虚拟现实技术在远外侧入路显微解剖和颅底肿瘤个性化手术入路的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的第一部分进行了远外侧入路局部显微解剖及虚拟解剖研究。本研究采用的方法成人湿头颅标本共10个,按照远外侧入路手术过程,由外向内依次解剖。逐层观察肌肉椎动脉寰枢椎寰枕关节及手术入路涉及的重要结构,对部分血管性骨性结构进行测量及拍照。成人干性颅骨标本20个,寰椎标本15个进行骨性结构间的数据测量。30例正常成人的薄扫CT,CTA,影像数据载入Dextroscope工作站,在虚拟标本上,模拟远外侧入路的显微解剖入路,测量与远外侧手术入路相关血管性,骨性结构,获得相应解剖数据,将数据同实际解剖获得相对应结构的数据结果进行比照分析。通过对远外侧入路中三维虚拟显微解剖和实际显微解剖的对比研究,评价虚拟现实技术在远外侧入路中应用价值。
     在第二部分进行了虚拟现实技术在颅底肿瘤个性化手术入路的应用研究,通过在15例颅底肿瘤患者手术前应用虚拟现实技术,将患者的MRI,MRA,MRV,CT,CTA等影像资料,输入Dextroscope工作站,利用RadioDexterl.OIR软件,进行影像融合后,对15例颅底肿瘤患者手术手术前分析及模拟手术,每个患者进行个体化手术入路设计,评价虚拟现实技术在颅底肿瘤手术中应用价值。
     本论文成功探讨了虚拟现实技术与个性化手术手段为临床颅底肿瘤治疗提供了理论基础及治疗靶点。
1.Study on far lateral approach of local Microsurgical anatomy and virtual anatomy
     1.1 Objective:study of anatomical in far lateral approach applied for lesions treatment in the cranio-cervical junction Through micro-anatomy studies of the occipital muscles, vertebral artery, atlanto-cone, the foramen magnum, occipital condyle, the hypoglossal canal and other important structures,provide anatomical data for clinical application of far-lateral approach.
     Through the far lateral approach in the three-dimensional virtual micro- anatomy and actual comparative study of microscopic anatomy, we evaluate the the application invirtual reality technology in the far lateral approach .
     1.2 Methods: a total of 10 adult Wet- Dead skull specimens (20 sides). a total of 20 adult dry–dead skull specimens (40 sides) and atlas specimens 15 specimens (30 sides).
     First, According to far-lateral approach for surgical procedure, we dissected dead skull from outside to inside under 5-10 times enlarged by the microscope. Observation of muscle, vertebral artery, atlanto-axial, atlanto- occipital joint and the surgical approach involved an important structure Layer by layer, part of the vascular structure of bone were measured and photographed. We measuremented data of structure of bone on skull specimens and atlas specimens 30 normal adult thin sweep CT, CTA, images data loaded into Dextroscope workstations .in the virtual specimens we simulated the far-lateral approach into the path of the micro-anatomy, and measured the far-lateral surgical approach-related vascular, bone structure, and obtained the corresponding anatomical data, and analysis the data obtained by the actual anatomical structure and virtual anatomical structure.
     1.3 Results: Corresponding to anatomy of the data Virtual dissection group's and the actual dissection group's are a high degree of match, statistically no significant difference.
     1.4 Conclusion:
     1) Proficiency in far-lateral approach related to occipital muscles, vertebral artery, atlanto-cone, the foramen magnum, occipital condyle, the hypoglossal canal and other important structures of the microscopic anatomy of the surgery,reduce damage of vertebral artery, cranial nerve, reduce the extension of spinal cord and the maximum removal of tumors significance.
     2) Corresponding to anatomy of the data Virtual dissection group's and the actual dissection group's are a high degree of match, statistically no significant difference. of Virtual reality technology can comprehensive evaluate the far-lateral approach vascular and bone structure, and have application value in the far lateral approach anatomy .
     2.Virtual reality technology in skull base surgery
     2.1 Objective: we perform individualized surgical approach design by virtual reality technology in the skull base cancer patients before surgery, and evaluate the value of virtual reality technology in the skull base tumor surgery.
     2.2 Methods: 15 cases of skull base tumors. Preoperative acquisition MR, MRA, MRV, CTA imaging data, scan data loaded into Dextroscope workstation, formulated the detailed preoperative plan. Research the adjacent relationship of tumor and surrounding structures, developed individualized surgical approach.
     2.3 Results : 15 cases formulation the virtual reality surgical planning, the results of three-dimensional image clarity, true, observation comprehensive, and completed the simulation surgical of 15 cases. The images data be outputed.
     2.4 Conclusion: 1) Used virtual reality technology in the skull base tumor patients and helps clear the preoperative diagnosis.
     2) Virtual reality technology provide individual patients the pathological anatomy, as well as the lesion with the surrounding vital structures in the three-dimensional relationship and help doctors to locate and design of surgical approach.
引文
[1]刘庆良.神经外科手术入路解剖与临床[J].中国科学技术出版社, 2007: 1-3.
    [2] Sekhar L, Sen C, Snydeman C. Anterior, anterolateral and lateral approaches to extradural petroclival tumors[J]. Surgery of Cranial Base Tumors, 1993: 157-223.
    [3] Carta F, Siccardi D, Cossu M et al. Removal of tumours of the orbital apex via a postero-lateral orbitotomy[J]. J Neurosurg Sci, 1998,42(4): 185-188.
    [4] MacDonald JD, Antonelli P, Day AL. The anterior subtemporal, medial transpetrosal approach to the upper basilar artery and ponto-mesencephalic junction[J]. Neurosurgery, 1998,43(1): 84-89.
    [5] Maus M, Goldman HW. Removal of orbital apex hemangioma using new transorbital craniotomy through suprabrow approach[J]. Ophthal Plast Reconstr Surg, 1999,15(3): 166-170.
    [6] Hammon WM, Kempe LG. The posterior fossa approach to aneurysms of the vertebral and basilar arteries[J]. J Neurosurg, 1972,37(3): 339-347.
    [7] Seeger W. Atlas of topographical anatomy of the brain and surrounding structures for neurosurgeons, neuroradiologists, and neuropathologists[M]. Wien ; New York: Springer-Verlag, 1978: 544 p.
    [8] Bertalanffy H, Seeger W. The dorsolateral, suboccipital, transcondylar approach to the lower clivus and anterior portion of the craniocervical junction[J]. Neurosurgery, 1991,29(6): 815-821.
    [9] Wen HT, Rhoton AL, Jr., Katsuta T et al. Microsurgical anatomy of the transcondylar, supracondylar, and paracondylar extensions of the far-lateral approach[J]. J Neurosurg, 1997,87(4): 555-585.
    [10] Lang J, Jr., Samii A. Retrosigmoidal approach to the posterior cranial fossa. An anatomical study[J]. Acta Neurochir (Wien), 1991,111(3-4): 147-153.
    [11] Heros RC. Lateral suboccipital approach for vertebral and vertebrobasilar artery lesions[J]. J Neurosurg, 1986,64(4): 559-562.
    [12] George B, Dematons C, Cophignon J. Lateral approach to the anterior portion of the foramen magnum. Application to surgical removal of 14 benign tumors: technical note[J]. Surg Neurol, 1988,29(6): 484-490.
    [13] Sen CN, Sekhar LN. An extreme lateral approach to intradural lesions of the cervical spine and foramen magnum[J]. Neurosurgery, 1990,27(2): 197-204.
    [14] Sen CN, Sekhar LN. Surgical management of anteriorly placed lesions at the craniocervical junction--an alternative approach[J]. Acta Neurochir (Wien), 1991,108(1-2): 70-77.
    [15]杨德林,徐启武,车晓明等.应用Dextroscope虚拟现实技术研究岩骨内解剖[J].中国临床神经科学杂志, 2009,17(3): 251-255.
    [16] Burdea G, Deshpande S, Popescu V et al. Computerized hand diagnostic/rehabilitation system using a force feedback glove[J]. Stud Health Technol Inform, 1997,39: 141-150.
    [17] Ratiu P, Hillen B, Glaser J et al. Visible Human 2.0--the next generation[J]. Stud Health Technol Inform, 2003,94: 275-281.
    [18] Park JS, Chung MS, Hwang SB et al. Visible Korean human: improved serially sectioned images of the entire body[J]. IEEE Trans Med Imaging, 2005,24(3): 352-360.
    [19]吴劲松,毛颖.虚拟现实技术在神经外科术前计划的应用[J].中华显微外科杂志, 2006,29(6): 415-418.
    [20] Liu XD, Xu QW, Che XM et al. Trigeminal neurinomas: clinical features and surgical experience in 84 patients[J]. Neurosurg Rev, 2009,32(4): 435-444.
    [21]杨德林,徐启武,车晓明.虚拟现实技术在颅底外科手术前应用(附34例临床报告)[J].中国微侵袭神经外科杂志, 2008,13(5).
    [22]杨德林,徐启武,车晓明. Dextroscope虚拟现实技术在颅底肿瘤手术中的应用[J].中华神经外科, 2008,24(12): 900-902.
    [23] Schul C, Wassmann H, Skopp GB et al. Surgical management of intraosseous skull base tumors with aid of Operating Arm System[J]. Comput Aided Surg, 1998,3(6): 312-319.
    [24] McEvoy AW, Porter DG, Bradford R et al. Intra-operative localisation of skull base tumours. A case report using the ISG viewing wand in the management of trigeminal neuroma[J]. Postgrad Med J, 1999,75(879): 35-38.
    [25] Metson R, Cosenza M, Gliklich RE et al. The role of image-guidance systems for head and neck surgery[J]. Arch Otolaryngol Head Neck Surg, 1999,125(10): 1100-1104.
    [26] Wadley J, Dorward N, Kitchen N et al. Pre-operative planning and intra-operative guidance in modern neurosurgery: a review of 300 cases[J]. Ann R Coll Surg Engl, 1999,81(4): 217-225.
    [27] Elsen PAvd, Pol EJD, Viergever MA. Medical image matching-a review with classification[J]. IEEE Engineering in Medicine and Biology, 1993,(12): 26-39.
    [28] Maintz JB, Viergever MA. A survey of medical image registration[J]. Med Image Anal, 1998,2(1): 1-36.
    [29] Birnbaum BA, Noz ME, Chapnick J et al. Hepatic hemangiomas: diagnosis with fusion of MR, CT, and Tc-99m-labeled red blood cell SPECT images[J]. Radiology, 1991,181(2): 469-474.
    [30] Koyama T, Okudera H, Kobayashi S. Computer-assisted geometric design of cerebral aneurysms for surgical simulation[J]. Neurosurgery, 1995,36(3): 541-546; discussion 546-547.
    [31] Kockro RA, Serra L, Tseng-Tsai Y et al. Planning and simulation of neurosurgery in a virtual reality environment[J]. Neurosurgery, 2000,46(1): 118-135; discussion 135-117.
    [32] Goh KY. Separation surgery for total vertical craniopagus twins[J]. Childs Nerv Syst, 2004,20(8-9): 567-575.
    [33] Wolfsberger S, Forster MT, Donat M et al. Virtual endoscopy is a useful device for training and preoperative planning of transsphenoidal endoscopic pituitary surgery[J]. Minim Invasive Neurosurg, 2004,47(4): 214-220.
    [34] Wolfsberger S, Neubauer A, Buhler K et al. Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery[J]. Neurosurgery, 2006,59(5): 1001-1009; discussion 1009-1010.
    [35] Stadie AT, Kockro RA, Reisch R et al. Virtual reality system for planning minimally invasive neurosurgery. Technical note[J]. J Neurosurg, 2008,108(2): 382-394.
    [36]张晓硌,吴劲松,毛颖等.虚拟仿真技术在神经外科术前计划中的应用[J].中华显微外科杂志, 2006,29(6): 415-418.
    [37]卜博,许百男,周定标. Dextroscope手术计划系统在颅脑手术中的应用及评估[J].中华神经外科杂志, 2007,23(10): 750-753.
    [38]郭燕舞,张世忠,柯以栓.虚拟现实技术在颅底肿瘤手术计划中的应用[J]. 2008,26(2): 143-145.
    [39]郭燕舞,汪求精,贾洪顺.虚拟影像手术计划系统在颅内动脉瘤诊断中的应用[J].南方医科大学学报, 2008,28(2): 213-215.
    [40] Yang D, Xu Q, Che X. Application of Dextroscope Virtual Reality Technology in operation of Skull Base Tumor[J]. Journal Asian of Neurosurgery, 2008,(2): 12-20.
    [41] Auer LM, Auer DP. Virtual endoscopy for planning and simulation of minimally invasive neurosurgery[J]. Neurosurgery, 1998,43(3): 529-537; discussion 537-548.
    [42] Chinnock C. Virtual reality in surgery and medicine[J]. Hosp Technol Ser, 1994,13(18): 1-48.
    [43] Seymour NE, Gallagher AG, Roman SA et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study[J]. Ann Surg, 2002,236(4): 458-463; discussion 463-454.
    [44] Pareras LG, Martin-Rodriguez JG. Neurosurgery and the Internet: a critical analysis and a review of available resources[J]. Neurosurgery, 1996,39(1): 216-232; discussion 232-213.
    [45] Kassell NF, Downs JH, 3rd, Graves BS. Telepresence in neurosurgery: the integrated remote neurosurgical system[J]. Stud Health Technol Inform, 1997,39: 411-419.
    [46] Satava RM. Emerging technologies for surgery in the 21st century[J]. Arch Surg, 1999,134(11): 1197-1202.
    [47] Yasargil M, Mortara R, Curcic M. Meningiomas of the basal posteri or cranial fossa[J]. Wien: Springer-Verlag, 1980,17: 1-115.
    [48] Babu RP, Sekhar LN, Wright DC. Extreme lateral transcondylar approach: technical improvements and lessons learned[J]. J Neurosurg, 1994,81(1): 49-59.
    [49] Sekhar L, Salas E. Extreme lateral approach and combine approach,Cranial microsurgery-approach[J]. New York Thicanc, 1998,(14): 464-481.
    [50] Ture U, Pamir MN. Extreme lateral-transatlas approach for resection of the dens of the axis[J]. J Neurosurg, 2002,96(1 Suppl): 73-82.
    [51] Rhoton A. Far lateral and anscondylar approaches[J]. Neurosurgery, 2007,(67(Supp4)): 211-228.
    [52] Lang JJ, Samii A. Retrosigmoidal approach to the posterior cranial fossa An anatomical study[J]. Acta Neurochir(Wien), 1991,111((3-4)): 147-153.
    [53] Baldwin HZ, Miller CG, van Loveren HR et al. The far lateral/combined supra- and infratentorial approach. A human cadaveric prosection model for routes of access to the petroclival region and ventral brain stem[J]. J Neurosurg, 1994,81(1): 60-68.
    [54] Knuckey NW, Finch P, Palm DE et al. Differential neuronal and astrocytic expression of transforming growth factor beta isoforms in rat hippocampus following transient forebrain ischemia[J].Brain Res Mol Brain Res, 1996,40(1): 1-14.
    [55] al-Mefty O, Borba LA, Aoki N et al. The transcondylar approach to extradural nonneoplastic lesions of the craniovertebral junction[J]. J Neurosurg, 1996,84(1): 1-6.
    [56] Rhoton AL, Jr. The far-lateral approach and its transcondylar, supracondylar, and paracondylar extensions[J]. Neurosurgery, 2000,47(3 Suppl): S195-209.
    [57] de Oliveira E, Rhoton AL, Jr., Peace D. Microsurgical anatomy of the region of the foramen magnum[J]. Surg Neurol, 1985,24(3): 293-352.
    [58] Ebraheim NA, Lu J, Brown JA et al. Vulnerability of vertebral artery in anterolateral decompression for cervical spondylosis[J]. Clin Orthop Relat Res, 1996,(322): 146-151.
    [59] Taitz C, Arensburg B. Vertebral artery tortuosity with concomitant erosion of the foramen of the transverse process of the axis. Possible clinical implications[J]. Acta Anat (Basel), 1991,141(2): 104-108.
    [60]付万新,徐如祥,姜晓丹.枕下远外侧入路到达颈静脉孔区的显微解剖学研究[J].广东医学杂志, 2007,28(7): 76-78.
    [61] Kratimenos GP, Crockard HA. The far lateral approach for ventrally placed foramen magnum and upper cervical spine tumours[J]. Br J Neurosurg, 1993,7(2): 129-140.
    [62] Tecleschi H, Rhoton A. Lateral approaches to the pelroclival region[J]. Neurosurgery, 2002,(41): 180.
    [63] Koos W, Spetzler R, Pendl G. Color Atlas of Microneurosurgery[J]. New York:Thieme stration, 1985: 125-134.
    [64] Salas E, Sekhar LN, Ziyal IM et al. Variations of the extreme-lateral craniocervical approach: anatomical study and clinical analysis of 69 patients[J]. J Neurosurg, 1999,90(2 Suppl): 206-219.
    [65] Degraba T. The role of inflammation in atherosclerosis[J]. Seminars in Neurosurgery, 2002,(13): 203-216.
    [66] Bellosta S, Bernini F, Ferri N. Direct vascular effects of reductase inhibitors[J]. Neurosurgery, 1998,(133): S101-S109.
    [67] Vishteh AG, Crawford NR, Melton MS et al. Stability of the craniovertebral junction after unilateral occipital condyle resection: a biomechanical study[J]. J Neurosurg, 1999,90(1 Suppl): 91-98.
    [68] Spetzler R, Grahm T. The far lateral approach to the inferior clivus and the upper cervical region:technical note[J]. Barrow Neurological Institute Quartery, 1990,(6): 35.
    [69] Gilsbach JM. Extreme lateral approach to intradural lesions of the cervical spine and foramen magnum[J]. Neurosurgery, 1991,28(5): 779.
    [70] Ghassan K, Laligam N, Charles J. Occipitocervical fusion following the extreme lateral transcondylar apporach[J]. Surgical Neurology, 2000,(54): 109-116.
    [71]赵甲山,赵洪洋.颅底显微神经外科学【M】.湖北科学技术出版社, 2002
    [72]钟世镇,于春江.神经外科临床解剖学图谱【M】.山东科学技术出版社, 2006
    [73]熊剑,章翔,周晓平.枕下远外侧经髁手术入路的显微解剖研究[J].中华神经外科疾病研究杂志, 2006,5(4): 342-344.
    [74] Fine AD, Cardoso A, Rhoton AL, Jr. Microsurgical anatomy of the extracranial-extradural origin of the posterior inferior cerebellar artery[J]. J Neurosurg, 1999,91(4): 645-652.
    [75] Lister JR, Rhoton AL, Jr., Matsushima T et al. Microsurgical anatomy of the posterior inferior cerebellar artery[J]. Neurosurgery, 1982,10(2): 170-199.
    [76] Margolis M, Newton T. The posterior inferior cerebellar artery[J]. Radiology of the Skull and Brain:Angiography, 1974,Angiography.St Louis,CV Mosby(12): 1710-1774.
    [77] Dowd GC, Zeiller S, Awasthi D. Far lateral transcondylar approach: dimensional anatomy[J]. Neurosurgery, 1999,45(1): 95-99; discussion 99-100.
    [78]瞿东滨,金大地,钟世镇.椎动脉寰枢段的解剖结构及其临床意义[J].第一军医大学学报, 2001,21(8): 604-606.
    [79]王永刚,王进昆,刘宗良等.枕下区椎动脉在远外侧手术入路中的显微外科解剖[J].昆明医学院学报, 2008,5: 160-163.
    [80] Samii M, Klekamp J, Carvalho G. Surgical results for meningiomas of the craniocervical junction[J]. Neurosurgery, 1996,39(6): 1086-1094; discussion 1094-1085.
    [81] Boulton MR, Cusimano MD. Foramen magnum meningiomas: concepts, classifications, and nuances[J]. Neurosurg Focus, 2003,14(6): e10.
    [82] Arnold H, Sepehrnia A. Extreme lateral transcondylar approach[J]. J Neurosurg, 1995,82(2): 313-314.
    [83] Schubert R, Schiemann T, Tiede U et al. Applications and perspectives in anatomical 3-dimensional modelling of the visible human with VOXEL-MAN[J]. Acta Anat (Basel), 1997,160(2): 123-131.
    [84]李希平,夏寅,韩德民.基于虚拟中国人数据集的鼻部及颞部三维重建[J].中国临床解剖学杂志, 2004,22(4): 377-383.
    [85] Balogh AA, Preul MC, Laszlo K et al. Multilayer image grid reconstruction technology: four-dimensional interactive image reconstruction of microsurgical neuroanatomic dissections[J]. Neurosurgery, 2006,58(1 Suppl): ONS157-165; discussion ONS157-165.
    [86] Goel A, Desai K, Muzumdar D. Surgery on anterior foramen magnum meningiomas using a conventional posterior suboccipital approach: a report on an experience with 17 cases[J]. Neurosurgery, 2001,49(1): 102-106; discussion 106-107.
    [87]郭燕舞,柯以锉,杨志林等.虚拟影像术前系统在神经外科临床应用研究[J].中华神经医学杂志, 2005,4(12): 1222-1224.
    [88] Rosahl SK, Gharabaghi A, Hubbe U et al. Virtual reality augmentation in skull base surgery[J]. Skull Base, 2006,16(2): 59-66.
    [89] Lo CY, Chao YP, Chou KH et al. DTI-based virtual reality system for neurosurgery[J]. Conf Proc IEEE Eng Med Biol Soc, 2007,2007: 1326-1329.
    [90] Nakajima S, Atsumi H, Bhalerao AH et al. Computer-assisted surgical planning for cerebrovascular neurosurgery[J]. Neurosurgery, 1997,41(2): 403-409; discussion 409-410.
    [91] Serra L, Nowinski WL, Poston T et al. The Brain Bench: virtual tools for stereotactic frame neurosurgery[J]. Med Image Anal, 1997,1(4): 317-329.
    [92] Rosenberg LB, Stredney D. A haptic interface for virtual simulation of endoscopic surgery[J]. Stud Health Technol Inform, 1996,29: 371-387.
    [93] Freudenstein D, Bartz D, Skalej M et al. New virtual system for planning of neuroendoscopic interventions[J]. Comput Aided Surg, 2001,6(2): 77-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700