海上分体自升式钻井平台对接过程监测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依托于国家863计划资助项目“分体自升式新型平台对接就位关键技术研究”(项目编号:2007AA09Z302),通过深入研究现有的海上钻井平台,开发研制一套用于分体自升式平台对接过程的实时监测系统。自升式钻井平台是目前世界上广泛采用的海洋钻井装备之一,主要是在滩涂和浅海区域作业,但是随着水深的增加,桩腿长度及刚性要求都要增加,重量重心、占用的作业甲板面积及所受风浪载荷都相应增加。受拖航稳性、结构刚度等影响,在这种模式下继续增加作业水深已经非常困难。为了逐步向深浅海迈进,研发经济性能好的深浅海钻井平台——分体自升式平台,解决现有自升式平台造价随水深加大而急剧上升的问题,是一种有益尝试。
     分体自升式平台主要由平台上下箱体、升降桩腿、对接引导装置、压载系统等构成。平台在对接过程中,必然会受到浪、流等海洋环境因素的影响,除此以外,平台下体还会受水面线突变过程和地基倾斜等因素影响。为了实现分体自升式平台安全精确对接,对水下平台对接过程进行实时动态监控是尤其重要的。
     随着传感检测技术、计算机技术的高速发展,本文借助STC单片机设计下位机硬件采集系统,在上位机命令下将采集的数据实时送上位机处理。上位机采用LABVIEW软件编程,运用小波分析的方法,有效的对平台检测信号进行去噪处理,提取有效信号。同时运用LABVIEW中的三维图形控件制作平台模型,将下位机采集的有用信号与三维平台模型相桥连,可方便的对分体式平台对接过程中的姿态、相对位置以及引导索受力状态,当前时间、温度等参数进行实时跟踪、三维动态显示并存储运行曲线,不仅对对接过程进行准确和直观地评价,而且其操作过程中的受力情况将直接影响这一理念的技术可行性,因此具有重要意义。
This paper is based on the project of National Scheme 863 Project "Research on Key Technologies in Docking Position of Split Type Jack-up new Platform"(Contract No: 2007AA09Z302), Through in-depth studying existing offshore drilling platform, a real-time docking process monitoring system of split type Jack-up Platforms was developed. As the one of ocean drilling equipment, jack-up drilling platform was widely used in the beach and shallow in the world. With the increase of water depth, leg length and rigidity requirements increase, weight center of gravity, working Deck area and Suffered storm load alse increase. By the influence of towing stability and Structural rigidity, it is a very difficult job for working in deeper water. In order to gradually progress towards the deeper sea, solve the problem of platform cost, developing a good economic performance of deep-sea drilling platform—Split type Jack-up Drilling Platforms. It is a kind of beneficial attempt.
     Split type jack-up platform is mainly made up of platform of two-piece unit, lifting leg, docking guidance device, ballast system, and so on. Platform would be affected by the waves, currents and other marine environmental factors in the docking process. In addition, the lower body of the platform will be affected by abrupt water surface changes, inclined foundation and other factors. In order to achieve security precision docking of split jack-up platform, it is particularly important to dynamicly monitor docking Process of underwater platform.
     With the rapid development of the sensor detection technology and computer technology, the paper design slave computer hardware acquisition system with the STC microcontroller, send the collected real-time data to host computer in PC orders. Using LABVIEW software programming and wavelet analysis method, host computer can denoise effectively, extract the effective signal for platform test signal. At the same time, using LABVIEW control of the three-dimensional graphics to product platform model, the useful signal of slave computer and three-dimensional platform model connected with bridge, it can be convenient to track platform attitude, relative position, stress state of guide rope, the current time, temperature and other parameters, and display and storage operation curve about three-dimensional dynamic effect in platform docking process. That not only assess accurately and intuitively platform docking process, but alse the technical feasibility of this idea will be directly affected by the force situation in operation. Therefore it is important.
引文
[1]方银霞,包更生,金翔龙. 21世纪深海资源开发利用的展望[J].海洋通报,2000,19(5): 73-78
    [2]钱松.海洋石油—石油生产增长的潜力所在.中国石油和化工经济分析[J],2007(n):43-49
    [3]李伯成.嵌入式系统可靠性设计[M].北京:电子工业出版社,2006
    [4]刘明,徐洪波,宁国勤.数字信号处理—原理与算法实现[M].北京:清华大学出版社,2006
    [5]徐松森.自升式平台上下分体探讨[J].航海工程,2008(2):88-90
    [6]李永芹.海域油气资源—中国未来能源的接力军[J].中国石油和化工经济分析,2001(l):55-60
    [7]李润培,王志农.海洋平台的强度分析[M].上海:上海交通大学出版社,1992
    [8]欧进萍,刘学东,陆钦年等.现役导管架式海洋平台结构整体安全度评估[J].海洋工程,1996, 14(3): 83-90
    [9]刘君华.虚拟仪器图形化编程语言LABVIEW教程[M].西安:西安电子科技大学出版社,2000, 4
    [10]陈锡辉,张银鸿.LABVIEW8.20程序设计从入门到精通[M].北京:清华大学出版社,2007, 7
    [11]零点工作室,刘刚,王立香,张连俊.LABVIEW 8.20中文版编程及应用[M].北京:电子工业出版社,2008.1
    [12]张令弥.动态测试技术的发展系列讲座,振动与冲击,1998, 17
    [13]张令弥,张春宁.多通道动态测试分析系统[M].航空学报,1994, 6
    [14]朱晓华,冯玉田,章玉鉴等.基于组件技术的虚拟仪器开发方法的研究[J].上海大学学报(自然科学版),1999, 5(4): 357-361
    [15]林正盛.虚拟仪器技术及其发展[J].国外电子测量技术,1997, (4): 10-16
    [16] http://www.dataphysics.com
    [17] D.B.Loyd, A.C.Phalangas, K.E.Barner. An audio and speech-based interface for computer-controlled scientific instruments. IEEE Transactions on Rehabilitation Engineering, 1999, 7(2): 72-78
    [18] Alfonso Carkisena, Carlos Macua, Miroslav zivanovic. Instrument for the Measurement of the Instantaneous Frequency. Instrumentation and Mesurement, 2000, 49(4): 783-789
    [19] AH Taner, NM White. Virtual Instrumentation:a solution to the problem of design complexity in intelligent instruments[J]. Measurement&Control, 1996, 29(7): 165-171
    [20] Yulong, Yanbin, Liqing. The integrative detecting instrument for military equipment based on VI technology. Proceedings of the International Symposium on Test and Measurement, 2001, 2: 1493-1496
    [21] Leping, Haitao. The application of virtual instrumentation in aerospace engineering education. Proceedings of the International Symposium on Test and Measurement, 2001, 2: 927-930
    [22]屠良尧,李海涛等.数字信号处理与VXI自动化测试技术[M].北京:国防工业出版社,2000, 6
    [23]吴淼编著.现代工程信号处理及应用[M].中国矿业大学出版社
    [24]黄文虎,夏松波,刘瑞岩.设备故障诊断原理、技术及应用[M].北京:科学出版社,1997
    [25]方志远,鲁植雄.基于LABVIEW同步控制技术的数据采集平台设计[J].工业控制计算机,2007, 04(20), 48-49
    [26]谢之柱,杨世锡,顾小军.一种基于LABVIEW的大型测控软件数据传递方式[J].工业控制计算机,2007, 04(20), 43-44, 46
    [27]胡广书.数字信号处理—理论、算法与实现[M].北京:清华大学出版社,1997, 6
    [28]余成波,胡新宇.传感器与自动检测技术[M].北京:高等教育出版社,2004
    [29]单成祥.传感器的理论与设计基础及其应用[M].北京:国防工业出版社,1999
    [30]王化祥,张淑英.传感器原理及应用[M].天津:天津大学出版社,1999
    [31]黄贤武,郑筱霞.传感器原理与应用[M].西安:电子科技大学出版社,1999.
    [32]孟凡文.NTC热敏电阻的非线性误差及其补偿[J].传感器世界,2003, (5): 21-24
    [33]张国栋.热敏电阻非线性修正方法的探讨[J].热能动力工程,1994, 9(5): 28-30
    [34]康华光.电子技术基础[M].北京:高等教育出版社,1987
    [35]招惠玲,秦淑娟.热敏电阻温度特性曲线的线性化[J].传感器技术,2003, 22(7): 47-49
    [36]吴翊.应用数理统计[M].国防科技大学出版社,2003, 135-157
    [37]彭军.传感器与检测技术[M].西安:西安电子科技大学出版社,2003
    [38]史丽萍,孙宝元,于浩洋.多项式回归分析在传感器测试中的应用[J].河北工业大学学报, 2003, 32(3): 4l-44
    [39]施丽娟,李东升,潘斌.自升式钻井平台结构自振特性分析[J].中国海上油气工程, 2001, 13(5): 6-8
    [40]陈瑞峰,胡克峰,张继春.自升式移动平台结构安全评估[J].中国船检,2000, 3: 23-25
    [41] S Mallat, WL Hwang. Singularity Detection and Processing with Wavelets[J]. IEEE Trans on Information Theory, 1992, 38(2): 617-643
    [42] WANG Ze-bao, BA Lin-feng. LABVIEW and Virtual Instrument Design[J]. Nation instrument and automation, 1999, 3(6): 68-70
    [43] W. Sweldens. The lifting scheme: A new philosophy in biorthogonal wavelet constructions. Wavelet Applications in Signal and Image Processing III, 1995, 68-79
    [44] S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation IEEE Trans. Pattern Analysis and machine Intelligence, 1989, 11(7): 674-693
    [45] Maysam Ghovanloo, Rajagopalan Ranganrajan. A Capacitive Accelerometer Designed for Elimiminating Picture Vibrations in Video Cameras. EECS720-Winter, 2001, 12: 12-15
    [46]秦树人,张思复等.集成测试技术与虚拟仪器[J].中国机械工程, 1999, 10(1): 77-80
    [47]梁学章,何甲兴等.小波分析[M].北京:国防工业出版社,2004
    [48]李建平,唐远炎.小波分析方法的应用[M].重庆:重庆大学出版社,1999
    [49]江思敏,姚鹏冀,胡烨.Protel2004电路原理图及PCB设计[M].北京:机械工业出版社,2006
    [50]李刚,王艳林,孙江宏等.Protel DXP电路设计标准教程[M].北京:清华大学出版社,2005
    [51]邵婷婷,王吉富,韩少波.基于小波多分辨率分析的一维信号阈值去噪[J].山西电子技术,2009, 4: 41-42
    [52]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000
    [53] STC12LE5410系列单片机器件手册
    [54]谢平,陈学煌.单片机多机串行通讯的设计[M].甘肃科技,2006, 9
    [55]沙占友,王彦朋,孟志永.单片机外围电路设计[M].北京:电子工业出版社,2003
    [56]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700