全光纤OCT内窥镜技术及长周期光纤光栅形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤由于其体积小、可弯曲、低损耗、大带宽、不受电磁干扰且对多种物理量具有敏感性等优点,使由光纤构成的器件在传感领域及传光领域都具有非常重要的应用;光学相干层析技术(Optical coherence tomography, OCT)以其非侵入、高分辨率及无创伤等特点,在临床医学及活体组织的实时检测方面具有极大地发展及应用潜力。基于此,本文结合非线性梯度多模光纤的传光特性及OCT系统的原理,研究了一种全光纤结构的共臂分光OCT内窥镜技术,此方法共用信号臂和参考臂,能较好的克服传统OCT技术中由于信号臂和参考臂的分离带来的误差,减少外界环境诸如震动、温度等对系统的影响,并能极大的减小系统体积,为OCT系统的小型化、轻型化应用带来便利。同时利用光纤的光敏特性,对CO2激光照射效应形成长周期光纤光栅的机理进行了研究。
     论文的主要研究内容包括:
     1.提出了一种新型的全光纤共臂分光OCT内窥镜技术,通过共臂分光技术虚拟出一个参考面,此参考面可虚拟在被测样品之前、之中或之后的任意位置,从而不会造成参考面及被测样品间的相互遮挡。
     2.在全光纤共臂分光OCT内窥镜系统中引入转子、定子及离合器机构,使系统轴向扫描和横向扫描分离,同时达到调整OCT探针工作距的目的。
     3.为实现信号光的扩束及准直,且满足共臂分光OCT内窥镜系统对结构小型化要求,研究了一种基于单模-多模的渐变折射率全光纤准直机构。
     4.根据光纤的光敏特性,利用Fabry-Perot干涉仪研究了一种测量CO2激光照射效应时所引起光纤折射率改变量的方法。本文通过引入Fabry-Perot干涉仪结构来测量光纤纤芯被照射点处折射率的变化,并以此来研究长周期光纤光栅的形成机理。
     5.由于频域OCT系统的深度扫描信息由背向散射光谱的傅立叶逆变换获得,从而带来了直流分量及被测样品内部的自干涉及虚像等寄生信息。基于此,本文提出了一种新型的定步长两帧相移算法。此算法极大地降低了OCT系统对虚拟参考面的移动精度要求,且只需要移动一次参考平面,即可消除直流分量及被测样品内部的自干涉。
Due to its small volume, capable of being bent, extra low loss, high bandwidth, insensitivity to electro-magnetic and capable of measuring lots of physical quantities, Optical fiber-based devices are wildly used in optical communications and sensing applications; Optical coherence tomography (OCT) is a non-invasive, high-resolution and non-destructive optical technique based on Michelson interferometry which has great potentials in biomedical applications such as clinical medicine and in vivo detection of living tissues. To circumvent the problems mentioned above, an all-fiber common-path beam-splitting OCT endoscopic probe is proposed in this paper. In a common-path interferometer, the reference and sample arm overlap for a significant portion. As a result, it has the advantages of adjustable probe length, reduced sensitivity to vibration and temperature variation, and better stability due to automatically maintained beam overlap. In addition, this miniaturized configuration reduces the complexity and cost of the system. In accordance with the photosensitivity of optical fiber, another research is focused on CO2 laser fabricated long period fiber gratings (LPFG), including the fabrication technique and principles.
     The research mainly includes:
     1. A novel common-path OCT probe is demonstrated, which contains a virtual reference plane by using common-path technique. This plane could be located anywhere in front of, in between or behind the sample, free from overlapping of reference plane and investigated sample.
     2. In the common-path OCT endoscopic system, rotors, stators and clutches are employed to separate A-Scan and B-Scan, and in the meanwhile, to adjust the working distance of OCT probe.
     3. In order to achieve beam expansion and collimation, and satisfy the need for miniaturized device used in common-path OCT endoscopic system, an all-fiber device using graded-index multimode fiber collimator is investigated.
     4. A new method to measure the CO2 laser irradiation-induced refractive index modulation in the core of a single-mode optical fiber is demonstrated for the purpose of design and fabrication of LPFGs. The total refractive index change was measured using an optical fiber Fabry–Perot interferometer. The CO2-laser irradiation-induced refractive index change in the fiber core has a negative value and its magnitude is a sensitive function of the laser exposure time following a linear relation. This study provides valuable guidance for LPFG fabrication.
     5. Owing to the fact that deep scan information from Fourier Domain OCT system is obtained by inverse Fourier transform of back scattered signal spectrum, the acquired images contains parasitic information such as DC signal and self-interference signal along with useful information. Given this drawback, this paper puts forward a new algorithm of fixed-step two frames phase shift. This algorithm significantly lowers the demand for the accuracy of virtual reference plane movement, and only one time movement is needed for eliminating DC signals and self-interference signals inside the sample.
引文
[1] K. C. Kao, G A Hockham, Dielectric-fibre surface waveguides for optical frequencies, Proc. IEE,1966,113(7): 1151-1158
    [2] K. O. Hill, Y. Fujii, D. C. Johnson et al., Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett., 1978, 32(10): 647-649
    [3] R. M. Atkins,V. Mizrahi, T. Efdogan, 248 nm induced Vacuum UV spectral changes in optical fiber preformcores: support for a colour centre model of photosensitivity, Elechon. Lett., 1993, 29(4): 385-387
    [4] P. J. Lemaire, R. M. Atkins, V. Mizrahi et al., High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers, Electron. Lett., 1993, 29: 1191-1193
    [5] H. Partiek, S. L. Gilbert, Annealing of Bragg grating in hydrogen-loaded optical fiber, J. Appl. Phys., 1995, 78(5):2940-2945
    [6] A. D. Kersey, T. A. Bekro, W. W. Morey, Multiplexed fiber Bragg grating strain sensor System With a fiber Fabry-Perot wavelength filter, Opt. Lett., 1993, 18(16): 1370-1372
    [7] Joo-yung, Se Yoon Kim, Sun Wook Kim et al., Temperature insensitive long-period fibre gratings, Electronics Letters, 1999, 35(24): 2134-2136
    [8] W. Drexler, J.G. Fujimoto, Eds., Optical Coherence Tomography: Technology and Applications, Springer, 2008.
    [9] M.E. Brezinski, Optical Coherence Tomography: Principles and Applications, Elsevier, 2006.
    [10] A.M. Zysk, F.T. Nguyen, A.L. Oldenburg et al., Optical coherence tomography: A review of clinical development from bench to bedside, Journal of Biomedical Optics, 2007, 12: 051403
    [11] D. Huang, E. A. Sawanson, C. P. Lin, et al., Optical Coherence Tomography, Science, 1991, 254(5035):1178-1181
    [12] R. C. Youngquist, S. Carr, D. E. Davies, Optical Coherence-Domain Reflectometry - a New Optical Evaluation Technique, Optics Letters, 1987, 12(3): 158-160
    [13] K. Takada, I. Yokohama, K. Chida et al., New Measurement System for Fault Location in Optical Wave-Guide Devices Based on an Interferometric Technique, Applied Optics, 1987, 26(9): 1603-1606
    [14] A. F. Fercher, E. Roth, Ophthalmic laser interferometry, Proceedings of SPIE, 1986, 658: 48-51
    [15] J. F. Boer, B. Cense, B. H. Park et al., Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography, Optics Letters, 2003, 28: 2067-2069
    [16] P. Massatsch, F. Charrière, E. Cuche et al., Time-domain optical coherence tomography with digital holographic microscopy, Appl. Opt., 2005, 44(10): 1806-1812
    [17] R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, Performance of fourier domain vs. time domain optical coherence tomography, 2003, 11(8): 889-894
    [18] F. Forooghian, C. Cukras, C. B. Meyerle et al., Evaluation of Time Domain and Spectral Domain Optical Coherence Tomography in the Measurement of Diabetic Macular Edema, Investigative Ophthalmology and Visual Science, 2008, 49: 4290-4296
    [19] A. B. Vakhtin, K. A. Peterson, D. J. Kane, Resolving the complex conjugate ambiguity in Fourier domain OCT by harmonic lock-in detection of the spectral interferogram, Optics Letters, 2006, 31: 1271-1273
    [20] R. A. Leitgeb, R. Michaely, T. Lasser et al., Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning, 2007, 32(23): 3453-3455
    [21] M. S. Muller, P. J. Webster, J. M. Fraser, Time-gated Fourier-domain optical coherence tomography, 2007 32(22): 3336–3338
    [22] C. M. Eigenwillig, W. Wieser, B. R. Biedermann, Subharmonic Fourier domain mode locking, 2009, 34(6): 725-727
    [23] Davis AM, Choma MA, Izatt JA, Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal, J. Biomed. Opt., 2005, 10: 064005-1-6
    [24] Choma MA, Sarunic MV, Yang C, Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Opt. Express, 2003: 11, 2183
    [25] Yasuno Y, Madjarova VD, Makita S et al., Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments, Opt. Express, 200, 13: 10652-10664.
    [26] M. R. Hee, J. A. Izatt, E. A. Swanson, et.al, Optical coherence tomography of the human retina, Arch.Ophthalmol,1995,113(3): 326-332
    [27] S. Boppart, M . Brezinsk, B. Boump , Investigation of developing morphology using optical coherence tomography, Dev. Biol., 1996, 177(1): 54-64
    [28] Y. Pan, E. Lankenau, J. Welzel, et al., Optical coherence-gated imaging of biological tissues, IEEE J. Sel. Top. Quant. Electron., 1996, 2(4): 1029-1034
    [29] J. A. Izatt, M. D. Kulkami, H. W. Wang, et al., Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues, IEEE J. Sel. Top. Quant. Electron., 1996, 2(4): 1017-1028
    [30] M. R. Hee, D. Huang, J. G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging, J. Opt. Soc. Am, B., 1992, 9(6): 903-908
    [31] J. F. Boer, T. E. Milner, J. S. Nelson, Determination of the depth resolved Stokes parameters of light backscattered from turbid media using polarization sensitive optical coherence tomography, Opt. Lett., 1999, 24: 300-302
    [32] C. K. Hitzenberger, E. G.otzinger, M. Sticker, et al., Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography, Opt. Express, 2001, 9: 780–790
    [33] J. E. Roth, J. A. Kozak, S. Yazdanfar, et al., Simplified method for polarization sensitive optical coherence tomography, Opt. Lett., 2001, 26: 1069–1071
    [34] C. E. Saxer, J. F. de Boer, B. H. ark, et al., High speed fiber based polarization sensitive optical coherence tomography of in vivo human skin, Opt. Lett., 2000, 25: 1355–1357
    [35] M. R. Hee, D. uang, E. A. Swanson, et al., Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging, J. Opt. Soc. Am., 1992, B., 9: 903–908
    [36] S. Jiao, L. V. Wang, Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography, Opt. Lett. 2002, 27: 101-103
    [37] Chen Z P, Milner T E, S. Shyam, Noninvasive imaging of in vivo blood flow velocity using optical Doppler Tomography, Opt. Lett., 1997, 22(14):1119-1121
    [38] Hitzenberger CK, Drexler W, Fercher AF, Measurement of corneal thickness by laser Doppler interferometer, Invest Ophthalmol Vis Sci 1992, 33: 98-103
    [39] X.-j. Wang, T. E. Milner, Z. Chen, et al., Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography, Appl. Opt. , 1997, 36: 144-149
    [40] M. D. Kulkarni, T. G. Van, Leeuwen, S.Yazdanfar et al., Velocity Estimation Accuracy and FrameRate Limitations in Color Doppler Optical Coherence Tomography, Opt. Lett. 1998, 23: 1057-1059
    [41] Z. Chen, T.E. Milner, D. Dave, et al., Optical Doppler tomography imaging of fluid flow velocity in highly scattering media, Opt. Lett. 1997, 22: 64-66
    [42] A F Fercher, W Drexler, C K Hitzenberger, et al., Optical coherence tomography - principles and applications, Rep. Prog. Phys., 2003, 66: 286
    [43] J. M. Schmitt, OCT elastography: Imaging microscopic deformation and strain of tissue, Optics Express, 1998, 3(6): 199–211
    [44] G. Berc, K. Forde, History of Endoscopy, Sugerical endoscopy, 2000,14: 5-15
    [45] Knyrim K, Seidlitz H, Vakil N, el at., Perspectives in electronic endoscopy, past, present and future of fibers and CCDs in medical colonoscopies, Endoscopy,1990, 22(1):2-8
    [46] WaHacc MB, Ravenel L, Block MI, et al., Endoscopic ultrasound in lung cancer patients with a normal mediastinum on computed tomography, Ann Thorac Surg., 2004, 77(5): 1763-1768,
    [47] Yingtian Pan, Huikai Xie, G. K. Fedder, Endoscopic optical coherence tomography based on microelectromechanical mirror, 2001, 26(24): 1966–1968
    [48] Pan, Y , T Q Du, C W Bastacky, et al, Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherent tomography, Optics Letters, 2003, 28(24): 2485-2487
    [49] Berzon Lé, Bogomolova L E, Varlamova L L, et al., Using optical coherence tomography in endoscopy, Journal of Optical Technology, 2009 76(10) 641-646
    [50] Alexander Sergeev, V. Gelikonov, G. Gelikonov, et al., In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa, optics express, 1997, 1(13): 432–440
    [51] P. Mark, S. Milen, Park B et al., Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography, Optics Express, 2005, 13(15): 5739-5749
    [52] Chen.Yu, Aguirre.Aaron D, Hsiung Pei-Lin, et al., Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues, Optics Express, 2008, 16(4): 2469-2485
    [53] G. Madhusudhana, J. Michael W, W. David L, Temporal resolution OCT using image based retrospective grating, Optics Express, 2009, 17(13): 10786-10799
    [54] Ahlers C, Schmidt-Erfurth U, Three-dimensional high resolution OCT imaging of macular pathology, Optics Express, 2009, 17(5): 4037-4045
    [55] L. Kirill, M. Massoud, E. Rinat, Highly sensitive measurement of changes in optical properties of scattering media with OCT, Frontiers in Optics (FiO), 2003
    [56] J. S. Bredfeldt, C. Vinegoni, D. L. Marks, et al.,“Molecularly sensitive optical coherence tomography,”Opt. Lett., 2005, 30(5): 495-496
    [57] A. F. Fercher, C. K. Hitzenberger, W. Drexler, et al., In vivo optical coherence tomography, Amer. J. Ophthalmol., 1993, 116: 113–114
    [58] A. F. Fercher, Optical coherence tomography, J. Biomed. Opt, 1996, 1:157–173
    [59] R. A. Leitgeb, W. Drexler, A. F. Fercher, Ultrahigh resolution Fourier domain optical coherence tomography, Opt. Express, 2004, 12: 2156–2165
    [60] B. Povazay, K. Bizheva, A.F. Fercher et al., Submicrometer axial resolution optical coherence tomography, Opt. Lett. 2002, 27: 1800–1802
    [61] A. F. Fercher, C. K. Hitzenberger, G. Kamp, et al., Measurement of intraocular distances by backscattering spectral interferometry, Opt. Commun., 1995, 117: 43-48
    [62] R. Leitgeb, L. Schmetterer, A. Fercher, Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography, Opt. Express, 2003, 11: 3116-3121
    [63] Y. Zhao, Z. Chen, J. F. de Boer, Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow, Opt. Lett. 2000, 25: 1358-1361.
    [64] J. F. de Boer, S. M. Srinivas, A. Malekafzali, et al., Imaging thermally damaged tissue by polarization sensitive optical coherence tomography, Opt. Express, 1998, 3: 212-218
    [65] J. F. de Boer, T. E. Milner, M. J. van Gemert, Two dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography, Opt. Lett.,1997, 22: 934-940
    [66] J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, et al., Optical biopsy and imaging using optical coherence tomography, Nature Med, 1995, 1: 970-972
    [67] S. A. Boppart, B. E. Bouma, J. G. Fujimoto, Imaging Developing Neural Morphology Using Optical Coherence Tomography, J. Neurosis. Methods, 1996, 70: 65-72
    [68] E. A. Swanson, D. Huang, J. G. Fujimoto, High-speed optical coherence domain reflectometry, Opt. Lett., 1992, 17: 151-153
    [69] S. A. Boppart, G. J. Tearney, J. G. Fujimoto, Noninvasive Assessment of the Developing Xenopus Cardiovascular System Using Optical Coherence Tomography, Proc. Natl. Acad. Sci. 1997, 94: 4256-4261
    [70] M. Wojtkowski, V. J. Srinivasan, Tony H.Ko, et al., Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation, Opt. Express, 2004, 12: 2404–2422
    [71] M. Wojtkowski, T. Bajraszewski, et al., Real-time in vivo imaging by high speed spectral optical coherence tomography, Opt. Lett. 2003, 28: 1745–1747
    [72] Huber R, Wojtkowski M, Fujimoto j. G., Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm, Optics Express, 2005, 13 (26), 10523-10538
    [73] Wojtkowski M, Bajraszewski T, Targowski P, Real-time in vivo imaging by high-speed spectral optical coherence tomography, Optics Letters, 28(19): 1745-1747
    [74] Yatagai Toyohiko, Saito Hiroyoshi, Interferometric Testing With Computer Generated Holograms: Aberration Balancing Method And Error Analysis, Applied Optics, 1978, 17(4): 558-565
    [75] Guanming Lai, Toyohiko Yatagai, Generalized phase-shifting interferometry, J. Opt. Soc. Am. A, 1991, 8(5):822-827
    [76] Tomlins Peter H, Wang Ruikang K, Matrix approach to quantitative refractive index analysis by Fourier domain optical coherence tomography, JOSA A, 2006, 23(8):1897-1907
    [77] Wang Ruikang K, An Lin, Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo, Optics Express, 2009,17(11):8926-8940
    [78] K. Kobayashi, J. Izatt, M. Kulkarni, et al., High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results, Gastrointestinal Endoscopy, 47(6):515-523
    [79] B. Bouma, G. J. Tearney, S. A. Boppart, et al., High resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source, Opt. Lett, 1995, 20:1486-1488
    [80] W. Drexler, U. Morgner, F. X. Kartner, et al., In vivo ultrahigh-resolution optical coherence tomography, Opt. Lett. 1999, 24: 1221-1223
    [81] E. A. Swanson, M. R. Hee, G. J. Tearney, J. G. Fujimoto, Application of optical coherence tomography in nondestructive evaluation of material microstructure, Anaheim, CA, USA, 1996
    [82] L. Vabre, A. Dubois, A. C. Boccara, Thermal-light full-field optical coherence tomography, Opt. Lett., 2002, 27(7): 530-532
    [83] A. Dubois, L. Vabre, A. C. Boccara et al., High-resolution full-field optical Coherence tomography with a Linnik microscope, Appl. Opt., 2002, 41(4): 805-812
    [84] V. V. Tuchin, I. L. Maskimova, D. A. Zimnyakov, Light propagation in tissues with controlled optical properties, J. Biomed. Opt. 1997, 2: 401-417
    [85] A. B. Vakhtin, D. J. Kane, W. R. Wood, et al., Common-Path Interferometer for Frequency-Domain Optical Coherence Tomography, Applied Optics, 2003, 42: 6953-6958
    [86] U. Sharma, N. M. Fried, J. U. Kang, All-fiber common-path optical coherence tomography: Sensitivity optimization and system analysis, IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11: 799-805
    [87] U. Sharma, J.U. Kang, Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography, Review of Scientific Instruments, 2007, 78, 113102
    [88] K. M. Tan, M. Mazilu, T.H. Chow, et al., In-fiber common-path optical coherence tomography using a conical-tip fiber, Optics Express, 2009, 17: 2375-2384
    [89]吴开杰,复谱频域OCT快速成像的若干关键技术研究:[博士学位论文],天津;天津大学, 2005
    [90]龚强,频域光学相干层析成像与组织散射理论研究:[博士学位论文],天津;天津大学, 2008
    [91]王玲,光学相干层析视网膜成像系统研究:[博士学位论文],浙江;浙江大学, 2008
    [92]许棠,生物组织中的光传输及生物组织光学特性参数测量的研究:[博士学位论文],天津;南开大学, 2004
    [93]骆清铭,张益哲,曾绍群,光学弱相干层析成像进展,CT理论与应用研究2000,9(4):1-6
    [94]王峰,丁海曙,用近红外光谱技术实现生物组织含氧量的无损检测,清华大学学报,1999,39(7): 16~19.
    [95]堪一,薛平,袁韬,激光相干层析成像的光散射模拟计算,光学学报,1999, 19(4):111-114
    [96] Lei Wang, Ping Xue, Tao Yuan et al., Optical biopsy of artery with OCT, SPIE 1999,Wuhan
    [97]陈炜,薛平,袁韬等,新型成像技术的实验系统研究,光学技术,2002, 26(3): 218-221
    [98]曾绍群,骆清铭等,光学相干层析系统相干传递函数研究,光学学报,1996,16(3): 340-344
    [99]宋桂菊,王向朝,张莲英等,藕断面光学相干层析成像,中国激光,2000,27(1): 83-86
    [100]薛玲玲,张春平,王新宇等,OCT技术在生物组织中的应用,激光杂志,2000, 21(1): 6-9
    [101]王新宇,张春平,张连顺等,用Monte Carlo方法重建OCT图像,红外与毫米波学报,2003, 20(1): 68-70
    [102] R. Andrew M, I. Joseph A, Optimal interferometer designs for optical coherence tomography, Optics Letters, 1999, 24(21): 1484-1486
    [103] O. Sergio, S. Damian, R Laura, Optical coherence tomography for quantitative surface topography, Applied Optics, 2009, 48(35): 6708-6715
    [104] Shadaram Mehdi, Analysis of power ratio of Rayleigh and Fresnel reflections in optical fibers using OFDR, Applied Optics, 1986, 25(2) 174-175
    [105] A. J. Welch, M. J. C. Van, Germert, et al., Overview of tissue optics, in Optical Thermal Response of Laser Irradiated Tissue,(Plenum,New York,1995),Chap.2.
    [106] V. Tuchin, Tissue Optics: Light scattering Methods and Instruments for Medical Diagnosis, Bellingham(Washington, USA): SPIE PRESS,2000
    [107] L. G. Henyey, J. L. Greenstein, Diffuse Radiation in the Galaxy, Astrophys. J. 1941, 93: 70-83.
    [108] N. Ghosh, S. K. Mohanty, S. K. Majumder, Measurement of optical transport properties of normal and malignant human breast tissue, Appl. Opt., 2001, 40(1): 176-184
    [109]张连顺,张春平,王新宇等,光与生物组织相互作用模型及图像重建,激光与光电子学进展,2002,39(4) :21-25
    [110] B. C. Wilson, M. S. Patterson, The Physics of Photodynamic Therapy, Physicsin Medicine and Biology, 1986, 31(4): 327-360
    [111] C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, New York: John Wiley and Sons, 1998
    [112] S. L. Jacques, S. A. Prahl, Modeling Optical and thermal distributions in tissue irradiation, Lasers Surg. Med., 1987, 6: 494-503
    [113] A. Ishimaru, Wave propagation and scattering in random media, New Jersey: Wiley-IEEE Press,1999
    [114] .Paras NPrasad著,何赛灵等译,生物光子学导论,杭州:浙江大学出版社,2006,76-90,136-149
    [115]高峰,光学相干层析成像系统的研制:[博士学位论文],四川;四川大学,2005
    [116]赵友全,范世福,曹文新,生物组织光学特性参数及其描述,国外医学生物医学工程手册,2000,23(2): 76-79
    [117]杨亚良,全场光学相干层析成像研究:[博士学位论文],浙江;浙江大学,2008
    [118] G. Yao, L. H. V. Wang, Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media, Physics in Medicine and Biology, 1999, 44(9): 2307-2320
    [119] J. M. Sehmitt, A. Knuttel, Model of optical coherence tomography of heterogeneous tissue, J. Opt. Soc. Amer. A, 1997, 14: 1231-1242
    [120] M. KemPe, W. RudolPh, Analysis of heterodyne and confocal microscopy for illumination with broad-bandwidth light, J. Mod. Opt., 1996,43: 2189-2204
    [121] J. H. McLeod, Axicons and Their Uses, Journal of the Optical Society of America-A, 1960, 50: 166-166
    [122] J. W. Y. Lit, R. Tremblay, Focal depth of a transmitting axicon, Journal of the Optical Society of America- A, 1973, 63: 445-449
    [123] J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, Journal of the Optical Society of America-A, 1987, 4: 651-654
    [124] P. Belanger, M. Rioux, Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam, Applied Optics, 1978, 17: 1080-1086
    [125] R. Arimoto, C. Saloma, T. Tanaka, et al., Imaging properties of axicon in a scanning optical system, Applied Optics, 1992, 31: 6653-6657
    [126] S. Mononobe, M. Ohtsu, Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching, Journal of Lightwave Technologies, 1996,14: 2231-2235
    [127] A.T. Friberg, Stationary-phase analysis of generalized axicons, Journal of the Optical Society of America - A, 1996, 13: 743-750
    [128] V. Jarutis, R. Paskauskas, A. Stabinis, Focusing of Laguerre-Gaussian beams by axicon, Optics Communications, 2000, 184: 105-112
    [129] Z.H. Ding, H.W. Ren, Y.H. Zhao, et al., High-resolution optical coherence tomography over a large depth range with an axicon lens, Optics Letters, 2002, 27: 243-245
    [130] K. S. Lee, L. P. Rolland, Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range, Optics Letters, 2008, 33: 1696-1698
    [131] Derickson D, 1998 fiber Optics Test and Measurement(Englewod Cliffs, NJ: Prentice-Hall)
    [132]孙雨南,王茜倩,伍剑等,光纤技术-理论基础与应用,北京,北京航空航天大学出版社,2006,51-59
    [133]廖延彪,光纤传感技术与应用,北京,清华大学出版社,2009
    [134] S.H. Wang, C.J. Tay, C. Quan, H.M. Shang, Collimating of diverging laser diode beam using graded-index optical fiber, Optics and Laser in Engineering, 2000, 34: 121-127
    [135] Yu-Cheng Lin, Characteristics of Lensed Fiber Collimator with Large Gradient-Index Lens Diameter, Microwave and Optical Technology Letters, 2009, 51(4): 1137-1139
    [136] A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Boston: Artech House, 1999
    [137] Kawasaki B.B., hill K.O., johnsom D.C., et al., Narrow-band Bragg grating in optical fiber, Optics letter, 1978, 3:66-68
    [138] Hill k. O., Meltz G.., Fiber Bragg grating technology fundamentals and overview, Journal of Lightwave Technology, 1997, 15(8): 1263-1277
    [139] Vengsarkar A. M., Lemaire P.J., Judkine B.J., et al., Long-period fiber gratings as band-rejection filters. Journal of Lightwave Technology, 1996, 14: 58-64
    [140] Bhatia V., Vengarskar A. M., Optical fiber long-period grating sensors, Optical letter, 1996, 21(9): 692-694
    [141] Y. G. Han, S. Kim, and S. Lee, Flexibly tunable multichannel filter and bandpass filter based on long-period fiber gratings, Opt. Express 2004, 12: 1902-1907
    [142] D. B. Stegall, T. Erdogan, Dispersion control with use of long-period fiber gratings, J. Opt. Soc. Am. A, 2000, 17: 304–312
    [143]张自嘉,光纤光栅理论基础与传感技术,北京,科学出版社,2009: 41-51
    [144] Davis D.D., Gaylrd T.K., Glytsis E N., Long-period fiber grating fabrication with focused CO2 laser pulses, Electronics Letters, 1998, 34(3,5): 302, 303
    [145] Rao Y. J., Wang Y. P., ran Z. L., Novel fiber-optics sensors based on long-period fiber gratings written by High-frequency CO2 laser pulses, Journal of lightwave Technology, 2003, 21(5): 1320-1327
    [146] T .Erdogan, Cladding-mode resonances in short- and long period fiber grating filters, J. Opt. Soc. Am. A., 1997, 14: 1760-1773
    [147] E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations, J. Lightwave Techno., 2003, 21: 218-227
    [148] U.C. Paek, C.R. Kurkjian, Calculation of cooling rate and induced stresses in drawing of optical fibers, J. Am. Ceram. Soc., 1975, 58: 330-335
    [149] Y. Hibino, F. Hanawa, T. Abe, S. Shibata, Residual stress effects on refractive indices in undoped silica-core single-mode fibers, Appl. Phys. Lett., 1987, 50: 1565-1566
    [150] M. Akiyama, K. Nishide, K. Shima, et al., A novel long-period fiber grating using periodically released stress of pure-silica core fiber, in Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThG1
    [151] C.S. Kim, Y.G. Han, B.H. Lee, et al., Induction of the refractive index change in B-Doped optical fibers through relaxation of the mechanical stress, Opt. Commun., 2000, 185: 337-342
    [152] B.H. Kim, Y. Park, T.-J. Ahn, et al., Residual stress relaxation in core of optical fibers by CO2 laser irradiations, Opt. Lett., 2001, 26:1657-1659
    [153] F. Dürr, G. Rego, P. V. S. Marques, et al., Tomographic Stress Profiling of Arc-Induced Long-Period Fiber Gratings, J. Lightwave Technol., 2005, 23: 3947-3953
    [154] B. H. Kim, T. -J. Ahn, D. Y. Kim et al., Effect of CO2 laser irradiation on the refractive-index change in optical fibers, Appl. Opt., 2002, 41:3809-3815
    [155] Y. J. Li, T. Wei, H. Xiao, et al, Measurement of CO2 Laser Irradiation Induced Refractive Index Modulation in Singlemode Fiber towards LPFG Design and Fabrication, Appl. Opt., 2008, 47(29): 5296-5304
    [156] B. Qi, G. R. Pickrell, J. Xu, et al., Novel data processing techniques for dispersive white light interferometer, Opt. Eng., 2003, 42: 3165–3171
    [157] T. Wei, Y. Han, Y. Li, et al., Temperatureinsensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement, Opt. Express 2008, 16: 5764–5769
    [158] C. B. Morrison, L. M. Zinkiewicz, J. Niesen, L. Figueroa, High-Power Superluminescent Diode with Reduced Coherence Length, Electronics Letters, 1985, 21(19):840-841
    [159]郑羽,提高频域OCT性能的若干关键技术研究:[博士学位论文],天津;天津大学,2007
    [160]石顺祥,张海兴,物理光学与应用光学,西安电子科技大学出版社,1999
    [161] K.A. Goldberg, J. Bokor, Fourier-transform method of phase-shift determination, Applied Optics ,2001, 40(17): 2886-2894
    [162] S.M. Pandit, N. Jordache, Data-Dependent-Systems and Fourier-Transform Method for Single-Interferogram Analysis, Appl. Opt. 1995, 34(26): 5945-5951
    [163] B. R, The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill, 1999
    [164] Y.Q. Li, Z.Y. Zhu, X.Y. Li, Elimination of reference phase errors in phase-shifting interferometry, Measurement Science&Technology, 2005, 16(6): 1335-1340
    [165]钱克矛,续伯钦,伍小平,光学干涉计量中的位相测量方法,实验力学,2001, 16(3): 239-249
    [166]侯立周,张锡富,孙晓明,几种任意步距进相移算法的误差分析与对比,光学技术,1999, 5: 7-10
    [167] J. Schwider, R. Burow, K. E. Elssner, et al., Digital Wave-Front Measuring Interferometry-Some Systematic-Error Sources, Applied Optics, 1983, 22(21): 3421-3432
    [168] P. Hariharan, B. F. Oreb, T. Eiju, Digital Phase-Shifting Interferometry-a Simple Error-Compensating Phase Calculation Algorithm, Applied Optics, 1987, 26(13): 2504-2506
    [169] G. Stoilov, T. Dragostinov, Phase-stepping interferometry: Five-frame algorithm with an arbitrary step, Opt. and Lasers in Eng., 1997, 28(1):61-69
    [170] Y. Y. Cheng, J. C. Wyant, Phase-Shifter Calibration in Phase-Shifting Interferometry, Applied Optics, 1985, 24(18): 3049-3052
    [171] B. Gutmann, H. Weber, Phase-shifter calibration and error detection in phase-shifting applications: a new method, Applied Optics, 1998 37(32): 7624-7631
    [172] P. Carré, Installation et Utilisation du Comparateur Photoelectrique etInterferentiel du Bureau International des Poids de Measures, Metrologia, 1966, 2: 13-23
    [173] Andrei B. Vakhtin, Kristen A. Peterson, William R. Wood, Differential spectral interferometry: an imaging technique for biomedical applications, OPTICS LETTERS, 2003, 28(15): 1332-1334
    [174] R. Huber, M. Wojtkowski, K. Taira et al., Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles, Optics Express, 2005, 13: 3513-3528
    [175] A. Wang, H. Xiao, J. Wang, Z. Wang, et al., Self-calibrated interferometric intensity-based optical fiber sensors, Journal of Lightwave Technology, 2001, 19:1495-1501
    [176] B. Hitz, Tiny Fiber Fabry-Perot Created with Femtosecond Pulses: Extrinsic interferometer could detect chemicals in harsh environments, Photonics Spectra, 2008, 28
    [177] B. Yu, D.W. Kim, J. Deng, H. Xiao, et al., Fiber Fabry-Perot Sensors for Detection of Partial Discharges in Power Transformers, Applied Optics, 2003, 24; 3241-3250
    [178] H. Xiao, J. Deng, Z. Wang et al., Fiber optic pressure sensor with self-compensation capability for harsh environment applications,”Optical Engineering, v.44, pp. 054403, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700