增强现实机械装配环境中装配过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于3D环境的纯虚拟装配系统,缺少直接的感觉反馈通道,只能给用户有限的“现实”体验,同时需要消耗大量的计算资源,难以适应复杂产品装配等环境下的复杂建模和实时交互仿真等要求。混合真实物体(如物理样机、零件、工具等)与虚拟设计对象的增强装配技术则能避免上述问题。增强现实装配技术是增强现实技术在设计与制造领域的重要应用之一,已引起工业界和研究机构越来越广泛的重视。
     论文分析了增强现实装配中虚实零件装配的过程,重点研究了虚实装配方式、运动路径规划、虚实零件间碰撞检测和三维力反馈技术。
     论文主要研究工作如下:
     1.研究了增强现实摄像机标定技术和视觉成像技术。系统地分析了摄像机成像中图像坐标系、摄像机坐标系和世界坐标系之间的变换关系;详细剖析了基于ARToolKit的增强现实视觉成像流程、多标志物检测、多虚拟物体生成和虚实零件的装配过程,重点研究了对多种装配方式中最佳方案的选择和虚实零件运动路径规划。
     2.研究了装配过程中虚实零件的碰撞检测技术。论文提出了一种新颖的碰撞检测方法--壳体检测法。根据真实零件结构和外形特点,构造出虚实零件碰撞点和区域,为其定义三维坐标,从而进行碰撞检测试验,并根据碰撞效果分析壳体检测法的可行性。
     3.研究了碰撞条件下虚实零件碰撞结果与输出状态的关系,实现虚拟零件坐标的采集和反馈力的输出。在增强现实机械装配环境中,利用Falcon力反馈设备,对虚拟小球在碰撞区域内进行六个方向的碰撞测试,并输出各自产生的反馈力。
     试验效果表明:基于壳体检测法的虚实碰撞检测算法,在三维力反馈软硬件技术的支持下,对于研究增强现实机械装配中的虚实碰撞效果和反馈问题,具有较好的的适用性。
The purely virtual assembly system based on 3D environment lacked of direct feedback channel. It only supported users with limited "real" experience, while consuming a large amount of computing resources. It was difficult in complex product assembly environment to adapt to complex modeling, real-time interactive simulation, etc. The enhanced assembly technology of Mixed real objects (such as physical prototypes, spare parts, tools, etc.) and virtual designed objects could avoid the above problems.That Augmented Reality assembly technology was one of the important applications in the field of design and manufacture with Augmented Reality technology had caused more and more attentions of the industrial sector and research institutions.
     This paper analyzed the assembling process of V-R (vitual and real) parts in Augmented Reality assembly. Focus on the V-R assembly methods, movement path planning, collision detection and three-dimensional force feedback technology.
     This paper completed the following work:
     1. Researched on camera calibration technique and visual imaging technology of Augmented Reality. Systematic analysis the relationship of image coordinate system, camera coordinate system and the world coordinate system. Analysed the visual imaging process, multi-marker detection, more virtual objects generation and V-R parts assembly process. Focus on the optimization selection of a variety of assembling ways and the V-R parts movement path planning.
     2. Study on the possible collision situation of V-R parts in V-R assembly course.Proposed a novel collision detection method ShellTest. According to the structural and shape characteristics of the real parts, virtually constructed the collision points and regions of V-R parts, which were given the definition of three-dimensional coordinates, then carried out the collision detection test for the results.
     3. Study on their relationship between collision result and output state when the V-R parts were colliding.With Falcon force feedback device, achieved the coordination collection of V-R parts and output of feedback force. In Augmented Reality Mechanical Assembly Environment, tested the collision of the virtual ball's six directions in collision regions, and outputed the feedback force generated by each with Falcon device. Based on the test results, to infer:the method of shell test for the V-R collision detection had a high feasibility.
     Test results showed that:the collision detection algorithm based on shell test, with the supporting of the ardware and software technologies in three-dimensional force feedback, had good applicability for studying the mechanical assembly of augmented reality and the reality effects of the impacts and feedback questions.
引文
[1]Alberto Raposo, Eduardo T.L.Corseuil, Gustavo N.Wagner, et al. Towards the use of CAD Models in VR Applications. VRCIA,2006 Hongkong,2006,6:67-74
    [2]杨润党,武殿梁,范秀敏,严隽琪.基于约束的虚拟装配技术研究.计算机集成制造系统,2006,12(3):413-419
    [3]夏平均,姚英学,刘江省,李建广.基于虚拟现实和仿生算法的装配序列优化.机械工程学报,2007,43(4):44-51
    [4]李庆华,李湖珍.虚拟装配中基于相对位置的碰撞干涉检测.计算机应用,2006,26(1):103-105
    [5]郑轶,宁汝新等.虚拟装配环境下快速碰撞检测方法的研究.系统仿真学报,2005,17(9):2167-2170
    [6]M.L. Yuan, S.K. Ong, and A.Y.C. Nee. Registration Using Natural Features for augmented Reality Systems. IEEE Transactions on Visualization and Computer Graphics,2006,12(4):569-580
    [7]Bernd Schwald, Blandine Laval. An Augmented Reality System for Training and Assistance to Maintenance in the Industrial Context. Journal of WSCG,2003,11(1)
    [8]Harald Wuset, Didier Stricker. Tracking of Industrial Objects by using CAD Models. Journal of Virtual Reality and Broadcasting.2007,4(1)
    [9]程成.虚拟装配中感知机制构造.软件学报,2002,13(12):2324-2330
    [10]Wang, X., et al. Rapidly Incorporating Real Objects for Evaluation of Engineering Designs in a Mixed Reality Environment. "New Directions of 3D IU" Workshop of IEEE Virtual Reality,2005
    [11]Y.Pang, A.Y.C.Nee, Kamal Youce-Toumi, et al. Assembly Design and Evaluation in an Augmented Reality Environmen. Singapore-MIT Alliance Symposium,2005.01, Singapore
    [12]Ronald Azuma, Yohan Baillot, Reinhold Behringer, et al. Recent Advances in Augmented Reality. IEEE Computer Graphics and Applications,2001,21(6):31-47
    [13]Barfield W., Caudell T. Fundamental of Wearable Computers and Augmented Reality. Lawrence Erlbaum Associates, Publishers,2001,447-471
    [14]Tapio Salone, et al. Demonstration of Assembly Work Using Augmented Reality. CIVR'07, Amsterdam, The Netherlands,2007,7:120-123
    [15]Wolfgang Friedrich. ARVIKA Augmented Reality for Development, Production, and Service.2003
    [16]Fraunhofer Institute for Computer Graphics IGD. Achievements and Results Annul Report 2005.
    [17]程成.虚拟装配中面贴合感知构造研究.计算机研究与发展,2002,39(10):1331-1336
    [181刘检华,姚珺,宁汝新.基于虚拟装配的碰撞检测算法研究与实现.系统仿真学报,2004,16(8):1775-1778
    [19]Lennart E Fahlen, Gharles Grant Brown, Olov Stahl et al. A Space based model for user Interaction in Shared Synthetic Environments. In Inter. CHI'93. Amsterdam: ACM Press,1993,24-29
    [20]Peter J Berkelman, Ralph L Hollis, David Baraff. Interaction with a Real-time dynamic Environment Simulation Using a Magnetic Leviation Haptic Interface Device. The 1999 IEEE Inter. Conference. Robotics & Automation, Detroit, Michigan, 1999
    [21]朱杰杰.用视觉计算实现视频增强现实遮挡处理.计算机辅助设计与图形学学报,2007,19(12):1624-1628
    [22]Yokoya N, Takemura H, Okuma T, et al. Stereo Vision Based Video See-through Mixed Reality. Proceedings of the 1st International Symposia on Mixed Reality, Yokohama,1999:85-94
    [23]Lepetit V, Berger M O. A Semi-automatic Method for Resolving Occlusion in Augmented Reality. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, South California,2000:2225-2230
    [24]Edward Swan II J, Livingston M A, Smallman H S, et all. A Perceptual Matching Technique for Depth Judgments in Optical See-through Augmented Reality. Proceedings of IEEE Virtual Reality Conference, Alexandria, Virginia,2006:19-26
    [25]倪剑,闫达远,周雅等.增强现实系统中的深度检测技术研究.计算机应用,2006,26(1):132-137
    [26]D. Aliaga. Virtual and Real Object Collisions in a Merged Environment. Virtual Reality Software & Technology (Proc. VRST'94), Singapore,1994:287-298.
    [27]David E. Breen, Eric Rose, Ross T. Whitaker. Interactive Occlusion and Collision of Real and Virtual Objects in Augmented Reality. Technical report ECRC-95-02,1995
    [28]张建民,吴彦鹏,张连斗等.基于组件及多感知机制的快速碰撞检测方法.中国机械工程,2004,15(3):255-258
    [29]马颂德,张正友.计算机视觉——计算理论与算法基础[M].北京科学出版社.1998.
    [30]J.Mezger,S.Kimmerle,O.Etzmuss.Hierarchical Techniques in Collsion Detection for Cloth Animation[J].Journal of WSGG,2003,11(2):322-329
    [31]章勤.虚拟环境中碰撞检测算法及并行化研究[硕士毕业论文],武汉,华中师范大学,2003,15-30
    [32]章勤.虚拟环境中碰撞检测算法及并行化研究[硕士毕业论文],武汉,华中师范大学,2003,25-32
    [33]Agarwal PK, Kreveld MV, Inlersection quenes for curved objects.In Proceeding of 7th Annual ACM Symposium on Computational Geometry,1991:41-50
    [34]陈尚飞.基于分离轴理论的有向包围盒重叠测试算法[J],广西科学院学报,2004,04:21-23
    [35]姜鹏程.优化的OBB碰撞检测算法研究[硕士毕业论文],青岛,青岛大学,2005
    [36]王晓荣.基于AABB包围盒的碰撞检测算法的研究[硕士毕业论文],武汉,华中师范大学,2007,38-49
    [37]刘国伟.虚拟装配系统中模型信息库的构建及干涉检查技术研究[硕士毕业论文],北京,北京邮电大学,2009,45-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700