D].北京:中国科学院电子学研究所,2005.
    [22]萨布林,瓦切斯拉夫,尼卡拉伊维奇.打击一体化系统和对地观测雷达系统[M].吴飞,张晓玲,沈雪娈,译.北京:国防工业出版社,2005.
    [23]张永顺,童宁宁,赵国庆.雷达电子战原理[M].北京:国防工业出版社,2007.
    [24]张锡祥,肖开奇,顾杰.新体制雷达对抗导论[M].北京:北京理工大学出版社,2010.
    [25] Q. F. Liu, S. Q. Xing, X. S. Wang, J. Dong, D. H. Dai. A Strip-map SARCoherent Jammer Structure Utilizing Periodic Modulation Technology. ProgressIn Electromagnetics Research B, PIER-B2011,28:111~128
    [26] Q. F. Liu, S. Q. Xing, X. S. Wang, J. Dong, D. H. Dai and Y. Z. Li. Theinterferometry phase of InSAR coherent jamming with arbitrary waveformmodulation. Progress In Electromagnetics Research,2012,124:101-118.
    [27] Q. F. Liu, S. Q. Xing, X. S. Wang, J. Dong, D. H. Dai and Y. Z. Li,“The “slopeeffect” of coherent transponder in InSAR DEM. Progress In ElectromagneticsResearch,2012,127:351~370.
    [28]王兵.合成孔径雷达的噪声干扰[J].电子对抗技术,2004,7(4):44~47.
    [29] Dumper K, Cooper P S, Wons A F, et al. Spaceborne Synthetic Aperture Radarand noise jamming[C]. IEEE International Radar Conference,1997:411~414.
    [30]李兵,洪文.合成孔径雷达噪声干扰研究[J].电子学报,2004,32(12):2035~2037.
    [31]吕波,冯起,张晓发等.对SAR的随机脉冲卷积干扰研究[J].中国电子科学研究院学报,2008,3(3):276~279.
    [32]吴一戎,胡东辉.一种新的合成孔径雷达压制干扰方法[J].电子与信息学报,2002,24(11):1664~1667.
    [33]吴锡. SAR类杂波干扰技术研究及软硬件设计[D].成都:电子科技大学,2006.
    [34]李江源.高分辨SAR干扰机理与高效干扰方法研究[D].成都:电子科技大学,2007.
    [35]李江源,王建国,杨建宇.基于数字储频式的对SAR类杂波干扰[J].电子科技大学学报,2005,34(6):739~742
    [36]李江源,王建国,杨建宇.基于参数引导的对宽带SAR的类杂波干扰[J].电子与信息学报,2006,28(10):1812~1816
    [37]石俊.对合成孔径雷达干扰方法的研究[D].西安:西安电子科技大学,2003.
    [38]倪燕.对合成孔径雷达干扰技术的研究[D].成都:电子科技大学,2003.
    [39]马永华.合成孔径雷达对抗技术研究[D].成都:电子科技大学,2004.
    [40]高建卫.对合成孔径雷达干扰技术研究[D].西安:西安电子科技大学,2004.
    [41] Joachim, H. G., Ender, P. B., Andreas, R. B., et al, Multi Channel SAR/MTISystem Development at FGAN: From AER to PAMIR[C].2002IEEEInternational Geoscience and Remote Sensing Symposium,2002,.3:1697-1701
    [42] Andrew S. P., An adaptive beamforming technique for countering syntheticaperture radar (SAR) jamming threats[C].2007IEEE Radar Conf.,2007,630-634
    [43]吴晓芳,代大海,王雪松,卢焕章.基于微动调制的SAR新型有源干扰[J].电子学报.2009,37(7):1416-1421
    [44]刘阳,王雪松,代大海,王涛,李永祯.对SAR的余弦调相转发干扰[J].信号处理.2009,25(03):362-367.
    [45]吴晓芳,刘阳,王雪松,卢焕章.转动微运动目标的SAR成像特性分析[J].宇航学报.2010,31(04):1181-1189.
    [46]胡东辉,吴一戎,王宏琦等.基于移相调制的合成孔径雷达虚假图像干扰[J].雷达与对抗,2002,2:1~4.
    [47]陈思伟,代大海,李永祯,等.SAR二维余弦调相转发散射波干扰原理[J].电子学报,2009,37(12):2620~2625.
    [48]刘阳,王涛,代大海,张文明,王雪松.基于余弦调相和相干噪声的SAR压制干扰[C].第十届全国雷达学术年会.北京:国防工业出版社,2008.
    [49]黄洪旭,黄知涛,周一宇.对合成孔径雷达的移频干扰研究[J].宇航学报,2006,27(3):463~468.
    [50]黄洪旭,黄知涛,周一宇.对合成孔径雷达的随机移频干扰[J].信号处理,2007,23(1):41~45.
    [51]吴晓芳,刘阳,代大海,王雪松.合成孔径雷达干扰对抗仿真系统研究[J].系统仿真学报.2008,20(5):1183-1186,1202.
    [52] X.F.Wu,Dai Da-hai,Wang Xue-song.Study on SAR Jamming Measures.IETInternational Conference on Radar Systems. Edinburgh, England,2007,176~179
    [53]吴晓芳,王雪松,丹梅,肖顺平.对合成孔径雷达的分段步进移频干扰.第十届全国雷达年会,2008,2:1105~1108.
    [54]王雪松,刘建成,张文明等.间歇采样转发干扰的数学原理[J].中国科学E辑,信息科学,2006,36(8):891~901.
    [55]吴晓芳,王雪松,卢焕章.对SAR的间歇采样转发干扰研究[J].宇航学报,2009,30(5).
    [56]刘忠.基于DRFM的线性调频脉冲压缩雷达干扰新技术[D].长沙:国防科学技术大学,2008.
    [57]刘忠,王雪松,刘建成等.基于数字射频存储器的间歇采样重复转发干扰[J].兵工学报,2008,29(4):405~410.
    [58] Hyberg P. Assessment of modern coherent jamming methods against SyntheticAperture Radar SAR[C]. European SAR Conference,1998:391-394.
    [59]朱燕.相参雷达的信号处理与相干性干扰的研究[D].西安:西安电子科技大学,2005.
    [60]刘玉玲.SAR有源假目标精确位置欺骗干扰技术研究[D].长沙:国防科学技术大学,2012
    [61] S. Kristoffersen,O.Thingsrud,FFI and etc.The EKKO Ⅱ Synthetic TargetGenerator for Imaging Radar[C].EUSAR,Ulm,2004,871~874.
    [62] P. Leducq,T. Landeau,P.Le Traon and etc.A method to insert objects in apolarimetric SAR signal[C].EUSAR,Ulm,2004,883~886.
    [63] Sdg R.T Ekestorm,Christopher Karow.An all-digital image synthesizer forcountering high-resolution radars[D].Naval Postgraduate School,Monterey,CA93943-5000,2000.
    [64]张煜,杨绍全.对线性调频雷达的卷积干扰技术[J].电子与信息学报,2007,29(6):1408~1411.
    [65]孙建涛.多通道合成孔径雷达反干扰技术研究[D].北京:中国科学院电子学研究所,2010.
    [66]于春锐.合成孔径雷达有源干扰抑制技术研究[D].长沙:国防科学技术大学,2012
    [67]唐波,郭琨毅,王建萍.合成孔径雷达三维有源欺骗干扰[J].电子学报,2007,35(6):1203~1206.
    [68]张光义.合成孔径雷达的电子对抗措施[J].现代雷达,2008,30(7):1~9.
    [69] L Rosenberg and D.Gray.Anti-jamming techniques for multichannel SARimaging[C].IEE Proc-Radar Sonar Navig,2006,153(3):234~242.
    [70]杜贤俊.合成孔径雷达抗干扰技术研究[D].成都:电子科技大学,2003.
    [71]张焱.SAR高分辨成像及抗干扰技术研究[D].成都:电子科技大学,2007.
    [72] D.C.施莱赫.信息时代的电子战.成都:信息产业部电子第二十九所译,2000.
    [73]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社,2003.
    [74]李晨.合成孔径雷达有源欺骗干扰研究[D].南京:南京航空航天大学,2005.
    [75]叶映宇.合成孔径雷达干扰方法的研究[D].成都:电子科技大学,2005.
    [76]徐美林.对合成孔径雷达干扰与抗干扰及效能评估的研究[D].成都:电子科技大学,2005.
    [77]林建银.对高分辨合成孔径雷达干扰的研究[D].南京:南京电子技术研究所,2005.
    [78]杨秀丽.合成孔径雷达干扰技术研究[D].西安:西安电子科技大学,2006.
    [79]董霖.电磁干扰对多波束合成孔径雷达成像的影响研究[D].长沙:国防科学技术大学,2008.
    [80]李蛟.基于多DSP并行系统的SAR干扰技术研究[D].长沙:国防科学技术大学,2010
    [81]王辉,王祥,梅刚.对无人机载毫米波SAR的无源干扰分析[J].航天电子对抗,2006,22(4):36~39.
    [82]孙云辉,赵宝.对合成孔径雷达的干扰措施研究[J].光电技术应用,2004,19(4):47-50.
    [83]吴晓芳,刘光军,代大海等.等离子体隐身在SAR对抗中的应用研究[J].现代雷达,2008,30(7):63~67.
    [84]龙伟军,王暐,高文辉.星载SAR的箔条干扰分析[J].现代雷达,2004,26(10):10~14.
    [85] Goj, W. Synthetic Aperture Radar and Electronic Warfare. Norwood[M]. MA:Artech House,1989.
    [86] Christopher J Condley. Some System Considerations for ElectronicCountermeasures to Synthetic Aperture Radar [Z]. Her Majesty’s StationeryOffice, London,1990.
    [87]朱守保,罗强,童创明.一种新的合成孔径雷达压制干扰方法[J].现代防御技术,2012,40(2):104-108
    [88]徐声海,周传晟,许炎义对SAR噪声压制干扰仿真与干扰效果评估[J].舰船电子对抗,2012,35(1):90-92
    [89]胡华超,贾鑫,吴彦鸿,吴金亮.SAR二维间歇采样转发散射波干扰研究[J].装备指挥技术学院学报,2012,32(1):94-97
    [90]杨瑛,邓鹏飞,刘春泉.混沌噪声调频信号对UWB-SAR/ISAR成像的干扰[J].电视技术,2008,48(9):75~78.
    [91]吴玮琦,俞永福.对合成孔径雷达的压制功率分析[C].CSAR,合肥,2003:148~151.
    [92]张锡祥.干扰合成孔径雷达的统一方程[J].中国电子科学研究院学报.2006,1(2):107~113.
    [93]刘阳,王雪松,李永祯.噪声调频信号对宽带线性调频雷达的干扰机理[J].现代雷达.2008,30(10):52-56.
    [94]梁百川.对合成孔径雷达的干扰[J].上海航天,1995,1:37~42
    [95]张连江,王鼎奎.合成孔径雷达干扰方法研究[J].舰船电子对抗,2003,26(1):7~11
    [96]焦逊,陈永光,李修和.星载SAR有源干扰技术及压制功率分析[J].航天电子对抗,2006,22(1):39~41
    [97]沈爱国,姜秋喜.基于复卷积的超宽带SAR干扰技术[J].中国电子科学研究院学报,2009,4(3):278~282
    [98]黄洪旭,周一宇.干扰合成孔径雷达的时延脉间抖动转发干扰模式研究[J].兵工学报,2012,33(9):1031~1035
    [99]沈爱国,姜秋喜.脉冲卷积干扰技术在超宽带SAR中的应用分析[J].电光与控制,2010,17(2):39~42
    [100]朱守保,罗强,童创明.一种复合的SAR压制干扰方法研究[J].飞行器测控学报,2011,30(6):91~94
    [101]刘业民,刘忠,代大海,王雪松.基于微动调制的间歇采样转发干扰研究[J].宇航学报,2011,32(11):2417-2423
    [102]刘业民.对SAR-GMTI有源欺骗干扰方法的研究[D],长沙:国防科学技术大学,2010
    [103]韩国强,刘阳,李永祯.基于视觉加权处理的SAR干扰效果评估[J].雷达科学与技术.2011,09(1):18~23.
    [104]王铁,姜秋喜,毕大平.一种可使MD自聚焦算法失效的SAR干扰方法研究[J].雷达与对抗,2004,1:26~29
    [105]刘阳,王雪松,代大海,王涛,李永祯.对SAR的余弦调相转发干扰[J].信号处理,2009,25(3):362~367
    [106]刘国满,郑坤,高梅国.一种欺骗式SAR干扰信号发生器的设计与实现[J]北京理工大学学报,2012,32(2):184~188
    [107]林晓烘,刘培国,薛国义.基于逆ω-κ算法的SAR欺骗干扰方法[J].遥测遥控,2012,33(3):27~30
    [108]郭波,宋李彬,周贵良.分数阶傅里叶滤波在欺骗干扰中的应用研究[J].电子学报,2012,40(7):1328~1332
    [109]朱守保,罗强,童创明.SAR虚假图像干扰信号快速生成方法研究[J].重庆邮电大学学报,2012,24(3):314~318
    [110]胡东辉,吴一戎.合成孔径雷达散射波干扰研究[J].电子学报,2002,30(12):1882~1884.
    [111]甘荣兵,王建国,何川,等.一种改进的对SAR的弹射式干扰方式[J].电子与信息学报,2005,27(2):256~258.
    [112]高晓平,雷武虎.SAR散射波干扰实现方法的研究[J].现代雷达,2006,28(8):22~25.
    [113]张瑛,王建国.双基地合成孔径雷达弹射式干扰研究[J].电子与信息学报,2007,29(5):1061~1064.
    [114] Wenqin Wang, Jingye CAI. A Technique for Jamming Bi-and Multistatic SARSystems [J]. IEEE Geoscience and remote sensing letters,2007,4(1):80~82.
    [115]孙建涛,张平.合成孔径雷达散射波干扰模型[J].中国科学院研究生院学报,2010,27(2):212~217.
    [116]刘业民,刘忠,代大海,王雪松.散射波干扰对合成孔径雷达成像干扰效果的分析[J].电波科学学报,2011,26(2):400~405
    [117]杨伟宏,刘进,王涛.SAR间歇采样散射波干扰[J].宇航学报,2012,33(3):365~373
    [118]张颂,叶伟,徐灿,阮航,陈志民.基于随机时延的弹射式干扰研究[J].航天电子对抗,2011,27(5):23~25
    [119]胡华超,贾鑫,曹志强,贾丽,田微晴.星载SAR弹射式干扰功率影响因素分析[J].航天电子对抗,2012,28(3):4~6
    [120]李伟,梁甸农,董臻.基于虚假场景的合成孔径雷达干扰方法研究[J].系统工程与电子技术,2005,27(10):1741~1743
    [121]孙光才,周峰,邢孟道,保铮.虚假场景SAR欺骗式干扰技术及实时性分析[J].西安电子科技大学学报,2009,36(5):813~818
    [122]赵博,杨军,孙光才,周峰,保铮.一种虚假大场景SAR快速转发式欺骗干扰方法研究[J].电子与信息学报,2012,34(4):963~968
    [123]唐波,郭琨毅,王建萍.合成孔径雷达三维有源欺骗干扰[J].电子学报,2007,35(6):1203~1206
    [124]唐波.干扰机运动对InSAR双通道抑制的影响[J].红外与激光工程,2008,37:719~722
    [125]贾丽,贾鑫,尹灿斌,王威.干涉式合成孔径雷达干扰方法研究[J].航天电子对抗,2010,26(4):30~33
    [126]丁斌,向茂生,梁兴东.射频干扰对InSAR干涉处理的影响分析[J].宇航学报,2012,33(9):1279~1288
    [127]丁斌,王静,向茂生,梁兴东.窄带干扰对P波段InSAR干涉相位的影响分析[J].电子测量技术,2012,35(4):81~84
    [128]丁斌,向茂生,梁兴东.射频干扰对机载P波段重复轨道InSAR系统的影响分析[J].雷达学报,2012,1(1):82~90
    [129]贾丽,贾鑫,何永华,黄成刚.弹射式干扰对INSAR成像的影响分析[J].电子信息对抗技术,2012,3(27):42~48
    [130]贾丽,贾鑫,胡华超.欺骗干扰对INSAR复图像配准的影响分析[J].信号处理,2012,28(10):1395~1400
    [131]李伟,梁甸农,董臻.基于欺骗式动目标的SAR干扰技术研究[J].遥感学报,2006,10(1):71~75.
    [132]吕波,冯起,张晓发等.对SAR的虚假动目标干扰技术研究[J].现代雷达,2008,30(6):102~104.
    [133]徐少坤,李亚楠,付耀文.欺骗式动目标SAR干扰技术研究[J].现代雷达,2008,30(7):94~98.
    [134]朱燕,赵国庆,张煜.假目标在动目标检测中的效果分析[J].电子信息对抗技术,2009,25(2):55~57
    [135]田贤峰,陈晓明,姚嘉陵,潘鼎奇.合成孔径雷达随行干扰信号产生方法[J].中国电子科学研究院学报,2009,4(5):646~650
    [136]田贤峰,方广有.基于移动干扰站的合成孔径雷达干扰研究[J].兵工学报,2010,31(1):27~31
    [137]吴晓芳,梁景修,王雪松,焦逊.SAR-GMTI匀加速运动假目标有源调制干扰方法[J].宇航学报,2012,33(6):761~768
    [138]吴晓芳,王雪松,梁景修.SAR-GMTI高逼真匀速运动假目标调制干扰方法[J].宇航学报,2012,33(10):1472~1479
    [139]朱守保,罗强,童创明.SAR动目标欺骗干扰模型分析[J].电子信息对抗技术,2012,27(1):46~50
    [140] Potsis,A.,Reigber, A.,and Papathanassiou,K.P.A phase preserving method for RFinterference suppression in P-band synthetic aperture radar interferometricdata[C].IGARSS,1999,2655~2657.
    [141] Buckreuss,S.,and Horn,R.E-SAR P-band SAR subsystem design or RFinterference suppression[C].IGARSS,1998,466~468.
    [142] Lord,R.T.,and Inggs,M.R.Efficient RFI suppression in SAR using LMS adaptivefilter integrated with range/Doppler algorithm[J].Electrononic Letters,1999,35(8):629~630.
    [143] Luo,X.,Ulander,L.M.H.,and etc.RFI suppression in ultra-wideband SAR systemsusing LMS filters in frequency domain[J].Electronic Letters,2001,37(4):241~243.
    [144] T.Lamont-Smith,R.D.Hill,S.D.Hayward,G.Yates and A.Blake.Filteringapproaches for interference suppression in low-frequency SAR[C].IEEProc-Radar Sonar Navig,2006,153(4):338~344.
    [145] Soumekh, M..SAR-ECCM using phase-perturbed LFM chirp signals and DRFMrepeat jammer penalization,2005IEEE International Radar Conference:507-512
    [146] Mehrdad Soumekh.SAR-ECCM using phase-perturbed LFM chirp signals andDRFM repeat jammer penalization[J].IEEE Trans. on Aerospace and ElectronicSystems,2006,42(1):191~205.
    [147]李伟,梁甸农,董臻.一种捷变调频斜率极性和限幅相结合的SAR抗干扰方法[J].遥感学报,2007,11(2):171~176.
    [148]董臻,李伟,梁甸农.基于发射信号随机初相结合调频率极性捷变的SAR抗干扰方法[J].信号处理,2008,24(3):487~490.
    [149]李江源,王建国.利用复杂调制LFM信号的SAR抗欺骗干扰技术[J].电子与信息学报,2008,30(9):2111~2114
    [150]冯祥芝,许小剑.随机线性调频斜率SAR抗欺骗干扰方法研究[J],系统工程与电子技术,2009,31(1):69~73
    [151] Axelsson, S.R.J. Noise radar using random phase and frequencymodulation[J].IEEE Transactions on Geoscience and Remote Sensing.2004,42(11):2370~2384
    [152] Akhtar, J. Orthogonal Block Coded ECCM Schemes Against Repeat RadarJammers[J].IEEE Transactions on Aerospace and ElectronicSystems.2009,45(3):1218~1226
    [153]胡英辉,耿旭朴,邓云凯.超混沌正交多相码信号的设计与优选[J].兵工学报.2009,30(12):1632~1637
    [154]郑远,胡英辉,邓云凯.混沌调频雷达成像与欺骗干扰分析[J].系统工程与电子技术.2009,31(5):1071~1074
    [155] Lukin, K., Vyplavin, P.,Yarovoy, S.; Kudriashov, V.; Palamarchuk, V., Jong-MinLee.2D and3D imaging using S-band noise waveform SAR[C].20113rdInternational Asia-Pacific Conference on Synthetic Aperture Radar(APSAR),2011:1~4
    [156] Yamaguchi, Y.; Mitsumoto, M.; Sengoku, M.; Abe, T. Synthetic apertureFM-CW radar applied to the detection of objects buried in snowpack[J].Antennasand Propagation Society International Symposium,1992,2:1122-1125
    [157] Yamaguchi, Y.; Mitsumoto, M.; Sengoku, M.; Abe, T..Synthetic apertureFM-CW radar applied to the detection of objects buried in snowpack[J].IEEETransactions on Geoscience and Remote Sensing,32(1):11~18
    [158] Cheadle, N.A.; Lewis, W.; Lee, H.; York, R.A., Calibration of a widebandFMCW radar used for microwave SAR imaging[C].1994Conference Record ofthe Twenty-Eighth Asilomar,1994,1:141~144
    [159] Yamaguchi, Y.; Nishikawa, T.; Sengoku, M.; Boerner, W.-M..Two-dimensionaland full polarimetric imaging by a synthetic aperture FM-CW radar[J].IEEETransactions on Geoscience and Remote Sensing,1995,33(2):421–427
    [160] Soumekh, M..Wide-bandwidth continuous-wave monostatic/bistatic syntheticaperture radar imaging.1998International Conference on Image Processing,1998,3:361~365
    [161] Smith, R.L.; Arnold, D.V..Development of a low cost, FM/CW transmitter forremote sensing[C].IEEE2000International Geoscience and Remote SensingSymposium, IGARSS,2000,5:2328–2330
    [162] M. Edrich Ultra-lightweight synthetic aperture radar based on a35GHz FMCWsensor concept and online raw data transmission[J].IEE Proceedings-Radar,Sonar and Navigation,2006,153(2):129-134
    [163] Meta, A.; Hoogeboom, P.; Ligthart, L.P. Signal Processing for FMCW SAR,IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):3519-3532
    [164] Wang, R.; Loffeld, O.; Nies, H.; Knedlik, S.; Hagelen, M.; Essen, H. FocusFMCW SAR Data Using the Wavenumber Domain Algorithm[J].IEEETransactions on Geoscience and Remote Sensing,2010,48(4):2109-2118
    [165] Ribalta, A. Time-Domain Reconstruction Algorithms for FMCW-SAR.IEEEGeoscience and Remote Sensing Letters,2011,8(3):396-400
    [166] Mrstik, V. Agile-beam synthetic aperture radar opportunities[J].IEEETransactions on Aerospace and Electronic Systems,1998,34(2):500~507
    [167] Jung-Hyo Kim; Younis, M.; Gabele, M.,Prats, P.; Krieger, G. Contribution ofTerraSAR-X to digital beamforming experiment for future SARtechniques[C].20113rd International Asia-Pacific Conference on SyntheticAperture Radar (APSAR),2011:1~4
    [168] Andrew S. Paine,“An adaptive beamforming technique for countering syntheticaperture radar (SAR) jamming threats,”2007IEEE Radar Conf.,2007:630-634
    [169] Kaizhi Wang,Xingzhao Liu,Guozhong Chen,Bin Tang.Waveform agile SARsensor[C].9th European Conference onSynthetic Aperture Radar,2012:627~630
    [170] Jung-Hyo Kim, Younis, M., Prats-Iraola, P., Gabele, M., Krieger, G..FirstSpaceborne Demonstration of Digital Beamforming for Azimuth AmbiguitySuppression[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(1):579~590
    [171]甘荣兵,王建国,何川.双路对消抑制对合成孔径雷达的弹射式干扰[J].信号处理.2005,21(1):27~30
    [172]马晓岩,秦江敏,贺照辉,杨军,鲁千红.抑制SAR压制性干扰的三通道对消方法[J].电子学报.2007,35(6):1015~1020
    [173] Bucciarelli, M.,Cristallini, D.,Pastina, D.,Sedehi, M.,Lombardo, P. Integratedwideband antenna nulling and focusing technique for Multi-Channel SyntheticAperture Radar[C].2008International Radar Symposium.2008:1~4
    [174]李京生,孙进平,毛士艺.一种基于STAP的多通道SAR噪声干扰抑制方法[J].电光与控制.2008,15(12):15~20
    [175]王建,周智敏,宋千,金添. SAR图像二维旁瓣自适应抑制技术[J].信号处理.2009,25(7):1108~1114
    [176] Mensa, D., Heidbreder, G.,Bistatic Synthetic-Aperture Radar Imaging of RotatingObjects[J].IEEE Transactions on Aerospace and Electronic Systems.1982,18(4):423~431
    [177] Bauck, J.L., Jenkins, W.K..Convolution-backprojection image reconstruction forbistatic synthetic aperture radar[C].1989IEEE International Symposium onCircuits and Systems,1989,3:1512~1515
    [178] Soumekh, M..Wide-bandwidth continuous-wave monostatic/bistatic syntheticaperture radar imaging[C].1998International Conference on ImageProcessing.1998,3:361~365
    [179] Mikhail, C.,Kurt, K., David, N.. Bistatic synthetic aperture radar withnon-cooperative LEOS based transmitter[C].IEEE2000International Geoscienceand Remote Sensing Symposium.2000,2:861~862
    [180] Lockwood, S.,Brown, A.,Hua Lee.Backward propagation image reconstructiontechniques for bistatic synthetic-aperture radar imaging systems withcircular-aperture configurations[C].Conference Record of the Thirty-FifthAsilomar Conference on Signals, Systems and Computers.2001,1:110–115
    [181] Lowe, M.. Algorithms for high resolution bistatic SAR[C].RADAR2002.2002:512~515
    [182] Yu Ding, Munson, D.C.Jr.. A fast back-projection algorithm for bistatic SARimaging[C].2002International Conference on Image Processing.2002,2:449~452
    [183] Walterscheid, I., Brenner, A.R., Ender, J.H.G. Results on bistatic syntheticaperture radar[J].Electronics Letters,2004:1224~1225
    [184] Rigling, B.D., Moses, R.L. Flight path strategies for3-D scene reconstructionfrom bistatic SAR[J].IEE Proceedings-Radar, Sonar and Navigation,2004,15(3):149~157
    [185] Moccia, A.,Salzillo, G.,D'Errico, M.,Rufino, G.,Alberti, G.. Performance ofspaceborne bistatic synthetic aperture radar[J].IEEE Transactions on Aerospaceand Electronic Systems.2005,41(4):1383~1395
    [186] Walterscheid, I.,Ender, J.H.G., Brenner, A.R., Loffeld, O..Bistatic SARProcessing and Experiments[J].IEEE Transactions on Geoscience and RemoteSensing,2006,44(1):2710~2717
    [187] Bamler, R., Meyer, F., Liebhart, W..Processing of Bistatic SAR Data FromQuasi-Stationary Configurations[J].IEEE Transactions on Geoscience andRemote Sensing.2007,45(11):3350~335
    [188] Mishra, A.K.; Mulgrew, B. Bistatic SAR ATR[J].IET Radar, Sonar&Navigation.2007,1(6):459~469
    [189] Wong, F.H., Cumming, I.G., Yew Lam Neo. Focusing Bistatic SAR Data Usingthe Nonlinear Chirp Scaling Algorithm[J].IEEE Transactions on Geoscience andRemote Sensing.2008,46(9):2493~2505
    [190] Yew Lam Neo, Wong, F.H., Cumming, I.G. Processing of Azimuth-InvariantBistatic SAR Data Using the Range Doppler Algorithm[J].IEEE Transactions onGeoscience and Remote Sensing.2008,46(1):14~21
    [191] Wang, R., Loffeld, O.,Nies, H.,Ender, J. Focusing Spaceborne/Airborne HybridBistatic SAR Data Using Wavenumber-Domain Algorithm[J].IEEE Transactionson Geoscience and Remote Sensing.2009,47(7):2275~2283
    [192] Rodriguez-Cassola, M.,Baumgartner, S.V.,Krieger, G.,Moreira. A.BistaticTerraSAR-X/F-SAR Spaceborne–Airborne SAR Experiment: Description, DataProcessing, and Results[J].IEEE Transactions on Geoscience and RemoteSensing.2010,48(2):781~794
    [193] Rodriguez-Cassola, M.,Prats, P.; Schulze, D.; Tous-Ramon, N.; Steinbrecher,U..First Bistatic Spaceborne SAR Experiments With TanDEM-X[J].IEEEGeoscience and Remote Sensing Letters.2012,9(1):33~37
    [194] F. L. Taboada, P. E. Pace, H. H. Loomis Jr..Detection and classification of lowprobability of intercept radar signals using parallel filter arrays and higher orderstatistics [D]. Naval Postgraduate School, Monterey, California, US,2002
    [195] A. F. Lima, P. E. Pace, H. H. Loomis Jr., Analysis of low probability of intercept(LPI) radar signals using cyclostationary processing [D]. Naval PostgraduateSchool, Monterey, California, US,2002
    [196] P. G. Ong, H. K. Teng,.Digital LPI Radar Detector [D].Naval PostgraduateSchool, Monterey, California, US,2002
    [197] P. E. Pace, Detecting and Classifying Low Probability of Intercept Radar [M].Aertech House, Boston London,2009
    [198] D. S. K. Pok, C. H. Chen, J. J. Schamus, C. T. Montgomery, J. B. Y. Tsui. Chipdesign for monobit receiver [J]. IEEE Trans. Microwave Theory and Techniques,1997,45(12):2283~2295
    [199] J.M. Pardo, M. Burgos U.P.M.. Monobit Correlation and Coherence Techniquesfor Rapid Digital Interceivers of LPI Radars[C]. Radar2002.2002:459–463
    [200] J. B. Y. Tsui, J. P. Sr. Stephens. Digital microwave receiver technology [J]. IEEETrans. Microwave Theory and Techniques.2002,50(3):699-705
    [201] Ian G. C, Wong F H. Digital Processing of Synthetic Aperture RadarData:Algorithms and implementation[M]. Norwood, MA: Artech House,2005.
    [202]张锡祥.大功率干扰机系统收发隔离技术及高重频压制式干扰的重频选择概念研究[J].电子对抗技术,2000,15(6):6~14
    [203] Dennis, C. G., Mark, D. P..Two-dimensional phase unwrapping theory,algorithms, and software [M]. John Wiley&Sons. Inc.,1998.
    [204] Jakowatz, C. V., Wahl, D. E., Eichel, P. H., Ghiglia, D. C., and Thompson, P.A..Spotlight-mode synthetic aperture radar: A signal processing Approach [M].Kluwer Academic Publishers, Boston,1996.
    [205] Roth, M. W..Phase unwrapping for interferometric SAR by the least-errorpath[R]. Johns Hopkins University Applied Physics Laboratory Technical Report,Laurel, Maryland,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700