重载车用柴油机缸盖内冷却水流动分析及强化传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着柴油机升功率的大幅提高,柴油机的冷却问题变得越来越突出,成为制约柴油机进一步发展的关键问题之一。
     本文以YC6M360系列柴油机为研究对象,针对其冷却能力不足、气缸盖鼻梁区出现热裂、冷却水经常开锅等问题,开展了整机热负荷、整机水流分布、气缸盖热负荷和气缸盖水流分布等试验以及冷却水套内冷却水流动与传热的数值模拟研究。对该型柴油机冷却系统的匹配和气缸盖冷却水套的结构进行了优化设计,结果表明,各种优化设计方案能较好的提高该机整机及气缸盖的冷却能力,从而降低了该机整机热负荷和气缸盖热负荷,较好的解决了该机所出现的气缸盖鼻梁区热裂、冷却水经常开锅等故障。
     在发动机冷却水流动模拟中,本文提出“如试验结果缺乏,可以利用不同的软件进行数值模拟来验证另一软件的数值模拟结果,只要模拟结果差异较小,就可认为该模拟结果是正确的”这一新的验证方法。针对使用FIRE软件进行的柴油机出水管内冷却水流动数值模拟,分别使用传统的试验验证方法和用另一软件Fluent进行数值模拟验证的方法进行了验证。验证结果表明:新的验证方法可用于验证另外的软件的数值模拟结果。
     利用数值模拟方法进行了基于正交实验设计的上水孔扰流强化传热的研究,分析了全新设计的气缸盖冷却水套中上水孔2和上水孔3不同直径对气缸盖内各区域对流换热系数(HTC)的影响,并针对不同指标得出两个上水孔直径的最佳组合方案。随后,提出了“气缸盖内各区域的整体流速可看成是某上水孔不存在时该区域的整体流速和该上水孔存在时对该区域的整体流速贡献的叠加”,以及“上水孔对各区域HTC的贡献包括因上水孔内冷却水流动而引起该区域内流速变化对HTC的贡献和湍动变化对HTC的贡献”的分析方法。并基于此方法,成功地分离出各上水孔直径时流经其中的冷却水在各区域的扰流对该区域的HTC的强化程度,为上水孔的扰流设计提供了理论指导。
     进行了气缸盖沸腾传热研究。通过数值模拟,对比了考虑冷却水沸腾和不考虑冷却水沸腾时气缸盖底部换热系数的变化。另外,也对比了不同沸腾模型时换热系数的变化,为以后进行柴油机冷却水套内流动与传热的数值模拟提供参考。
     最后,本文进行了气缸盖内流固耦合数值模拟,通过冷却水流场和气缸盖固体传热的耦合模拟,得出了气缸盖内温度场,并通过试验数据进行了验证,验证结果表明:误差在工程许可范围以内。通过流固耦合数值模拟,可以使柴油机在初始设计阶段就能详细地了解气缸盖内温度的分布,并在此时就可以进行气缸盖结构的优化,从而可以大大缩短设计周期。
With the increasing of the power density of the engine, the cooling system becomes more and more important, which turns to the key problem for further development of the diesel engine.
     The paper reports an experimental and simulating exploration over a series of problems, such as overheat of the complete machine and thermal cracks in the valve bridge region of cylinder head in YC6M360 series diesel engine. The studies involve heat load test of complete machine, analyzing coolant-flow distribution of each cylinder, measuring the temperature of the bottom part of cylinder head, analyzing coolant-flow distribution of upper nozzles in the bottom side of cylinder head, and three-dimensional numerical simulation on the coolant flow in the water jacket. This paper proposed some schemes to improve the matching of subassembly in the cooling system and optimized the structure within water jacket according to the test and simulation results. The follow-up numerical simulation and experimental validation identified that the temperature within valve-bridge decreased remarkably, and the heat load of complete machine could be improved significantly, by adopting these optimized schemes.
     Formerly, the results of simulation were always verified by the results of experiment, but there is always a great deal of the cost on the experimental study, then the experiment always hard to be achieved. But if there is no experimental validation, the mistake of numerical simulation will leads to the loss. So the verification method should be updated. In the paper, a new idea, that the results of simulation can be verified by the simulation results of another software package, was reported. In this paper, the experimental study has been done by using FIRE TM and Fluent TM software package. At last, the idea was improved by result of experiment. Results indicate that this new method can be used to verify the numerical simulation data.
     The disturbed flow and the boiling flow can enhanced the heat transfer of the coolant. The paper also explored the study on the influence of the flow in upper nozzles on the HTC in cylinder head by means of experimental design using orthogonal table, and the influence of boiling flow to the HTC in cylinder head. Using the numerical simulation method, the effects of the different diameter of the upper nozzles 2 and 3 of the new design cooling jacket within the cylinder head on the HTC in cylinder head have been pointed out. Through the contrast, the best scheme of the diameter has been achieved. Subsequently, the flow velocity within the cylinder head can be considered to be the sum of the velocity without the upper nozzles and the effect of the upper nozzles on the flow velocity, and the effects of the upper nozzle on the HTC within the cylinder head include the improving of the coolant flow inside the cylinder head and the effect of turbulent flow of coolant on HTC. Based on these concepts, the effects of turbulent flow of coolant which flow through the different diameter upper nozzles on the HTC within this area have been pointed out. This conclusion can be considered to be important reference for the optimized design of upper nozzle.
     In the research of flow boiling inside the cylinder head, the contrast of boiling heat transfer coefficient in the valve-bridge zone between taking the boiled coolant into account or not has been achieved. Besides, the contrast of boiling heat transfer coefficient in the valve-bridge zone among different boiling heat transfer models has been achieved. These contrasts can be considered to be the reference for the numerical simulation on the coolant flows and heat transferring which help to optimize the structure of water jacket.
     At last, the fluid-solid coupling simulation inside the cylinder head has been completed. The temperature field inside the cylinder head has been gotten by the couple simulation between the flow field of coolant and the heat transfer of the cylinder head. In the following, the results of the simulation were verified by the results from the experimental study. The contrast result indicates that the error can be accepted for engineering application. By means of the fluid-solid coupling simulation, the distribution of temperature inside the cylinder head can be acquired in detail during the initial period for the development of new diesel engine. As a result, the structure optimization of cylinder head and water jacket can also be done during this period, and then the design period is shorted significantly.
引文
[1]刘福水,张卫正,张幽彤.国外主战坦克动力的现状发展趋势及技术分析.兵工学报.坦克装甲车与发动机分册,1999(2)
    [2]牛世清.略论坦克发动机冷却问题.车用发动机,1989(1)
    [3]杜成海,林文光.12E390V型柴油机气缸套裂纹及其预防措施.柴油机,1992(1)
    [4]刘永照.汽车发动机冷却性能试验研究.汽车研究与开发,1998(4)
    [5]段宏昌.发动机内部冷却技术.车用发动机,1996(4)
    [6] [中国内燃机工业年鉴]编委会编.中国内燃机工业年鉴.上海:上海交通大学出版社.2005
    [7]姚仲鹏,王新国.车辆冷却传热.北京:北京理工大学出版社,2001
    [8]关跃,刘文铁,刘明科等.发动机缸盖的CFD-CAD设计方法.节能技术,2004,22(1)
    [9]陆瑞松,林发森,张瑞.内燃机的传热与热负荷.北京:国防工业出版社,1985
    [10] Robinson k., N A F Cambell. A Review of Precision Engine Cooling. SAE 1999-01-0578, 1999
    [11]常思勤,左孔天.发动机缸盖内部冷却水腔的设计与流动数值模拟.车用发动机,2000,(1)
    [12]吴子牛.计算流体力学基本原理.北京:科学出版社,2001
    [13] Laimbock F J, Meister G, Grilc S. CFD Application in Compact Engine Development. SAE Trans.1996, 05(3)
    [14]朱义伦,邓康耀.柴油机缸头冷却水流场实验研究.上海交通大学学报,2000,4(4)
    [15] Femch CCJ.内燃机研究和设计的先进技术.国外内燃机,1990,(5)
    [16] Prechsel E .1991年内燃机开发和2001年内燃机展望.国外内燃机,1992 (1)
    [17] Fraser,R.. An LDV System for Turbulence Length Scale Measurements. ASME l05th Winter Annual Meeting, 1984
    [18] Matsuoka S, et al. LDA measurement and a Theoretical Analysis of the In-Cylinder Air Motion in a Diesel Engine. SAE paper 850106, 1985
    [19]八田桂三,浅沼强,松木正胜.内燃机测试手册.北京:机械工业出版社,1979
    [20] M.A.普林特,L.伯斯威特.流体力学实验教程.北京:计量出版社,1989.6
    [21]屈盛官,黄荣华,孙自树.高强化大功率柴油机冷却系水流分布研究.华中科技大学学报,2001(8)
    [22] Takao Kubozuka, Naoki Ogawa, Yoshinori Hirano, et al. The Development of Engine Evaporation Cooling System. SAE870033, 1987
    [23] Gallant T. Coolant Hose for Heavy Duty Engines. SAE881272, 1988
    [24] Finlay I C, Gallacher, Biddulph, et al. The Application of Precision Cooling to the Cylinder-Head of a Small, Automotive, Petrol Engine. SAE880263, 1988
    [25] Yuzo Aoyagi, Yoshihide Takenaka, Satoshi Niino, et al. Numerical Simulation Experimental Observation of Coolant Flow Around Cylinder Liner in V-8 Engine. SAE880109,1988
    [26] Pamela M. Norris, Mardi C. Hastings, William J. Wepfer. An Experimental Investigation of Liquid Coolant Heat Transfer in a Diesel Engine. SAE 891898, 1989
    [27] Arcoumanis C, Nouri J M, Whitelav J H. Coolant Flow in the Cylinder Head/Block of the Ford 2.5L DI Diesel Engine. SAE910300
    [28] Boyle R J, Finlay I C, Biddulph T. Heat Transfer to Non-Aqueous Engine Coolants. SAE910304, 1991
    [29] Hochkonig M, Rauser M. Cooling System Layout for High Performance Cars. SAE920789, 1992
    [30] Couetoux H. Cooling System Control in Automotive Engines. SAE920788, 1992
    [31] Clough M J. Precision Cooling of a Four Valve per Cylinder Engine. SAE931123, 1993
    [32] Eichlseder W, Raab G. Calculation and Design of Cooling System. SAE931088, 1993
    [33] Alkidas A C. Effects of Operational Parameters on Structural Temperatures and Coolant Heat Rejection of a SI Engine. SAE931124, 1993
    [34] Mark D Moeckel. Computational Fluid Dynamic (CFD) Analysis of a Six Cylinder Diesel Engine Cooling System with Experimental Correlations. SAE 941081, 1994
    [35] Franz J. Laimbock, Simon Grilc, Gerhard Meister. CFD Application in Compact Engine Development. SAE982016, 1998
    [36] Ngy Srun AP. A Simple Engine Cooling System Simulation Model. SAE 1999-01-0237, 1999
    [37] Norris P M, Wepfer W J. Experimental and Analytical Studies of Cylinder Engine. SAE931122, 1993
    [38] Xu Z Y, Johnson J H, Chiang E C. A Simulation Study of a Computer Controlled Cooling System for a Diesel Powered Truck. SAE841711, 1984
    [39] Kenny A A, Bradshaw C F, Creed B T. Electronic Thermostat System for Automative Engines. SAE880265, 1988
    [40] Leif E H, Edward C C, John H J, et al. Design and Computer Simulation of Microprocessor Controlled Lubricating Oil Cooling System for Truck Diesel Engine. SAE880488, 1988
    [41] Kevin L, Susan Brasmer. The Use of Flow Visualization and Computational Fluid Mechanics in Cylinder Head Cooling Jacket Development. SAE891897, 1989
    [42] Kelichi Chiba, Makoto Komiya, Takashi Yanagisawa, et al. FEM Analysis of Mechanical Seals for Water Pumps of Automotive Engines. SAE920714, 1992
    [43] Masatoshi Ninoyu, Jin Kameyama, Hisafumi Doi, et al. Prediction Method of Cooling System Performance. SAE930146.
    [44] Sortor M. Vehicle Cost Reduction through Cooling System Optimization. SAE930153, 1993
    [45] Yuichi Shibata, Hitoshi Shimonosono. New Design of Cooling System with Computer Simulation and Engine Compartment Simulator. SAE931075, 1993
    [46] Sandford M H, Postlethwaite L. Engine Coolant Flow Simulation-A Correlation Study. SAE930068 1993
    [47] Norris P M, Wepfer W J. Experimental and Analytical Studies of Cylinder Engine. SAE931122, 1993
    [48] Julial et al. Impeach of computer aided engineering on Ford Light Truck cooling design and development processes. Vehicle thermal management systems conference proceedings, 1993
    [49] Portor P A, Menegazzi P.Understanding and Improving Evaporative Engine Cooling at High Load, High Speed by Engine Tests and 3D Calculations. SAE971792, 1997
    [50] Menegazzi P, Perrocheau R, Seguin O et al. X-Ray CT-Scan Digitizing for theInspection and Computational Analysis of Complex Engine Parts. SAE980307, 1998
    [51] Jian Ye, Jim Covey, Daniel D. Agnew. Coolant Flow Optimization in a Racing Cylinder Block and Head Using CFD Analysis and Testing. SAE2004-01-3542, 2004
    [52]王书义,王宪成,段初华.发动机冷却水三维流动的试验研究.装甲兵工程学院学报,1994,8(1-2)
    [53]王书义,王宪成,段初华等.发动机冷却水三维流动数值模拟基础研究.内燃机学报,1994,12(1)
    [54]屈盛官,黄荣华,孙自树等.高强化柴油机气缸盖水流分布试验研究.车用发动机,2001,(3)
    [55]屈盛官.高强化大功率车用发动机冷却水流动的研究[D].武汉:华中科技大学图书馆,2001
    [56]屈盛官,夏伟,王颖,黄荣华,成晓北.高强化柴油机气缸套周围冷却水流动的数值模拟和试验研究.内燃机工程,2004,25(4)
    [57]屈盛官,夏伟,黄荣华,成晓北.发动机气缸盖冷却水流动试验及CFD分析.华南理工大学学报,2004,32(8)
    [58]刘巽俊,陈群,李骏等.车用柴油机冷却系统的CFD分析.内燃机学报,2003,21(2)
    [59]许振忠,李伟,吴长玉等.CA498柴油机冷却水流LDV测量.汽车技术,2004,(7)
    [60] J.A.Sidders, D.G.Tilley. Optimising Cooling System Performance Using Computer Simulation. SAE971802, 1997
    [61] Krishna V. Mohan, Oner Arici, Song-Lin Yang, John H.Johnson. A Computer Simulation of the Turbocharged Diesel Engine as an Enhancement of the Vehicle Engine Cooling System Simulation. SAE971804, 1997
    [62]赵以贤,毕小平,王普凯等.车用内燃机冷却系的流动与传热仿真.内燃机工程,2003, 24(4)
    [63]陆威仑.气缸盖强度的三维有限元素法计算研究.内燃机学报,1987,5(3)
    [64]蒋勇,盛建军,高宗英.多缸汽油机缸盖热负荷研究.江苏理工大学学报,1996,17(2)
    [65] Li Bing, Zhang Yong, Zhu meilin. A Study on the Structural Design and Reliability of Cylinder Head for Vehicle Engines. SAE1999-01-0828, 1999
    [66] Kyo Seung Lee, Dennis N. Assanis, Jinho Lee, Kwang Min Chun. Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head. SAE1999-01-0973, 1999
    [67]杜建红,张红兵,程军.内燃机气缸盖瞬态温度场数值模拟.华北工学院测试技术学报,1999,13(4)
    [68]白敏丽,张春平,陈家骅,朱国朝.隔热排气道气缸盖热负荷研究.大连理工大学学报,2002,42(3)
    [69]刘志恩,陈国华,杨万里,叶晓明.CUB100汽油机缸盖热负荷分析.柴油机设计与制造,2003,102(1)
    [70]廖日东,左正兴,邹文胜.温度对气缸盖应力分布影响的研究.内燃机学报,2001,19(3)
    [71]梁莎莉,代秀红,郭成璧,姚海民.用三维有限元法对柴油机气缸盖几个设计方案作对比分析.柴油机,2003,(4)
    [72]刘金祥,廖日东,张有,杨俊武,夏秀娟.6114柴油机缸盖有限元结构分析.内燃机学报,2004,22(4)
    [73] H H Pang, C J Brace. Review of Engine Cooling Technologies for Modern Engines. Proc.Inst.Mech.Eng.Part D J.Atuomob.Eng., 2004, 218(D10)
    [74]马庆芳等译,J.P.Holman著.传热学.北京:人民教育出版社,1979.
    [75] Rohsenow W.M. A Method of Correlating Heat Transfer Data for Surface Boiling Liquid. Trans. ASME, 1952, (6)
    [76] Chen J.C. Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. I&EC Process Design and Development, 1966, 5 (3)
    [77] Collier J G, Thome J R. Convective Boiling and Condensation. 3rd edition, Oxford Engineering Science Series, 1996
    [78] Hawley J G, Wilson M, Campbell N A F, et al. Predicting Boiling Heat Transfer Using Computational Fluid Dynamics. Proc. Inst. Mech. Eng. Part D J. Automobile Eng., 2004, 218 (D5).
    [79] Finlay I C, Harris D, Boam D J, Parks B I. Factors Influencing Combustion Chamber Wall Temperatures in A Liquid Cooled, Automotive spark ignition engine.Proc. Inst. Mech. Eng. Part D J. Automobile Eng., 1985, 199(3)
    [80] Norris P M, Wepfer W J, Hoag K L, Coutine White D. Experimental and Analytical Studies of Cylinder Head Cooling. SAE paper 931122, 1993
    [81] Norris, Pamela, Marie. An Investigation of Coolant Passage Heat Transfer in A Diesel Engine Cylinder Head. Georgia Institute of Technology PHD thesis, 1992
    [82] Robinson K., Hawley J G., Campell N A F. Experimental and Modeling Aspects of Flow Boiling Heat Transfer for Application to Internal Combustion Engines. Proc. Inst. Mech. Eng. Part D J. Atuomobile Eng., 2003, 217(D10)
    [83] K Robinson, M J Leathard, and J G Hawley. Computational Modeling of Convective Heat Transfer in a Simulated Engine Cooling Gallery. Proc.Inst.Mech.Eng.Part D J. Atuomob.Eng., 2007, (221)
    [84] K Robinson, J G Hawley, G P Hammond and N J Owen. Convective Coolant Heat Transfer in Internal Combustion Engines. Proc. Inst. Mech. Eng. Part D J. Atuomob. Eng., 2003, (217)
    [85] Hosny Z., Abou-Ziyan. Forced Convection and Subcooled Flow Boiling Heat Transfer in Asymmetrically Heated Ducts of T-section. Energy Conversion and Management. 2004, (45)
    [86] Mohan K V, Arich O, Yang S L, et al. A Computer Simulation of the Twbocharged Vehicle Engine Cooling System Simulation[C]. SAE 971804, 1997
    [87] Siders J A and Tiuey D G. Optimizing Cooling System Performance Using Computer Simulation[C]. SAE 971802
    [88] Arici O, Jhonson J H, and Kulkarni A J. The Vehicle Engine Cooling System Simulation Partl Model Development[C]. SAE 1999-01-0240, 1999
    [89] Woschni G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine[C]. SAE Trans 670931, 1967
    [90]白敏丽,吕继祖,丁铁新.六缸柴油机冷却系统流动与传热的数值模拟研究.内燃机学报,2004,22(6)
    [91] Robert D Chalgren, Cordon G Parker, Oner Arici, John H Johnson. A controlled EGR cooling system for heavy-duty diesel applications using the vehicle engine cooling system simulation. SAE 2002 World Congress, Detroit, Michigan, USA, 2003
    [92]郭新民,高平,吴海荣等.汽车内燃机电控冷却系统的试验研究.内燃机.2006,(3)
    [93]王春华,孙运柱,郭新民.ZL50装载冷却能力的智能控制.农机化研究.2003,(2)
    [94]郑金土,郑利文.S195柴油机冷却水水温对耗油率影响的试验分析.浙江:浙江农业大学学报,1994, 20 (4)
    [95]李健.冷却水温对发动机工作的影响.现代交通管理.2003, (11)
    [96]谭乘仁,孙国强,陆海章.柴油机高温冷却试验研究.汽车拖拉机.1993,(1)
    [97]符锡侯,杨杰民.车辆用柴油机总体设计.上海:上海交通大学出版社,1992
    [98]翁海鹤,骆周全.高原柴油机热负荷的控制〔J].柴油机设计与制造,2002 (3)
    [99]刘永长主编.内燃机原理[M].武汉:华中科技大学出版社,2001
    [100]陆祖耀.内燃机构造与原理[M],北京:中国建材工业出版社,2004
    [101]刘梅生.内燃机系列冷却水泵的研究与应用.内燃机,1994,(3)
    [102]张杰.简述发动机冷却系统设计及散热量的计算.装备制造技术.2004,(2)
    [103]翟建华.计算流体力学(CFD)的通用软件.河北科技大学学报.2005, 6(2)
    [104]任玉新,陈海昕编著.计算流体力学基础.北京:清华大学出版社,2006.
    [105]倪浩清,沈永明编著.工程湍流流动、传热及传质的数值模拟.中国水利水电出版社,1996
    [106] Tayfun E, Tezduyar. CFD methods for three-dimensional computation of complex flow problems. Journal of Wind Engineering and Industrial Aerodynamics,1999 (81)
    [107] Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume method [M]. London: Longman Group Ltd, 1995.
    [108]姚征,陈康民.CFD通用软件综述.上海理工大学学报.2002,24(2)
    [109]刘顺隆,郑群.计算流体力学[M].哈尔滨:哈尔滨工程大学出版社,1998,5.
    [110] E.Turkel. Preconditioning method for solving the incompressible and low speed compressible equations [J]. J comp phys,1988, (72)18
    [111] J P Steinbrener, J R Chawner, and C L Fouts. Multiple block grid generation in the interactive environment [A]. AIAA Paper, 1990, 90-1602
    [112] J A Benek, P G Buning, and J L Steger. A 3-D Chimera Grid Embedding Technique [A] AIAA Paper, 1985, 85-1523
    [113] Anderson, John David. Computational fluid dynamics: the basics with applications.Singapore: McGraw-Hill, Inc., 1995
    [114]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004
    [115]帕坦卡著.传热与流体流动的数值计算.张政译.北京:科学出版社,1984
    [116] Thompaon Joe F. A reflection on grid generation in the 90s: trends, needs, and influences[c]. In: 5th International conferences on grid generation in computational field simulation, 1996
    [117]王平,朱自强,拓双芬,尹幸愉.二维结构/非结构混合网格的生成及其流场模拟.航空学报,2001,22(6)
    [118]张来平,张涵信,高树椿.矩形非结构混合网格技术及在二维三维复杂无粘流场数值模拟中的应用.空气动力学学报,1998,16(1)
    [119]张来平,王振亚,杨永健.复杂外形的动态混合网格生成方法.空气动力学学报,2004,22(2)
    [120]朱自强,吴子牛.应用计算流体力学(第一版).北京:北京航空航天大学出版社,1998
    [121]关振群,宋超,顾元宪等.有限元网格生成方法研究的新进展.计算机辅助设计与图形学学报,2003,15(1)
    [122]吕军,王忠金,王仲仁.有限元六面体网格的典型生成方法及发展趋势[J].哈尔滨工业大学学报,2001,33(4)
    [123] Rupak Biswas, Roger C Strawn. Tetrahedral and hexahedral mesh adaptation for CFD problems [J]. Applied numerical mathematics, 1998, (26)
    [124]张来平,杨永健,呙超等.三维复杂外形的非结构网格自动生成技术与应用.计算物理,1999,16(5)
    [125]龚光彩,张文宏,孙培雷等.网格自动生成技术进展综论.建筑热能通风空调,2006,25(1)
    [126]胡欲立,钱志博,帅石金,刘永长.复杂几何区域三维分块贴体网格的耦合生成.车用发动机,1999,(3)
    [127] AVL公司FIRE软件帮助文档,Fire_V83_CFDWM_UsersGuide
    [128] Ken Naitoh. Numerical Simulation of the Detailed Flow in Engine Ports and Cylinders[C].SAE 900256, 1990
    [129] Daniel C Haworth, Sherif H EL Tahry, Mark S Huebler, Shengming Chang.Multidimensional Port-and-Cylinder Flow Calculations for Two-Valve and Four-Valve per- Cylinder: Influence of Intake Configuration on Flow Structure[C]. SAE 900257, 1990
    [130] Bahram Khalighi, Daniel C Haworth, Mark S Huebler. Multidimensional Port-and-in-Cylinder Flow Calculations and Flow Visualization Study in an Internal Combustion Engine with Different Intake Configurations[C]. SAE 941871, 1994
    [131] Shigeki Sugiura. Numerical Analysis of Flow in the Induction System of Internal Combustion Engine[C]. SAE 900255, 1990
    [132] Pierre Godrie, Mark Zellat. Simulation of Flow Field Generated by Intake Port-Valve-CyLinder Configuration-Comparison with Measurements and Applications[C]. SAE940521, 1994
    [133] Dent J C, Chen A. An Investigation of Steady Flow through a Curved Inlet Port[C]. SAE940522, 1994
    [134] O’Connor J F, Mckinley N R. CFD Simulation of Intake Port Flow Using Automatic Mesh Generation: Comparison for Steady Flow Conditions[C]. SAE 980129, 1998
    [135] Mark D Moechel. Computational Fluid Dynamic (CFD) Analysis of a Six Cylinder Diesel Engine Cooling. SAE PAPER, 941081
    [136]陈海娥,孟凡臣,宋建龙等.发动机冷却水套CFD分析.汽车技术,2003, (19)
    [137]陈群,刘巽俊,李骏等.CA498型车用柴油机冷却水套的CFD分析.汽车技术, 2003, (11)
    [138]刘洁.“冲击式水轮机内部流动数值模拟及性能研究”,博士论文.华中科技大学图书馆
    [139]刘胜柱.“水轮机内部流动分析与性能优化研究”,博士论文.西安理工大学图书馆
    [140] Fluent Incorporated, FLUENT 5 User’s Guide, Fluent Incorporated, 1998
    [141] Fluent Incorporated, FLUENT 5 Tutorial Guide, Fluent Incorporated, 1998
    [142]张文孝.多维应力高温低周疲劳与热疲劳特性的研究及应用[D].大连:大连理工大学,1995
    [143]干勇,田志凌,董瀚等.中国材料工程大典:第二卷,钢铁材料工程(上),第一版.北京:化学工业出版社,2006
    [144]莫乃榕主编.工程流体力学.华中科技大学出版社,2003
    [145] Panos Tamamidis,Kasi Sethupathi. Role of CFD in Heavy Machinery Development. SAE972718, 1997
    [146]史桂蓉,邢渊,张永清.反向工程应用现状及研究方向.机械科学与技术,2000,19(4)
    [147]史桂蓉,邢渊,张永清.反向工程数据获取和几何建模方法.机械科学与技术. 2000, (19),增刊
    [148]李真,邢渊.反向工程在实际生产中的应用.模具技术,No.3,2001
    [149]滕功勇.快速成形中的反求工程.华中科技大学硕士论文,2001
    [150]范玉青等.CAD软件设计.北京:北京航空航天大学出版社,1996
    [151]沈纪柱等.IGES实现CAD/CAM系统间数据交换的规范.机电工程,2000, 17(3)
    [152]王军杰,严隽琪,马登哲,金烨.汽车发动机进气道自由曲面的反求.中国机械工程,2001, 12(7)
    [153]范宇,张宇,初学丰.逆向工程技术在柴油机进气道设计与加工中的应用.昆明理工大学学报,1999,24(4)
    [154]常思勤,刘雪洪,何小明.现代设计方法在螺旋进气道设计中的应用.内燃机学报,1999,17(4)
    [155]粱任,伍正样.坐标测量的抽样点数、分布与精度.机械工程学报,1994,30(4)
    [156]“正交试验法”编写组.正交试验法.国防工业出版社.1976
    [157]麦华志,李国祥.缸盖冷却水的单相流沸腾模型.山东内燃机,2005,(2)
    [158]肖永宁,潘克煜等编著.内燃机热负荷和热强度.北京:机械工业出版社,1988
    [159] Finlay I.C., Boyle R.J, Pirault J.P., Biddulph T. Nucleate and film boiling of engine coolants flowing in an uniformly heated duct of small cross section. SAE Paper 870032, 1987
    [160] Ablinger S., Kalibrierung und Verifikation von Siedemodellen für die 3DStr?mungssimulation. Diplomarbeit an der TU-Graz, 2002
    [161] Klausner J F, Zeng L Z, Bernhard D M, Mei R. A unified model for the prediction of bubble detachment diameters in boiling systems– II. Flow boiling. Int.J. Heat Mass Transfer, 1993, 36(9)
    [162]钱作勤.内燃机动态热负荷及其虚拟故障的研究.武汉理工大学博士学位论文,2001
    [163] AVL / FIRE Version 8. FEM Interface. Dec.2006
    [164] AVL BOOST User’s Guide. June 2004
    [165]梁莎莉代秀红等.柴油机气缸盖的三维有限元结构强度分析.农业机械学报,2004, 35(3)
    [166]郭立新,杨海涛,夏兴兰等.应用直接耦合法模拟计算气缸盖、机体温度场.内燃机工程.2007, 28(5)
    [167]朱仙鼎.中国内燃机工程师手册.上海:上海科学技术出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700