基于CT数据微螺钉、种植体CAD/CAM导板制作与精度评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本研究拟基于CT数据通过三维重建技术,图像配准技术,CAD技术,快速成型技术,设计并制作辅助微螺钉、种植体植入的定向导板。在导板的辅助下植入微螺钉与种植体,其中微螺钉导板为临床试验,而种植体导板为体外下颌骨模型试验。植入后拍摄CT,通过植入前后CT配准,对比CAD/CAM导板虚拟放置的位置与实际植入位置之间的偏离值,进而评价植入的精度。同时利用临床患者CT数据对临床植入位置(第一磨牙与第二双尖牙牙根间)的植入空间进行测量,分析植入的最佳角度的位置。同时建立口腔正畸三维数据的常用配准手段,以利于后续研究的进一步开展。通过对导板制作各个方面分析,造成植入偏离的原因,进而提高导板的精度。
     材料和方法
     1.选取2007-2009年患者11例,患者要求双颌前突或上颌前突,微螺钉强支抗,微螺钉植入前,取模后利用石膏模型制作放射导板,患者戴入放射导板后拍摄CT,导板单独拍摄CT,两次CT数据三维重建后,利用放射标记点进行配准。利用牙齿颌骨的三维重建模型虚拟放置微螺钉在最佳位置上,同时利用反求技术将微螺钉的位置转移到放射导板上,在放射导板三维重建模型的基础上增加植入导向结构,经过裁剪修整,设计完成微螺钉导板。患者在微螺钉导板的导向作用下,由正畸医生植入微螺钉。微螺钉植入后患者再次拍摄CT,植入后CT与植入前CT数据进行三维配准,比较实际微螺钉植入位置与虚拟设计位置间的偏离值,进而评价微螺钉CAD/CAM导板的精度。同时测量患者植入位置牙根间的距离,从而评价安全植入的范围和允许的偏离值,从而评价植入安全性。
     2.选取无牙颌下颌骨标本5个,取模后利用石膏模型制作放射导板。颌骨模型戴入放射导板后利用二次CT技术获得CT数据,利用放射标记点实现放射导板与颌骨模型的三维配准。在三维重建的颌骨模型中虚拟放置种植体,利用反求技术将种植体位置转移至放射导板上,以放射导板三维模型为模板增加植入导向孔道,加工修整后设计完成放射导板。利用快速成型技术CAM完成导板的制作。导板辅助下植入种植体30颗。植入完成后拍摄CT,植入前后颌骨模型三维配准,评价虚拟位置与实际植入位置间的偏离值,进而评价植入精度。
     结果
     1.十一例患者的植入部位(第一磨牙与第二前磨牙根间)的安全距离为3.7-4.5mm,平均为4.12±0.247mm,安全植入允许近远中向的偏离值为0.65-1.05mm,平均为0.86±0.125mm.而在微螺钉导板的辅助植入下微螺钉均成功植入,微螺钉植入点位置偏离值为0.10±0.012mm,而在微螺钉的头部位置,近远中向,垂直向,颊舌向的偏离值分别为0.42±0.13mm,0.47±0.12mm,0.59±0.26mm,,近远中向,垂直向,颊舌向的偏离角度分别为1.2±0.43°,1.3±0.41°,1.6±0.79°。微螺钉CAD/CAM导板有较高的精度。
     2.种植体植入后头部偏差量为0.47±0.12 mm,尾部偏差为0.19±0.07mm,角度偏差为1.79±0.68。。重新定义坐标后测量三维向偏离值在颊舌向,近远中,垂直向向上分别为头部0.22±0.08mm,0.25±0.06mm,0.30±0.11mm;尾部偏离值分别为0.10±0.03mm,0.08±0.02mm,0.13±0.04mm。角度偏离值只能在颊舌向和近远中向,分别为1.2±0.38°,1.24±0.3°。在近远中向和颊舌向上偏离无统计学差异(P>0.05),而垂直向上偏离值较其他两个方向略大,有统计学差异(P<0.05),
     结论
     微螺钉、种植体CAD/CAM导板借助CT三维重建技术,CAD技术,快速成型技术设计制作,精度满足临床精度要求,有助于提高临床植入的精度和安全性。对于复杂的病例采用CAD/CAM导板可保证成功率。
Objective:In this study, with the aid of the reconstruction of CT data,3D registration, CAD technology, Rapid prototyping, the template for placement of miniscrew and imlant were designed and manufactured. After registration of pre and post-operative CT data, the deviation between the actual miniscrews/implants and virtual ones was measured and the accuracy of two kinds template were evaluated respectively. And the deviation was 3D measured for analyses of the source of the deviation to improve the design of template. At the same time, the place for miniscrews placement (the interradicular position of second premolar and the first molar) was measured and evaluated. Develop 3D registration method for assessment of outcome of orthodontic treatment.
     Materials and Methods:1.11 patients who had bimaxillary protrusion, and agreed to extract the 4 first premolars,34 miniscrews were planned to provide absolute anchorage. After preparing mounted diagnostic casts with fully extended vestibular borders of the jaws, the radiographic templates were fabricated by use of the vacuum former technique and the patients and the radiographic template were scanned before the procedure with double-scan technique. And the 3D virtual model of teeth and maxillary/mandible were reconstructed basing on the CT data in the Mimics software respectively and superimposing the 2 sets of scans(with the radiographic markers as reference points. The virtual miniscrews were placed in a safe and optimal position when the roots of teeth were visualized, and the insertion site and angle were decided. The drill template was designed with the radiographic guide and the 3D information of the planned drill paths and fabricated the stereolithography template via a CAD/CAM procedure. When the position for the miniscrews was decided, a plane was created along the cylinder, and the distance between the two roots for miniscrew was measured at this plane. After registration of the pre and post-operative CT data, the deviation between the actual miniscrews and virtual miniscrews was 3D measured. Compare the actual and allowed deviation,the accuracy and security was evaluated.
     2. The CAD/CAM templates for 4 completely edentulous jaws were designed and fabricated basing on the preoperative CT data and the stone models of the jaws sample. And 14 implants (OSSTEM) were placed in the posterior region of the jaws aided by the CAD/CAM template. The pre and postoperative CT was registered by the point to point method, and the deviation between actual and virtual implants was measured to assess the accuracy of the template.
     Results:The interradicular safe zone for miniscrew of the 11 patients ranged from 3.7~4.5 mm and 4.12±0.247 mm(mean±SD) in average, and the allowed deviation ranged from 0.65-1.05mm and 0.86±0.125mm(mean±SD) in average. The templates were adapted on the patients in a satisfactory and stable manner. All the placement of the miniscrews was performed smoothly without any problem. The deviations of the position at the disto-mesial, vertical, bucco-palatal direction were 0.42±0.13mm, 0.47±0.12mm,0.59±0.26mm at the tip respectively and 0.10±0.012mm at the insertion sites. The miniscrew deviation of angle from the planned position at the disto-mesial, vertical, bucco-palatal direction was 1.2±0.43degrees,1.3±0.41 degrees, 1.6±0.79degrees respectively. No statistically significant differences were observed between the deviations at disto-mesial and vertical directions, and the bucco-palatal deviation was greater than other two directions, showed a significant difference. The deviation of template guide group was significantly smaller than allowed deviation, the difference was statistically significant (P<0.05).
     2. With the aid of CAD/CAM template, the deviations of the position at the tail of the implant, at the tip of the implant and the projected deviation of angle were 0.19±0.07 mm,0.47±0.12 mm, and 1.79±0.68 degrees respectively. The deviations of the position at the disto-mesial, vertical, bucco-palatal direction were 0.22±0.08mm, 0.25±0.06 mm,0.30±0.11mm at the tip respectively and 0.10±0.03mm,0.08±0.02mm, 0.13±0.04 mm at the head. The miniscrew deviation of angle from the planned position at the disto-mesial, bucco-palatal direction was 1.2±0.38 degree,1.24±0.3 degree respectively, showed no significant difference.
     Conclusion:In light of the results obtained, the new template for miniscrew and implant has high accuracy, and is especially applicable for severe clinical cases that require precise miniscrews placement.
引文
[1]Kopp KC, Koslow AH, Abdo OS. Predictable implant placement with a diagnostic/surgical template and advanced radiographic imagingJ Prosthet Dent,2003,89(6):611-615.
    [2]王建华,史言利.隧道开放式种植模板的制作与应用.上海口腔医学,2006,15(2):121-122.
    [3]Klinge B, Petersson A, Maly P. Location of the mandibular canal:Comparison of macroscopic findings, conventional radiography, and computed tomography. Int J Oral Maxillofac Implants 1989;4(4):327-332.
    [4]Quirynen M, Lamoral Y, Dekeyser C, et al. CT scan standard reconstruction technique for reliable jaw bone volume determination. Int J Oral Maxillofac Implants 1990;5(4):384-389.
    [5]Tyndall AA, Brooks SL. Selection criteria for dental implant site imaging:A position paper of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 89(5):630-637.
    [6]Tepper G, Hofschneider UB, Gahleitner A, Ulm C. Computed tomographic diagnosis and localization of bone canals in the mandibular interforaminal region for prevention of bleeding complications during implant surgery. Int J Oral Maxillofac Implants 2001;16(1):68-72.
    [7]Grunder U, Gracis S, Capelli M. Influence of the 3-D bone-to-implant relationship on esthetics[J]. Int J Periodontics Restorative Dent 2005; 25(2):113-119.
    [8]Verdonck HW, Poukens J, Overveld HV et al. Computer-assisted maxillofacial prosthodontics:a new treatment protocol. Int J Prosthodont 2003; 16(3):326-328.
    [9]Jasinevicius TR, Landers M, Nelson S, Urbankova A. An evaluation of two dental simulation systems:virtual reality versus contemporary non-computerassisted. J Dent Educ 2004; 68(11):1151-1162.
    [10]Qingbin Liu·Ming C. Leu·Stephen M. Schmitt. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol 2006; 29(3):317-335.
    [11]Poggio PM, Incorvati C, Velo S, Carano A."Safe zones":a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod.2006; 76(2):191-197.
    [12]Sunjay Suri, Ashok Utreja,Niranjan Khandelwal, Sushil K. Mago. Craniofacial Computerized Tomography Analysis of the midface of patients with repaired complete unilateral cleft lip and palate.2008;134(3):418-429.
    [13]Hyo-Sang Park. An Anatomical Study using CT Images for the implantation of micro-implants. Korea J Orthod,2002,32,435-441.
    [14]Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop.2006; 130:18-25.
    [15]Sammartino G, Della Valle A, Marenzi G, Gerbino S, Martorelli M, di Lauro AE, di Lauro F. Stereolithography in oral implantology:a comparison of surgical guides. Implant Dent.2004;13(2):133-139.
    [16]Adams G L, Gansky SA, Miller A J, Harrell WE, Hatcher D C. Comparison between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls. Am J Orthod Dentofacial Orthop.2004;126:397-409.
    [17]DeSmet E, Jacobs R, Gijbels F, et al. The accuracy and reliability of Radio-graphic methods for the assessment of marginal bone level around oral implants. Dentomaxillofac Radiol,2002; 31(3):176-181.
    [18]Suzuki EY, Suzuki B. A simple three-dimensional guide for safe miniscrew placement. J Clin Orthod.2007; 41(6):342-346.
    [19]任国成.CT图像处理及STL数据模型构建系统开发.山东大学硕士学位论文,2001.
    [20]Halazonetis DJ. From 2-dimensional cephaograms to 3-dimensional computed tomography scans. Am J Orthod Dentofacial Orthop.2005; 127(5):627-37.
    [21]Brown LG, A survey of imaging registration techniques. ACM Computer survey. 1992; 24:326-376.
    [22]Quereshy FA, Savell TA, Palomo JM. Applications of cone beam computed tomography in the practice of oral and maxillofacial surgery. J Oral Maxillofac Surg. 2008;66 (4):791-796.
    [23]Stephen A, Schendel, Chris L.3D Orthognathic Surgery Simulation Using Image Fusion. Semin Orthod.2009; 15(1):48-56.
    [24]Lane C,Harrell WJ. Completing the 3-dimensional picture. Am J Orthod Dentofacial Orthop 2008; 133(4):612-20.
    [25]Ruppin J, Popovic A, Strauss M et al. Evaluation of the accuracy of three different computer-aided surgery systems in dental implantology:optical tracking vs. stereolithographic splint systems. Clin Oral Implants Res.2008 Jul; 19 (7):709-716.
    [26]Maal TJ, Plooij JM, Rangel FA et al. The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography. Int J Oral Maxillofac Surg.2008 Jul; 37 (7):641-646.
    [27]Rangel FA, Maal TJ, Berge SJ etal. Integration of digital dental casts in 3-dimensional facial photographs. Am J Orthod Dentofacial Orthop.2008; 134 (6):820-826.
    [28]Nagao M, Sohmura T, Kinuta S, et al. Application of dentition and facial morphology integration system for occlusal correction. Dent Mater J.2004; 23 (1):24-30.
    [29]王广春,赵国群.快速成型与快速模具制造技术及其应用.北京:机械工业出版社,2004.
    [30]王运赣.快速成形技术.华中理工大学出版社,1999.
    [31]朱林泉,白培康等.快速成型与快速制造技术.北京:国防工业出版社.2003.
    [32]邱明国,张绍祥,谭立文,等.应用激光快速成形分层实体制造方法复制颞骨.第三军医大学学报,2002,24(8):910—912.
    [33]D'Urso PS, Barker TM, Earwaker WJ, et al. Stereolithographic biomodeUing in cranio-maxillofacial surgery:a prospective trial.J Craniomaxillofac Surg,1999,27(1): 30-37.
    [34]Wiechmann D.A new bracket system for lingual orthodontic treatment. Parl: Theoretical background and development.J Orofac Orthop,2002,63(3):234-245.
    [35]Marchack CB. CAD/CAM-guided implant surgery and fabrication of an immediately loaded prosthesis for a partially edentulous patient. J Prosthet Dent.2007; 97(6):389-394.
    [36]Lim JE, Lim WH, Chun YS.Quantitative evaluation of cortical bone thickness and root proximity at maxillary interradicular sites for orthodontic mini-implant placement. Clin Anat.2008; 21(6):486-91.
    [37]Poggio PM, Incorvati C, Velo S, Carano A."Safe zones":a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod.2006; 76(2):191-197.
    [38]Houston WJB. The analysis of errors in orthodontic measurements. Am J Orthod 1983; 83:382-90.
    [39]Cheol-Hyun Moon, Dong-Gun Lee, Hyun-Sun L etal:Factors Associated with the Success Rate of Orthodontic Miniscrews Placed in the Upper and Lower Posterior Buccal Region. Angle Orthodontist.2008; 78(1):101-106.
    [40]Kuroda S, Yamada K, Deguchi T, Hashimoto T, Kyung HM, Takano-Yamamoto T. Root proximity is a major factor for screw failure in orthodontic anchorage. Am J Orthod Dentofacial Orthop.2007;131(4):S68-73.
    [41]Park HS, Jeong SH, Kwon OW.. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop.2006; 130:18-25.
    [42]Sammartino G, Della Valle A, Marenzi G, Gerbino S, Martorelli M, di Lauro AE, di Lauro F. Stereolithography in oral implantology:a comparison of surgical guides. Implant Dent.2004; 13(2):133-139.
    [43]Adams G L, Gansky SA, Miller A J, Harrell WE, Hatcher D C. Comparison between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls. Am J Orthod Dentofacial Orthop.2004; 126:397-409.
    [44]DeSmet E, Jacobs R, Gijbels F, et al. The accuracy and reliability of Radio-graphic methods for the assessment of marginal bone level around oral implants. Dentomaxillofac Radiol,2002; 31(3):176-181.
    [45]Suzuki EY, Suzuki B. A simple three-dimensional guide for safe miniscrew placement. J Clin Orthod.2007; 41(6):342-346.
    [46]Sunjay Suri, Ashok Utreja,Niranjan Khandelwal, Sushil K. Mago. Craniofacial Computerized Tomography Analysis of the midface of patients with repaired complete unilateral cleft lip and palate.2008; 134(3):418-429
    [47]Aldo Carano, Stefano Velo, Cristina Incorvati, Paola Poggio. Clinical applications of the Mini-Screw-Anchorage-System (M.A.S.) in the maxillary alveolar bone. Prog Orthod.2004; 5(2):212-235.
    [48]Handelsman M. Surgical guidelines for dental implant placement. Br Dent J 2006; 201(3):324-333.
    [49]Wong NY, Huffer-Charchut H, Sarment DP. Computer-aided design/computer aided manufacturing surgical guidance for placement of dental implants:Case report. Implant Dent 2007; 16(2):123-130.
    [50]Tarnow DP, Magner AW, Fletcher P. The effect of the distance from the contact point to the crest of bone on the presence or absence of the interproximal dental papilla. J Periodontol 1992; 63(12):995-996.
    [51]Grunder U, Gracis S, Capelli M. Influence of the 3-D bone-to-implant relationship on esthetics. Int J Periodontics Restorative Dent 2005; 25(2):113-119.
    [52]Verdonck HW, Poukens J, Overveld HV et al. Computer-assisted maxillofacial prosthodontics:a new treatment protocol. Int J Prosthodont 2003; 16(3):326-328.
    [53]Jasinevicius TR, Landers M, Nelson S, Urbankova A. An evaluation of two dental simulation systems:virtual reality versus contemporary non-computerassisted. J Dent Educ 2004; 68(11):1151-1162.
    [54]Marchack CB.CAD/CAM-guided implant surgery and fabrication of an immediately loaded prosthesis for a partially edentulous patient. J Prosthet Dent. 2007;97(6):389-394
    [55]Sarment DP, Sukovic P, Clinthorne N. Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 2003;18(4):571-577.
    [56]Brief J, Edinger D, Hassfeld S et al. Accuracy of image-guided implantology. Clin Oral Implants Res 2005; 16(4):495-501.
    [57]Casap N, Wexler A, Persky N et al. Navigation surgery for dental implants: assessment of accuracy of the image guided implantology system. J Oral Maxillofac Surg.2004; 62 (9 Suppl 2):116-119.
    [58]Assche NV, Steenberghe DV, Guerrero ME et al. Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images:a pilot study. J Clin Periodontol.2007; 34(9):816-821.
    [59]Toshiya Endo; Kenji Uchikura; Katsuyuki Ishida et al. Thresholds for Clinically Significant Tooth-Size Discrepancy. Angle Orthod.2009; 79(4):740-746
    [60]姚长虹,詹肇麟,刘建雄.快速原型制造技术的发展与应用研究.昆明理工大学学报.2000;25(5):83-86.
    [61]J.-Y. Choi, J.-H. Choi, N.-K. Kim et al. Analysis of errors in medical rapid prototyping models. Int. J. Oral Maxillofac Surg.2002; 31(1):23-32.
    [63]Takafumi OHTANI1, Naoki KUSUMOTO, Kazumichi WAKABAYASHI et al. Application of haptic device to implant dentistry-accuracy verification of drilling into a pig bone. Dental materials journal.2009; 28(1):75-81.
    [64]David P. Sarment, Predrag Sukovic, Neal Clinthorne. Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants. 2003; 18(4):571-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700