肝脏三维可视化模型和虚拟肝段模型的建立及其在超声中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     肝脏是人体内体积最大、具有重要生理功能的脏器。肝脏管道系统的肝静脉系、门静脉系及肝后段下腔静脉的解剖结构交错重叠、相互关系复杂。肝脏超声最大的特点是能够显示任意方位的断面解剖结构,但同时多方位扫查又可以产生大量不规则的斜切面,而这些斜切面上肝内管道细微解剖结构的识别是肝脏超声影像学中的难点,而且随着超声影像学的分辨率不断提高,对于肝脏解剖的显示更加精细,需要与之对应的薄层断面解剖加以精细对照。现代外科学的发展已经广泛开展肝段、亚肝段甚至楔形切除及部分肝组织移植,这就要求影像学诊断能够精确到肝段,但是由于超声扫查方位和切面的任意性,使得在超声切面上进行肝段划分的研究受到了限制,而且在单一超声切面上只能显示部分肝脏及其肝内管道的二维断面,缺乏空间三维显示,不利于超声影像学对肝脏病变进行准确定位。我国的医学虚拟可视化研究已经起步并发展迅速,在中国可视化人体数据集的基础上建立和开发具有黄种人特点的各种虚拟现实医学系统对我国医学的教学、临床诊断(包括超声医学)和外科手术将具有非常重大的价值。
     目的
     建立高质量的国人肝脏三维可视化模型和虚拟肝段模型,将其与肝脏超声相结合,为肝脏超声提供任意方位的薄层断面解剖学基础,同时为超声影像学的肝脏分段提供二维和三维的可视化解剖学基础。探讨虚拟肝段模型在辅助超声对肝占位性病变进行定位诊断中的临床价值。设计虚拟肝脏超声成像系统的软件,为肝脏解剖教学、肝脏疾病的超声影像诊断提供二维和三维的立体学习平台。
     方法
     1.选取首套中国可视化人体数据集的肝脏连续断面部分,运用体数据绘制与表面绘制的重建方法,在Amira 4.1三维可视化软件上建立肝脏三维可视化模型,依据Couinaud肝段划分法,进一步建立虚拟肝段模型。采集正常人群肝脏超声的二维图像,建立正常人群肝脏超声的数据库。
     2.在肝脏三维可视化模型和虚拟肝段模型上,模拟超声常用扫查方位进行虚拟切割,与相应的超声图像进行解剖及肝脏分段的对照研究,指导超声图像上细微解剖结构的识别和肝段的精确划分。
     3.选择2007年11月到2009年1月期间我院收治的单个病变占据≤2个肝段、单个病灶直径≤9cm的局灶性肝占位病变患者100例,其中良性肝占位病变17例,恶性肝占位病变83例。术前进行了超声作为首选的影像检查,对比增强CT检查在超声检查之后,并最终接受了外科肝切除术。在虚拟肝段模型上模拟相应的超声方位,确定患者肝占位病变的肝段位置,并依据Couinaud肝段划分法记录肝段。以术中肝内病灶的定位诊断为标准,比较超声、对比增强CT、虚拟肝段模型辅助超声术前定位诊断的准确率。
     4.选取正常人群肝脏和肝内占位性病变患者肝脏的超声图像各六组,在肝脏三维可视化模型和虚拟肝段模型上模拟相应超声方位,获得可视化断面图像和可视化肝裂图像。应用Photoshop CS2 9.0软件,将每组可视化图像与超声图像中的肝内外解剖结构和肝内各个肝段分割出来,并对每组图像上的肝裂及其名称进行标注,建立图层来存储分割图像,以PNG格式保存。
     结果
     1.应用Amira软件建立的肝脏三维可视化模型能够清晰显示肝脏的形态结构及肝内管道系统的三维走行分布,可进行任意方位的实时虚拟切割,同时清晰地显示出各个切割方位肝脏断面的精细解剖结构。在虚拟肝段模型上应用软件的crop editor功能,能清晰显示出叶间裂及段间裂在任意切面中的位置,从而可以确定任意切面上各个肝段。
     2.本研究建立的三维可视化肝脏模型能模拟超声常用扫查方位进行虚拟切割,并与相应的超声切面形成良好的解剖对照,解决了肝脏超声由于大量的斜切面而难以与断面解剖学进行对照研究的困难。通过与虚拟肝段模型上可视化肝裂图像的对照研究,确定了相应超声图像上各个叶间裂及段间裂,实现了超声图像上肝段的精确划分。
     3.在100例患者中共确诊了112个病灶占据148个肝段,其中74个病灶位于1个肝段,38个病灶位于2个肝段,单个病灶直径范围为0.80~9.10 cm,其中直径≤3cm的病灶43个,直径>3cm的病灶69个。统计学分析表明:超声和虚拟肝段模型对肝内占位性病变进行肝段定位诊断准确率的差异有统计学意义(P<0.05)。对比增强CT和虚拟肝段模型之间的差异无统计学意义(P>0.05)。超声和虚拟肝段模型对位于单个肝段和直径≤3cm的肝占位性病变定位诊断准确率的差异有统计学意义(P<0.01),对位于两个肝段和直径>3cm的肝占位性病变定位诊断准确率的差异无统计学意义(P>0.05)。
     4.设计并完成了虚拟肝脏超声成像软件,通过该软件,可以更直观地掌握超声常用切面的肝内解剖、肝裂和肝段划分知识,还可以了解虚拟肝段模型辅助超声对肝内占位性病变进行准确的定位诊断的过程。
     结论
     1.肝脏三维可视化模型为肝脏超声影像学提供了任意方位的断面解剖学基础。
     2.虚拟肝段模型为肝脏超声的肝段划分提供了精确的二维和三维解剖学基础。
     3.虚拟肝段模型能提高超声对占据单个肝段及直径≤3cm的肝占位性病变的定位准确率,尤其能提高超声对位于乏血管区域肝内占位性病灶进行准确定位诊断的能力。
     4.虚拟肝脏超声成像软件为肝脏解剖教学、肝脏疾病的超声影像诊断提供了二维和三维的立体学习平台,有利于超声医学的推广普及以及提高肝脏疾病诊断的准确性。
Background:
     The human liver is an important organ with perplexing construction and great function in human body. The greatest feature of hepatic ultrasonography is able to display the sectional anatomic structure at arbitrary orientations, but a large number of irregular ultrasonic images would be generated because of multi-directional scanning. It is difficult to recognize the subtle anatomic structure of intra-hepatic vessels on those images. With the improvement of the resolution of ultrasonic transducers, intra-hepatic anatomic structures were displayed more subtly, which demands corresponding thin sectional anatomy. Recent advances in hepatic surgery have made segmental resections, as well as atypical or combined sections and part liver transplantation possible, It is vital for imaging to determine the precise preoperative segmental location of focal hepatic lesions. But detection of any random directions and irregular images limits the research on hepatic segmention by ultrasonography in which only part of the liver and intra-hepatic vessels were displayed on the two-dimensional sonographic planes, and was lack of three-dimensional display. So it is not helpful to determine the segmental location of hepatic lesions accurately. The research of medical visualization has started and developed rapidly in our country. Virtual Reality Medical System based on Chinese Visible Human data set would have very significant value for our medical teaching, clinical diagnosis (including ultrasounic medicine) and surgery.
     Objectives:
     The three-dimensional Chinese visible liver model and virtual hepatic segments model is to be established in order to provide thin sectional anatomy at random direction for hepatic ultrasonography and accurate two-dimensional and three-dimensional morpho- logical data for ultrasonography in hepatic segments classification, as well as to explore the clinical value of virtual hepatic segment model on localization diagnosis of focal hepatic lesions assisting the ultrasonography. The software of the virtual hepatic ultrasonic imaging system was designed to provide two-dimensional and three-dimensional visualization platform for liver anatomy teaching and imaging diagnosis in ultrasonography.
     Methods:
     1. The thin sectional anatomical images of liver selected from the Chinese Visible Human data set were used to establish three-dimensional visible liver model by volume rendering and surface rendering with AMIRA software. The virtual hepatic segments model was established based on three-dimensional visible liver model, The ultrasound images of health adult were collected to build the database.
     2. Ultrasonic direction could be simulated at any angle in the three-dimensional visible liver and virtual hepatic segment model. The virtual ultrasound sections were compared with the corresponding ultrasonic images of liver in order to direct the identification of anatomic structure and classification of hepatic segments on ultrasonic images.
     3. During the recent two years between November 2007 and January 2009, 100 patients underwent hepatic resection surgery for focal hepatic lesions located within two hepatic segment and less than 9cm in diameter in our hospital, 17 patients had benign hepatic lesions and 83 patients had malignant hepatic lesions. After all patients underwent ultrasonography which is an initial imaging examination for the detection of hepatic lesions, contrast enhancement CT was performed before hepatectomy. Corresponding ultrasonic direction was simulated to perform continuous virtual cutting in the virtual hepatic segment model, then the segmental location of the lesion was determined and recorded as Couinaud segment. The localization diagnosis result of intra-operative hepatic lesions was considered as the standard to compare the accurate rate of ultrasonography, contrast-enhanced CT, and virtual hepatic segment model.
     4. Six groups of ultrasonic images were selected from the health adult database and patients with focal hepatic lesions database respectively. Corresponding ultrasonic section was simulated in the three-dimensional visible liver and the virtual hepatic segment model to acquire the visible sections and hepatic scissure sections. By using Photoshop CS2 9.0 software, the hepatic anatomic structures and hepatic segments were segmented on the visible sectional images and corresponding ultrasonic images. the name of hepatic scissure was marked on the 2D sections and ultrasonic images, Then each structure was established in a layer and finally the segmented image was saved as PSD format.
     Results:
     1. The model of 3D visible liver could clearly display the structure of hepatic vessels and their special relationship, and can be cut in arbitrary orientations. The intra-hepatic vessels could be displayed distinctly on each section and each hepatic scissure could be displayed in any section by using“crop editor”function on the virtual hepatic segment model, then related hepatic segment would be determined.
     2. Ultrasonic direction could be simulated through cutting at any angle in the model of 3D visible liver and each section had good corresponding relationship display compared with those of ultrasonic images, which solve the problem that it is hard to comparing study between ultrasonic images and anatomic sectional images. By comparing with the sectional anatomic images, each hepatic scissure would be determined and the accurate classification of hepatic segment would come true on the ultrasonic images.
     3. A total of 112 lesions were determined in 148 resected hepatic segments from 100 patients. 74 lesions located in single hepatic segment, 38 lesions located in two hepatic segments and the size of lesions ranged from 0.80 cm to 9.10 cm. Among them, 43 lesions were 3cm or smaller in diameter, 69 lesions were larger than 3cm in diameter. The difference between ultrasonography and virtual hepatic segment model in determining the segmental location of lesions was statistically significant (p<0.05). but there was no statistically significant between the virtual hepatic segment model and contrast-enhanced CT (p>0.05). The difference between ultrasonography and virtual hepatic segment model was statistically significant for preoperative segmental location diagnosis of lesions located in single hepatic segments and 3cm or smaller in diameter (p<0.01). But there was no statistical difference in lesions located in two hepatic segment and larger than 3cm in diameter (P>0.05).
     4. The software of the virtual liver ultrasonic imaging system was accomplished. We could learn about liver anatomy, hepatic scissure and hepatic segment classification of the standard ultrasonographic sections by this software and further understand the process that the virtual hepatic segment model assisted the ultrasonography on localization diagnosis of focal hepatic lesions.
     Conclusion:
     1. The model of the visible liver can provide the distinct sectional anatomic data at random direction for hepatic ultrasonography. The virtual hepatic segment model can provide accurate two-dimensional and three-dimensional morphological data for ultrasonography in hepatic segments classification.
     2. The virtual hepatic segment model could improve the accuracy of ultrasonography for preoperative segmental location diagnosis of lesions located in single hepatic segment and 3cm or smaller in diameter, especially lesions located in the regions devoid of vessels.
     3. The software of the virtual liver ultrasonic imaging system can provide two-dimensional and three-dimensional visualization platform for liver anatomy teaching and imaging diagnosis in Ultrasonography, which helps to popularize ultrasonic medicine and improve the accuracy of diagnosis on hepatic disease.
引文
[1] Soyer P, Roche A, Gad M, et al. preoperative segment localization of hepatic metastases: Utility of three-dimensional CT during arterial portography. Radiology, 1991, 180: 653-658.
    [2] Jung G, Krahe T, Krug B, et al. Delineation of segmental liver anatomy. Comparison of ultrasonography, spiral CT and MR imaging for preoperative localization of focal liver lesions to specific hepatic segments. Acta Radiol, 1996, 37(5): 691-695.
    [3] Spitzer VM. The visible human: a new language for communication in health care education. Caduceus, 1997, 13(2): 42-48.
    [4]张绍祥,刘正津,谭立文,等.首例中国女性数字化可视人体数据集完成.第三军医大学学报,2003, 25(4): 371.
    [5] Zhang SX, Heng PA, Liu ZJ, et al. Creation of the Chinese Visible Human Data Set[J]. The Anat Rec, 2003, 275(1): 190-195.
    [6] Guo YL, Heng PA, Zhang SX, et al. Thin sectional anatomy, three-dimensional reconstruction and visualization of the heart from the Chinese visible human. Surg Radiol Anat, 2005, 27(2): 113-118.
    [7]李恺,张绍祥,刘正津,等.可视化肝脏横断面解剖与MR影像对照研究.中国医学影像技术,2005, 21(1): 138-142.
    [8] Strunk H, Stuckmann G, Textor J, et al. Limitations and pitfalls of Couinaud’s segmentation of the liver in transaxial imaging. Eur Radiol, 2003, 13(11): 2472-2482.
    [9]刘学静,武乐斌,柳澄.多层螺旋CT门静脉成像及其在肝脏解剖分段中的应用.医学影像学杂志,2002, 12(5): 398-400.
    [10]吴长君,石惠杰,刘丽,等.肝血管三维超声立体断层成像和三维能量成像的临床应用.中华超声影像学杂志,2007, 16(5): 404-407.
    [11] Radu B, Mihai S, Monica L, et al. Evaluating the liver tumors using three-dimensional ultrasonography. A pictorial essay. Journal of Gastrointestinal and Liver Diseases, 2007, 16 (1): 85 -92.
    [12] Fasel JH, Gingins P, Kalra P, et al. Liver of the“visible man”. Clin Anat, 1997, 10 (6): 389 - 393.
    [13]方驰华,钟世镇,原林,等.数字化虚拟肝脏图像三维重建的初步研究.中华外科杂志,2004, 42(2) : 94-96.
    [14]李凯,张绍祥,谭立文,等.数字化人体肝脏可视化与虚拟肝段切除.医用生物力学,2006, 21(3): 187-191.
    [15] Zhang SX, Heng PA, Liu ZJ, et al. The chinese visible human (CVH) datasets incorporate technical and imaging advances on earlier digital humans[J]. J Anat, 2004, 204(3): 165-173.
    [16] Spitzer VM, Whitlock DG. The visible human dataset: the anatomical platform for human simulation [J]. Anat Rec, 1998, 253(2): 49-57.
    [17]李祥林,王昌元,李月卿.海马结构的磁共振图像分割方法[J].中国医学影像技术,2002, 18(2): 189-190.
    [18]康晓东.医学图像的数字化处理技术[M].北京:人民卫生出版社,2002: 260.
    [19] Uchida M, Ishibashi M, Abe T, et al. Three-dimensional imaging of liver tumors using helical CT during intravenous injection of contrast medium[J]. J Comput Assist Tomogr, 1999, 23(3): 435-440.
    [20] Soler L, Delingette H, Malandain G, et al. An automatic virtual patient reconstruction from CT-scans for hepatic surgical planning[J]. Stud Health Technol Inform, 2000, 70: 316-322.
    [21] Zoli M, Magalotti D, Bianchi G, et al. Efficacy of a surveillance program for early detection of hepatocellular carcinoma. Cancer, 1996, 78(5): 977-985.
    [22] Lafortune M, Madore E, Patriquin H, et al. Segmental anatomy of the liver: a sonographic approach to the Couinaud nomenclature. Radiology, 1991, 181(2): 443 - 448.
    [23] Herfarth C, Lamade W, Fischer L, et al. The effect of virtual reality and training on liver operation planning[J]. Swiss Surg, 2002, 8(2): 67-73.
    [24] Lang H, Radtke A, Liu C, et al. Extended left hepatectomy modified operation planning based on three dimensional visualization of liver anatomy[J]. Langenbecks Arch Surg, 2004, 389(4): 306-310.
    [25] Cho A, Okazumi S, Miyazawa Y, et al. Proposal for a reclassification of liver based anatomy on portal ramifications. Am J Surg, 2005, 189(2): 195-199.
    [26] Cho A, Okazumi S, Makino H, et al. Anterior fissure of the right liver-the third door of the liver. J Hepatobiliary Pancreat Surg, 2004, 11(6): 390-396.
    [27] Fischer L, Thorn M, Neumann JO, et al. The segments of the hepatic veins-is there a spatial correlation to the Couinaud liver segments. Eur J Radiol, 2005, 53(2): 245-255.
    [28] Mcloughlin RF, Barry M, Gibney RG. Accuracy of computed tomography during arterial portography in the segmental localization of liver tumours. Ir J Med Sci, 1993, 162(6):221-222.
    [29] Bobek-Billewicz B, Szurowska E, Zapasnik A, et al. Localization of focal liver lesions to specific hepatic segments-comparison of multiphase spiral CT and MR imaging. Folia morphol, 2002, 61(4): 291-297.
    [30]黄志强.肝脏外科技术的发展.消化外科,2002, 1(1): 1-6.
    [31]王新房,张青萍.中华影像医学(超声诊断学卷)[M],北京:人民卫生出版社,2002: 385.
    [32] Andreas P, Kral H, Bernhard P, et al. Creating a high-resolusion spatial model of the inner organs based on the Visible Human. Med Image Anal, 2001, 5(3): 221-228.
    [33] Ackerman MJ, Yoo-T, Jenkins D. From data to knowledge-the Visible Human Project continues. Medinfo, 2001, 10(2): 887-890.
    1. Strunk H, Stuckmann G, Textor J, et al. Limitations and pitfalls of Couinaud’s segmentation of the liver in transaxial imaging. Eur Radiol, 2003, 13(11): 2472 - 2482.
    2. Kogure K, Kuwano H, Fujimaki N, et al. Reproposal for Hjortsjo’s segmental anatomy on the anterior segment in Human liver. Arch Surg, 2002, 137(10): 1118-1124.
    3. Cho A, Okazumi S, Miyazawa Y, et al. Proposal for a reclassification of liver based anatomy on portal ramifications. Am J Surg, 2005, 189(2): 195-199.
    4. Cho A, Okazumi S, Takayama W. Anatomy of the right anterosuperior area (segment 8) of the liver:evaluation with helical CT during arterial portography. Radiology, 2000, 214(2): 491–495.
    5. Fischer L, Thorn M, Neumann JO, et al. The segments of the hepatic veins-is there a spatial correlation to the Couinaud liver segments. Eur J Radiol, 2005, 53(2): 245–255.
    6. Alempijevi? T, Kovacevi? N, Stimec B, et al. Ultrasonographic aspects of liver segmentation. Med Pregl, 2007, 60(9-10): 501-504.
    7. Smith D, Downey D, Spouge A, et al. Sonographic demonstration of Couinaud’s liver segments. J Ultrasound Med, 1998, 17(6): 375-381.
    8. Lim JH, Kim SH, Lee WJ, et al. Ultrasonographic detection of hepatocellular carcinoma:correlation of preperative ultrasonography and resected liver pathology. Clin Radiol, 2006, 61(2): 191-197.
    9.吴长君,石惠杰,刘丽,等.肝血管三维超声立体断层成像和三维能量成像的临床应用.中华超声影像学杂志,2007,16(5):404-407.
    10.Radu B, Mihai S, Monica L, et al. Evaluating the liver tumors using three -dimensional ultrasonography. A pictorial essay. Journal of Gastrointestinal and Liver Diseases, 2007, 16(1): 85-92.
    11.Cho A, Okazumi S, Makino H. et al. Anterior fissure of the right liver-the third door of the liver. J Hepatobil Pancreat Surg, 2004, 11(6): 390-396.
    12.Cho A, Okazumi S, Makino H, et al. Relation between hepatic and portal veins in the right paramedian sector: proposal for anatomical reclassification of the liver. World J Surg, 2004, 28(1): 8-12.
    13.Zhao Z, Liu S, Li Z, et al. Sectional anatomy of the peritoneal reflections of the upperabdomen on the coronal plane. J Comput Assist Tomogr, 2005, 29(4): 430 -437.
    14.Guiney MJ, Kruskal JB, Sosna J, et al. Multi-detector row CT of relevant vascular anatomy of the surgical plane in split-liver transplantation. Radiology, 2003, 229(2): 401-407.
    15.Taniguchi M, Furukawa H, Shimamura T, et al. Hepatic venous reconstruction of anterior sector using three-dimensional helical computed tomography in living donor liver transplantation. Transplatation, 2006, 81(5):797-799.
    16.Saito S, Yamanaka J, Miura K, et al. A nover 3D hepatectomy simulation based on liver circulation: application to liver resection and transplantation. Hepatology, 2005, 41(6): 1297-1304.
    17.Concejero A, Chen CL, Wang CC, et al. Donor graft outflow venoplasty in living donor liver transplantation. Liver Transpl, 2006, 12(2): 264-268.
    18.刘学静,武乐斌,柳澄.多层螺旋CT门静脉成像及其在肝脏解剖分段中的应用.医学影像学杂志,2002,12(5):398-400.
    19.方弛华,钟世镇,原林,等.数字化虚拟肝脏图像三维重建的初步研究.中华外科杂志,2004,42(2):94-96.
    20.李恺,谭立文,刘正津,等.数字化人体肝脏可视化与虚拟肝段切除.医用生物力学,2006,21(3):187-191.
    21.李恺,张绍祥,刘正津,等.可视化肝脏横断面解剖与MR影像对照研究.中国医学影像技术,2005,21(1):138-142.
    22.朱新勇,方弛华,鲍苏苏,等.基于64排螺旋CT扫面数据的肝脏图像分割和三维重建.南方医科大学学报,2008,28(3):345-352.
    23.方弛华,常旭,鲁朝敏,等.肝内外胆管结石64排CT数据三维重建及其临床意义.南方医科大学学报,2008,28(3):370-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700