三轴摇摆台动力学仿真与复合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三轴摇摆台是模拟船舶横摇、纵摇和艏摇运动的实验设备,它为导航设备的研制提供运动模拟和精度测试条件,其性能直接影响试验准确度。所以,开发和研制高性能的摇摆台设备,将具有重要意义。
     本文以为某单位研制的船舶运动模拟摇摆台为背景,对三轴摇摆台机电系统进行了如下研究:首先,根据三轴摇摆台系统的性能指标,对摇摆台系统的机械结构和控制方案进行了设计,主要包括摇摆台虚拟样机的建模和结构分析,伺服控制系统组成元件的选型,并对三轴摇摆台的精度进行了分析。其次,由于三轴摇摆台的结构特点,摇摆台三个框架间的动力学耦合是影响摇摆台性能的一个重要因素,因此,对动力学耦合问题进行了深入的理论研究,建立了动力学耦合数学模型。并在理论分析的基础上,通过动力学仿真对三个框架间耦合影响的程度进行了研究。为了抑制耦合干扰对摇摆台系统性能的影响,根据系统鲁棒性补偿的思想,提出了动态解耦鲁棒补偿控制器的设计方法。最后,为提高三轴摇摆台伺服控制系统的性能,以位置-速度-电流反馈三环控制为基础,引入了动态解耦鲁棒补偿控制器环节和输入信号的微分前馈环节,组成复合控制系统。通过机电联合仿真的方法,对位置-速度-电流反馈三环控制策略和复合控制策略的控制性能进行了仿真研究;同时,对采用复合控制策略的实际三轴摇摆台系统进行了试验。
     通过对仿真数据和试验数据的对比分析,三轴摇摆台复合控制策略能够更有效地抑制耦合干扰的影响,拓宽系统的频带,增强系统的稳定性,系统的动态跟踪性能和稳态性能得到提高,证明了动态解耦鲁棒补偿控制器和复合控制策略的可行性。
The three-axis swing platform is the experimental equipment which could simulate rolling, pitching and yawing motion of the ship, the three-axis swing platform provides the condition of the motion simulation and the precision test for the navigation equipments, its performance influences the precision of the experiment. Therefore, the research and development of the high-performance swinging platform will be very important.
     In this paper, the research is based on the background of the development of the ship motion simulation swing platform for a agency, the electromechanical system of the three-axis swing platform was studied in the following cases: Firstly, the mechanical structure and the control program of the three-axis swing platform were designed according to the performance index of swing platform, including the modeling and structural analysis of virtual prototype, the components selection of the servo control system, and the precision of the swing platform was analized. Next, because of the structural characteristics of the three-axis swing platform, the dynamic coupling of the three-axis swing platform is an important factor that affects the performance. Therefore, the in-depth theoretical research of the dynamic coupling problem was done, the mathematical models of dynamic coupling were established. On the basis of theoretical analysis, the coupling extent of the three frames was analyzed through the dynamic simulation. Finally, in order to restrain the coupling disturbance, according to the ideas of robust compensation, the method of dynamic decoupling robust compensation controller was given. In order to improve the performance of the swing platform system, on the basis of the three-ring control of position-velocity-current feedback, the dynamic decoupling robust compensation controller and the input signal differential feedforward were added to make up of the compound control system. And the three-ring control strategy of position-velocity-current feedback, and the compound control strategy were studied by electromechanical co-simulation of the three-axis swing platform. At the same time, the real three-axis swing platform system which adopts the compound control strategy was tested.
     The analysis of results of the co-simulation and the experiment show that the compound control strategy of three-axis swing platform is effective, the coupling disturbance is eliminated greatly, the frequency bandwidth is broadened, the system stability is enhanced, the dynamic tracking performance and steady-state performance are improved. Therefore, the dynamic decoupling robust compensation controller and the compound control strategy are feasible.
引文
[1]苏婷婷.三自由度转台的控制与应用.哈尔滨工程大学硕士学位论文.2007.
    [2]刘樾,李亚军.惯导测试与运动仿真技术的特点与发展.航空精密制造技术.2008,44(6):1-6页.
    [3]杨元恺.美国惯导测试设备测试技术的现状及趋势.中国惯导技术学会.1987:1-9页.
    [4]吴玉华.惯性测试转台的发展状况.中国科技信息.2005(8):100页.
    [5]孔凡凯,薛开.基于PMAC的转台运动控制系统开发.应用科技.2005,32(4):43-44页.
    [6]刘学鹏,王斌.基于PMAC的开放式高精度运动控制台的研究.中国机械工程.2007,18(10):1186-1188页.
    [7]刘钦彦,李勇等.小型三轴摇摆台及其控制.仪器与仪表.2002(4):9-11页.
    [8]徐元昌著.机电系统设计.化学工业出版社.2005.
    [9]柴晓辉.三轴转台伺服系统设计.哈尔滨工程大学.2007.
    [10]曾庆双,王茂等.三轴转台框架间动力学耦合及解耦研究.中国惯性技术学报.1997,5(3):44-49页.
    [11]李运华等著.机电控制.北京航空航天大学出版社.2003.
    [12]郑凯,胡人喜等著.ADAMS2005机械设计高级应用实例.机械工业出版社. 2006.
    [13]郭卫东著.虚拟样机技术与ADAMS应用实例教程.北京航空航天大学出版社.2008.
    [14]梁利华,张松涛等.基于PMAC的三轴海浪模拟摇摆台设计.机床与液压.2005(9):117-119页.
    [15]李强.三轴仿真转台设计及动力学研究.哈尔滨工程大学硕士学位论文.2006.
    [16] Elwell J.Progress on Micromechanical Inertial Instruments. AIAA 91-2765-CP,1482-1485P.
    [17] Shabana. Dynamics of Multibody Systems.Cambridge University Press.1998.
    [18]刘樾,王兴启.三轴转台运动耦合作用的仿真及试验研究.航空精密制造技术.2006,42(3):24-27页.
    [19]王武义,陈志刚等.三维转动装置惯量耦合和动力学耦合研究.哈尔滨理工大学学报.2005,10(4):11-15页.
    [20]王伟雄,陶敏尔.三轴模拟台的交叉耦合及其控制方法的研究.中国惯性技术学报.1995,3(3):49-54页.
    [21] Michael S. Triantafyllou, Franz. S. Hover. Maneuvering and Control of Marine Vehicles. Department of Ocean Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts USA . 2003:1-4P.
    [22]李殿璞著.船舶运动与建模.哈尔滨工程大学出版社.1999.
    [23]张巍.三轴光学跟踪实验转台的动力学仿真研究.哈尔滨工业大学硕士学位论文.2006.
    [24] Yen J. Constrained Equations of Motion in Multibody Dynamics as ODEs on Manifolds. SIAM J. Numer. Anal,1993,3(2):553-568P.
    [25]刘延柱,洪嘉振著.多刚体系统动力学.高等教育出版社.1989.
    [26]朱喜林等著.机电一体化设计基础.科学出版社,2004.
    [27] Shahravi,Morteza. Adaptive robust attitude control of a flexible spacecraft. International Journal of Robust and Nonlinear Control.2006,16(6):287-302P.
    [28] Seraji.H.An Approach to Multivariable Control Manipulators. Transactions of the ASME.Journal of Dynamic System,Measurement and Control.1987,109(2):146-154P.
    [29] Ho Seong Lee. Robust motion controller design for high-accuracy positioning systems. IEEE Transactions on Industrial Electronics.1996,43(1):48-55P.
    [30] Iwasaki.M. Disturbance observer-based nonlinear friction compensationin table drive system. 1998 5th International Workshop on Advanced Motion Control. Proceedings,Coimbra,1998. IEEE, Piscataway, NJ, USA,1998:299-304P.
    [31] Kempf.C.J. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on Control Systems Technology.1999,7(5):513-526P.
    [32] Luh.J.Y.S. Resolved Acceleration Control of Mechanical Manipulators. IEEE Transactions on Automatic Control.1980,25(3):468-474P.
    [33]张锦江,冯汝鹏等.仿真转台解耦的鲁棒自适应模糊化设计.系统仿真学报.2000,12(2):155-158页.
    [34]张莉松等著.伺服系统原理与设计.第三版.北京理工大学出版社.2006.
    [35] Wang Ben-yong,Zhao Ke-ding. Research on robust control strategy for high-accuracy hydraulic flight motion simulator. Sixth International Conference on Machine Learning Cybernetics,Hong Kong,China,2007. Piscataway, NJ, USA: IEEE,2007:403-408P.
    [36]杨位钦,谢锡祺著.自动控制理论基础(下册).北京理工大学出版社.1992.
    [37]童诗白等著.模拟电子技术基础.第三版.高等教育出版社.2000.
    [38]邹伯敏著.自动控制理论.机械工业出版社.2002.
    [39]崔栋良,梁利华等.三轴模拟摇摆台机电联合仿真研究.应用科技.2009,39(9):66-69页.
    [40]管伟民.某型电动飞行仿真转台的建模、控制与仿真.西北工业大学硕士学位论文.2007.
    [41]陈伯时著.电力拖动自动控制系统.机械工业出版社.2004.
    [42]徐恒.交流伺服控制在转台控制系统中的应用研究.合肥工业大学硕士学位论文.2006.
    [43]崔广志.电动三轴仿真转台控制系统研究.哈尔滨工业大学硕士学位论文.2007.
    [44]黄忠霖著.控制系统MATLAB计算及仿真.国防工业出版社.2004.
    [45]史耀强等.双足机器人基于ADAMS与Matlab的联合仿真.机械与电子.2008,1:45-47页.
    [46]刘正华等.三轴虚拟仿真转台系统设计及实现.计算机工程与实现.2003,15:27-29页.
    [47]于爽,付庄等.惯性平台不平衡力矩测试方法及补偿控制.上海交通大学学报.2008,42(10):1692-1696页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700