同轴双偏心质量驱动球形机器人系统建立及运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球形机器人是一种以滚动方式行走的新型移动机器人,与传统的轮式、足式移动机器人相比,球形机器人具有运动灵活、自我保护能力强、环境适应能力强等特点,独特的机械结构和运动原理使其能够应用于多尘、潮湿、崎岖的复杂环境。球形机器人在军事、工业、生活等方面都具有广泛的应用前景,是目前智能机器人领域的研究热点之一。
     在总结现有球形机器人构型的基础上,本文将球形机器人中应用最广泛的偏心质量驱动构型进行改进,提出一种同轴双偏心质量驱动球形机器人构型。在对同轴双偏心质量驱动球形机器人运动原理分析的基础上,对机器人进行了机械结构设计。针对所设计的球形机器人运动学特性,为了避免求解过程中出现奇点,采用卡尔丹角描述机器人的位置和姿态,对同轴双偏心质量驱动球形机器人进行运动学分析。利用平面几何关系得到了机器人运动过程中球壳倾角与轨迹半径之间的对应关系,通过球壳与地面之间的纯滚动约束条件建立了球心位置坐标的约束方程,通过位置变换矩阵建立了球壳及偏心质量在相对坐标系与惯性坐标系之间的速度映射关系,为进一步的动力学建模及控制系统研究奠定了基础。
     本文将球形机器人的运动分为直线运动、原地转向运动和圆弧轨迹运动分别进行运动控制研究。为了使球形机器人直线运动能够平稳启停且速度可控,将直线运动模型简化为平面内单输入两自由度的欠驱动系统,利用拉格朗日方程建立了机器人直线运动的动力学模型,在此基础上提出了一种基于高斯函数的直线运动控制方法,通过仿验证了控制方法的有效性。为了补偿外界扰动对机器人运动速度的影响,提出了一种基于参数调整的直线运动控制策略,在特殊的时间点根据机器人速度误差调整高斯函数,通过改变机器人的加速度实现了速度补偿。
     针对球形机器人特有的原地转向运动,分析了同轴双偏心质量驱动球形机器人原地转向运动的运动原理,利用动量矩定理建立了原地转向运动的动力学模型,在此基础上提出一种基于粘滑原理的原地转向运动控制方法,通过余弦控制函数对两个偏心质量进行运动规划,利用偏心质量运动产生的惯性力矩实现原地转向运动。分析了余弦控制函数中各参数值对机器人运动的影响,并通过仿验证了原地转向运动控制方法的有效性。
     为了使球形机器人圆弧轨迹运动速度与轨迹半径均可控,研究了同轴双偏心质量驱动球形机器人圆弧轨迹运动原理,利用动量矩定理建立了圆弧轨迹运动动力学模型,提出一种基于单摆运动与随动控制相结合的控制策略,机器人圆弧轨迹运动分解为前向滚动与侧向滚动分别进行控制,采用正弦控制函数对偏心质量进行运动规划产生适当的惯性力,通过控制球壳相对于地面的倾角控制轨迹半径;采用位置随动控制实现机器人前向滚动速度控制。设计了圆弧轨迹运动控制器,并通过仿验证了该控制策略的有效性。
     最后搭建了同轴双偏心质量驱动球形机器人样机实验系统,介绍了球形机器人硬件及软件系统构成,对球形机器人样机进行了直线运动实验研究,实验结果表明球形机器人能够在高斯控制函数作用下做速度可控的直线运动,基于参数调整的控制策略能够补偿外界干扰对机器人速度的影响;开展了同轴双偏心质量驱动球形机器人原地转向运动实验研究,实验结果表明机器人能够在余弦控制作用下做原地转向运动;在室内和室外相对平坦的地面进行了圆弧轨迹运动实验研究,实验结果表明机器人速度和转弯半径均可控,验证了圆弧轨迹运动控制策略的有效性。
Spherical robot, which moves by the way of rolling, is a new kind of mobile robot. Compared with traditional wheeled and legged robots, the spherical robot features movement agility, good self-protection ability and strong environmental adaptability. The unique mechanism and motion principle assure spherical robot can be applied in dusty, damp and rugged environment. Spherical robot has extensive application prospect in military, industry and everyday life, which is one of the research focuses in the intelligent robot field.
     Based on the mechanism analysis of the existing spherical robots, the pendulum driven mechanism which is widely used in spherical robot is improved, and a new two coaxial pendulums driven mechanism is proposed. Based on the analysis of motion principle, the mechanical structure of two pendulums driven spherical robot is designed. Aimed at the kinematic characteristics of spherical robot, in order to avoid computing singular point, Cardano angle is adopted to describe the position and attitude and to analyze the kinematics of spherical robot. The relationship between pitch angle of ellipsoidal shell and radius of motion trajectory is built based on plane geometry. The constraint equation is deduced according to the rolling constraints between shell and ground. The velocity map of shell and pendulum between relative coordinate system and inertial coordinate system is built based on the position transformation matrix, which laid the foundation for dynamics modeling and motion control.
     The motion of the spherical robot is divided into linear motion, turning in place motion and circular trajectory motion which are studied separately in this paper. In order to assure the smooth start-stop and the controllabe velocity, the model of linear motion is simplified as a plane underactuated system which has single input and two degrees of freedom. The dynamics model of linear motion is built with Lagrange equation; the linear control method based on Gaussian function is proposed, and the control method is validated by simulation. In order to compensate the motion velocity which is disturbed by the environment, a parameter adjustment based linear control strategy is proposed. The Gaussian function is adjusted at special time according to the velocity error of spherical robot, and the velocity compensation is realized by the regulation of acceleration.
     Aimed at the turning in place motion of spherical robot, the motion principle of the two coaxial pendulums driven spherical robot is analyzed. The dynamics model of turning in place motion is built by the theorem of moment of momentum. On this basis, a turning in place motion control method is proposed. The turning in place motion is realized by the inertia moment which is generated by the two pendulums controlled by cosine function. The effect of the parameters of cosine function on the motion of robot is analyzed, and the control method of turning in place motion is validated by simulation.
     In order to acquire the controllable velocity and radius of circular trajectory motion, the motion principle of the motion is studied, and the dynamics model of circular trajectory motion is built according to the theorem of moment of momentum. A control strategy based on the combination of pendulum motion and follow-up control is proposed. The circular trajectory motion of spherical robot is divided into forward roll and pitch roll. The motion of pendulum is planned by the sine function to generate appropriate initial force, so the radius of trajectory can be regulated by the tilt angle between shell and ground. The velocity control of forward roll is achieved by position servo control. The controller of circular trajectory motion is designed, and the control strategy is validated by simulation.
     Finally, the prototype experiment system of two coaxial pendulums driven spherical robot is built. The hardware and software system is introduced. The prototype experiment of linear motion is carried out, which shows that the velocity of linear motion is controllable acted by the Gaussian function; the effect of environment on velocity can be compensated by the parameters adjustment control strategy. The prototype experiment of turning in place motion is performed to validate the effectiveness of the control method which is based on cosine control function. The prototype experiment of circular trajectory motion is carried out in indoor environment and relatively flat outdoor environment respetively. The result shown that the forward velocity and radius of circular trajectory is controllable, which validates the effectiveness of the control strategy of circular trajectory motion.
引文
[1]许宏岩,付宜利,王树国.仿生机器人的研究[J].机器人. 2004, 26(3): 283-288.
    [2]戴先中. 21世纪非制造业自动化的发展与特种机器人研究思考[J].自动化学报. 2002, S1: 97-102.
    [3]蔡自兴.机器人学的发展趋势和发展战略[J].高技术通讯. 2001, 6: 106-110.
    [4] A.Bogatchev, V.Koutcherenko, S.Matrossov, et al. Joint Rcl and Hut Developments for Mobile Robot Locomotion Systems during 1995-2002 [C]. Proc. of 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2002, 1-7.
    [5] Rhodri H A, Julian F V. Rolling in Nature and Robotics: A Review [J]. Journal of Bionic Engineering, 2006, 3(4): 195-208.
    [6]刘增波,战强,蔡尧.一种环境探测球形移动机器人的运动控制[J].航空学报, 2008, 29(6): 1673-1679.
    [7] Suomela J, Ylikorpi T. Ball shaped robots: a historical overview and recent development at TKK [J]. Field and service robotics, 2006, 25(6): 343-354.
    [8] S. H. Kenyon, D, Creary, D. Thi, et al. A small, cheap, and protable reconnaissance robot [C]. Sensors and Command, Control, Communications, and Intelligence Technologies for Homeland Security and Homeland Defense IV, Proc. Of SPIE, Vol. 5778, 2005.
    [9]邓宗全,岳明.球形机器人的发展概况综述[J].机器人技术与应用. 2006, 3: 27-31.
    [10] Vincent A. Crossley. A Literature Review on the Design of Spherical Rolling Robots [N]. Pittsburgh, PA, 2006.
    [11] Antol J, Calhoun P, Flick J, et al. Low Cost Mars Surface Exploration: The Mars Tumbleweed [R]. NASA Technical Report, NASA Langley Research Center, NASA/TM, 2003.
    [12] Hajos G A, Jones J A, Behar A, et al. An overview of wind-driven rovers for planetary exploration [C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting Papers. Reno, Nevada, USA. 2005, 1491-1503.
    [13] Henschel J. Feature creature—The golden wheel spider [J]. Gobabeb Times, 2005, 1: 3.
    [14] Garcia-Paris M, Deban S M. A novel antipredator mechanism in salamanders: Rolling escape in hydromantes platycephalus [J]. Journal of Herpetology, 1995, 29: 149-151.
    [15] Brackenbury J. Caterpillar kinematics [J]. Nature, 1997, 390: 453.
    [16] Caldwell R L. A unique form of locomotion in a stomatopod—backward somersaulting [J]. Nature, 1979, 282: 71-73.
    [17] Halme A, Suomela J, Schnoberg T, et al. A Spherical Mobile Micro-Robot for Scientific Applications [R].ASTRA 96, ESTEC, Noordwijk, Netherlands, 1996.
    [18] Harmo P, Knuuttila J, Taipalus T, et al. Automation and Telematics for assisting People living at Home [C]. Proc.of 16th IFAC World Congress. Praha, 2005, 7-13.
    [19] Halme A, Schonberg T, Wang Y. Motion control of a spherical mobile robot [C]. 4th IEEE Intemational Workshop on Advanced Motion Control. Mie, Japan, 1996, 259-264.
    [20] Rover Company Limited. Ball-shaped Robot [R]. St Petersburg Russia, 1996.
    [21] Bicchi A, Balluchi A, Prattichizzo D, et al. Introducing the“SPHERICLE”: An experimental testbed for research and teaching in nonholonomy [C]. IEEE International Conference on Robotics and Automation. Albuquerque, NM, USA, 1997, 2620-2625.
    [22] Alves J, Dias J. Design and control of a spherical mobile robot [C]. International Conference on Mechatronics, ICOM 2003, 525-530.
    [23] Javadi A H A, Mojabi P. Introducing Agust: A novel strategy for an omnidirectional spherical rolling robot [C]. IEEE International Conference on Robotics and Automation, Washington, DC, USA, 2002, 3527–3533.
    [24] Javadi A H A, Mojabi P. Introducing Glory: A Novel Strategy or an Omnidirectional SphericalRolling Robot [J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126: 678-683.
    [25] Mukherjee R, Minor M A, Pukrushpan J T. Simple motion planning strategies for spherobot: A spherical mobile robot [C]. Proceedings of the 38th Conference on Decision and Control. Phoenix, AZ, USA, 1999, 2132-2137.
    [26] Mukherjee R, Minor M A. A simple motion planner for a spherical mobile robot [C]. Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Atlanta, USA, 1999, 896-901.
    [27]李团结,朱超.基于虚拟样机技术的球形机器人运动仿研究[J].系统仿学报. 2006, 4: 1026-1029.
    [28]李团结,朱超.一种具有稳定平台可全向滚动的球形机器人设计与分析[J].西安电子科技大学学报. 2006, 1: 53-56.
    [29]李团结,苏理,张琰.直线电机驱动的全向滚动球形机器人的设计与分析[J].机械设计与研究. 2006, 4: 46-52.
    [30]李团结,张学锋,陈永琴.一种全向滚动球形机器人的运动分析与轨迹规划[J].西安电子科技大学学报. 2007, 1: 29-33.
    [31] Vrunda J, Ravi B, Rohit H. Design, modeling and controllability of a spherical mobile robot [C]. 13th National Conference on Mechanisms and Machines. Bangalore, India. 2007, 135-140.
    [32] Sang S J, Zhao J C, Wu H, et al. Modeling and Simulation of a Spherical Mobile Robot [J]. Computer Science and Information Systems, 2010, 7(1): 51-62.
    [33] Sugiyama Y, Hirai S. Crawling and jumping by a deformable robot [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan, 2004, 3276–3281.
    [34] Yuuta S, Ayumi S, Masashi Y. Circular/Spherical Robots for Crawling and Jumping [C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, 3595-3600.
    [35] Toshiro Y, Shigeki N, Mitsuji S. Hopping Motion Analysis of 'Superball'-like Spherical Robot Based on Feedback Control [C]. IEEE International Conference on Intelligent Robots and Systems, 2003, 3805-3810.
    [36] Otani T, Urakubo T, Maekawa S, et al. Position and Attitude Control of a Spherical Rolling Robot Equipped with a Gyro [C]. International Workshop on Advanced Motion Control. Istanbul, Turkey, 2006, 416-421.
    [37] Koshiyama A, Yamafuji K. Design and Control of an All-Direction Steering Type Mobile Robot [J]. International Journal of Robotics Research, 1993, 12(5): 411-419.
    [38] Brown H B Jr, Xu Y. A single-wheel, gyroscopically stabilized robot [C]. IEEE International Conference on Robotics and Automation. Minneapolis, MN, USA, 1996, 3658-3663.
    [39] Enrique D F, Tsai S J, Christian J J P, et al. Control of the Gyrover: a single-wheel gyroscopically stabilized robot [J]. Advanced Robotics, 2000, 14(6): 459-475.
    [40] Zhan Q, Jia C, Ma X H, et al. Analysis of moving capability of a spherical mobile robot [J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(7): 744 -747.
    [41] Zhan Q, Jia C, Ma X H, et al. Mechanism design and motion analysis of a spherical mobile robot [J]. Chinese Journal of Mchanical Engineering, 2005, 18(4): 542-545.
    [42] Zhan Q, Liu Z B, Cai Y. A Back-stepping Based Trajectory Tracking Controller for a Non-chained Nonholonomic Spherical Robot [J]. Chinese Journal of Aeronautics, 2008, 21(5): 472-480.
    [43] Zhan Q, Zhou T Z, Chen M, et al. Dynamic trajectory planning of a spherical mobile robot [C]. 2006 IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, 2006, 1-6.
    [44] Zheng M H, Zhan Q, Liu J K. Control of a Spherical Robot: Path Following Based on Nonholonomic Kinematics and Dynamics [J]. Chinese Journal of Aeronautics, 2011, 24 (3): 337-345.
    [45] Cai Y, Zhan Q, Xi X. Inverse Kinematics Identification of a Spherical Robot Based on BP Neural Networks [C]. 2011 6th IEEE Conference on Industrial Electronics and Applications. Beijing, China, 2011, 2114-2119.
    [46] Cai Y, Zhan Q, Xi X. Neural Network Control for the Linear Motion of a Spherical Mobile Robot [J]. International Journal of Advanced Robotic Systems, ISSN 1729-8806, InTech. 2011, 8(4): 79-87.
    [47] Shu G H, Zhan Q, Cai Y. Motion Control of Spherical Robot Based on Conservation of Angular Momentum [C]. Proceedings ofthe 2009 IEEE International Conference on Mechatronics and Automation. Changchun, China. 2009, 599-604.
    [48] Zhan Q, Cai Y, Liu Z B. Near-Optimal Trajectory Planning of a Spherical Mobile Robot for Environment Exploration [C]. 2008 IEEE InternationalConference on Robotics, Automation and Mechatronics. Chengdu, China. 2008, 84-89.
    [49] Wang L Q, Liu D L. Motion Control of a Spherical Mobile Robot by Feedback Linearization [C]. Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China. 2008, 25-27.
    [50]孙汉旭,王亮清,贾庆轩. BYQ-3球形机器人的动力学模型[J].机械工程学报, 2009, 10: 8-14.
    [51]孙汉旭,肖爱平,贾庆轩.二驱动球形机器人的全方位运动特性分析[J].北京航空航天大学学报, 2005, 7: 735-739.
    [52]王亮清,孙汉旭,贾庆轩.球形机器人的圆周运动分析[J].机器人, 2007,1: 56-60.
    [53]肖爱平,孙汉旭,廖启征.一种球形机器人的运动特性分析[J].机电产品开发与创新, 2005, 1: 1-5.
    [54]孙汉旭,贾庆轩,刘大亮.一种球形机器人的非线性滑模运动控制[J].机器人, 2008, 6: 498-502.
    [55]孙汉旭,刘大亮,贾庆轩.基于容错策略的球形机器人控制系统[J].机械工程学报, 2010, 11: 89-95.
    [56] Zheng Y L, Sun H X, Jia Q X, et al. An Omni-directional Rolling Spherical Robot with Telescopic Manipulator [C]. 2008 International Symposium on Systems and Control in Aerospace and Astronautics. Shenzhen, China, 2008, 1-6.
    [57] Michaud F, Laplante J F, Larouche H, Duquette A, Caron S, Letourneau D, Masson P. Autonomous spherical mobile robot to child development studies [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35: 471–480.
    [58] Liu D L, Sun H X, Jia Q X. A Family of Spherical Mobile Robot: Driving Ahead Motion Control by Feedback Linearization [C]. 2nd International Symposium on Systems and Control in Aerospace and Astronautics. Shenzhen, China, 2008, 1-6.
    [59] Yu T, Sun H X, Zhang Y H. Dynamic analysis of a spherical mobile robot in rough terrains [C]. Proceedings of SPIE-The International Society for Optical Engineering. Orlando, USA, 2011, 80440V, 1-9.
    [60]庄未,刘晓平,孙汉旭.基于惯性测量单元的欠驱动球形机器人惯性参数识别[J].吉林大学学报, 2011, 41(4): 1119-1125.
    [61] Sun H X, Zheng Y L, Jia Q X, et al. The dynamic analysis and control strategy of spherical robot with telescopic manipulator. Proceedings of SPIE - The International Society for Optical Engineering. Orlando, USA, 2009, 73310C, 1-9.
    [62] Zhuang W, Liu X P, Fang C W. Dynamic Modeling of a Spherical Robot with Arms by Using Kane’s Method [C]. Fourth International Conference on Natural Computation. Jinan, China. 2008, 373-377.
    [63] Jia Q X, Zheng Y L, Sun H X, et al. Motion Control of a Novel Spherical Robot Equipped with a Flywheel [C]. Proceedings of the 2009 IEEE International Conference on Information and Automation. Zhuhai/Macau, China. 2009, 893-898.
    [64] Zhang Q, Jia Q X, Sun H X. Monocular Vision-based Path Identification of a Spherical Robot [C]. Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan, China. 2010, 6703-6707.
    [65] Zhang Q, Jia Q X, Sun H X. Single Image-based Path Planning for a Spherical Robot [C]. 2010 5th IEEE Conference on Industrial Electronics and Applicationsis. Taichung. 2010, 1879-1884.
    [66] Francois M, Serge C. Roball, the Rolling Robot [J]. Autonomous Robots, 2002, 12(2): 211-222.
    [67] Francois M, Serge C. An Autonomous Toy-Rolling Robot [R]. In Proc. of the Workshop on Interactive Robotics and Entertainment, 2000.
    [68] Mattias S, MathiasB, Alessandro S, et al. An Autonomous Spherical Robot for Security Tasks [C]. IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety. Alexandria, VA, USA, 2006, 51-55.
    [69] Seeman M, Broxvall M, Saffiotti A. Virtual 360 panorama for remote inspection [C]. IEEE International Workshop on Safety, Security and Rescue Robotics Proceedings. Rome, Italy, 2007, 1-5.
    [70] Kaznov V, Seeman M. Outdoor navigation with a spherical amphibious robot [C]. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems. Taipei, Taiwan, 2010, 5113-5118.
    [71] Yue M, Deng Z Q. Introducing HIT Spherical Robot: Dynamic Modeling andAnalysis Based on Decoupled Subsystem [C]. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics. Kunming, China, 2006, 181-186.
    [72]岳明,邓宗全.基于状态观测器下的球形机器人状态反馈控制系统设计[J].光学精密工程. 2007, 15(6): 878-883.
    [73]岳明,刘荣强,邓宗全.库仑摩擦力对球形运动器运动状态影响的分析[J].哈尔滨工业大学学报. 2007, 39(7): 1050-1053.
    [74]岳明,邓宗全.基于欧拉角描述下的球形机器人动力学建模与分析[J].哈尔滨工业大学学报2008, 40(1): 43-46.
    [75]邓宗全,岳明,禹鑫燚,方海涛.球形运动器动力学分析及控制系统设计[J].机器人. 2006(6): 565-570.
    [76] Panu H, Aarne H, Hannu P, et al. Moving eye–Interactive Telepresence over integrent with a ball shaped mobile robot [C]. International Workshop on Tele Education in Mechatronics based on the Virtual Laboratories. Wengarten, Germany, 2001.
    [77] Ghanbari A, Mahboubi S, Fakhrabadi M M S. Design, Dynamic Modeling and Simulation of a Spherical Mobile Robot with a Novel Motion Mechanism [C]. Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications. QingDao, China. 2010, 434-439.
    [78] Joong Cl Y, Sung S A, Yun J L. Spherical Robot with New Type of Two- Pendulum Driving Mechanism [C]. INES 2011-15th International Conference on Intelligent Engineering Systems, Proceedings. Poprad, Slovakia. 2011, 275-279.
    [79] Toyoizumi T, Yonekura S, Kamimura A, et al. 1-DOF Spherical Mobile Robot that can Generate Two Motions [C]. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems. 2010, 2884-2889.
    [80] Batten C, Wentzlaff D. Kickbot: A Spherical Autonomous Robot [OL]. http://www.mit.edu/~cbatten/work/kickbot-embint01.pdf. 2006.
    [81] http://www.cetin.net.cn/storage/journal/xdjs/xd2001/tp2001-6-1.htm [OL].
    [82] Hajos G A, Jones J A, Behar A, et al. An overview of wind-driven rovers for planetary exploration [C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting Papers. Reno, Nevada, USA, 2005. 1491-1503.
    [83] Philip C C, Steven B H, Behzad R, et al. Conceptual Design and Dynamics Testing and Modeling of a Mars Tumbleweed Rover [C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA, 2005. 6227-6236.
    [84]李团结,刘卫刚.风力驱动球形机器人动力[J].航空学报,2010, 31(2): 426-430.
    [85] Hajos G A, Jones J A, Behar A. An Overview of Wind-Driven Rovers for Planetary Exploration [C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA, 2005, 1491-1503.
    [86] Behar A, Jones J, Carsey F. NASA/JPL Tumbleweed Polar Rover [C]. IEEE Aeroconference Conference Proceedings. Big Sky, USA, 2004, 388-395.
    [87] Wang H, Yang B, Jones J. Mobility Analysis of an Inflated Tumbleweed Ball under Wind Loads [C]. 43rd Structures, Structural Dynamics and Materials Conference. Denver, USA, 2002, 2786-2793.
    [88] Jeff A J, Calhoun P, Flick J. Low Cost Mars Surface Exploration: The Mars Tumbleweed [R]. NASA TM-2003-212411, 2003.
    [89] Estier T, Siegwart R. Innovative Locomotion Concept for Long-Range Mission and Study of Martian Wind [C]. Proceedings of the Sixth ESA Workshop on Advanced Space Technologies for Robotics and Automation. Netherlands, 2000, 5-7.
    [90] Von H M. Windball [R]. Swiss Federal Institute of Technology Lausanne, 2001.
    [91] Janes D M. The Mars Ball: A Prototype Martian Rover (AAS 87-272) [J]. The Case For Mars III, Part II - Volume 75, AAS Science and Technology Series. 1989, 569-574.
    [92] Hille C, Moody C, Rose S. Wind Powered Martian Robot - Midterm Report [R]. College of Engineering, Texas Tech University, 2001.
    [93] Minton D. Mars Tumbleweed, Preliminary Design Review [R]. North Carolina State University, Dept. of Mechanical and Aerospace Engineering, Raleigh, USA, Nov. 2002.
    [94] Antol J, Heldmann J L. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features [C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA, 2004, 15353-15364.
    [95] Brockett W, Millman R. Differential Geometric Control Theory [J]. Birkhauser, 1983: 181-208.
    [96] Bloch A, McClamroch N H. Control of Mechanical Systems with Classical Nonholonomic Constraints [C]. Proc.of 28th IEEE Conference on Decision and Control. Florida, USA, 1989, 201-205.
    [97] Laumond J P, Risler J J. Nonholonomic systems: controllability and complexity [J]. Theoretical Computer Science. 1996, 157(1): 101-114.
    [98] Kotta U, Mullari T. Equivalence of different realization methods for higher order nonlinear input-output differential equations [J]. European Journal of Control. 2005, 11(3):185-193.
    [99] Camicia C, Conticelli F, Bicchi A. Nonholonomic kinematics and dynamics of the sphericle [C]. IEEE International Conference on Intelligent Robots and Systems. Takamatsu, Japan, 2000, 805-810.
    [100] Bicchi A, Prattichizzo D, Sastry S. Planning Motions of Rolling Surfaces [C]. Proceedings of the 1995 34th IEEE Conference on Decision and Control. New Orleans, USA, 1995, 2812-2817.
    [101] Bicchi A, Sorrentino R. Dextrous manipullation through rolling [C]. Proc. IEEE Int. Conf. on Robotics and Automation. Nagoya, Japan, 1995, 452-457.
    [102] Marigo A, Bicchi A. Rolling Bodies with Regular Surface: Controllability Theory and Application [J]. IEEE Transaction on Automatic Control. 2000, 45(9): 1586~1599.
    [103] Bhattacharya S, Agrawal K. Spherical Rolling Robot:A Design and Motion planning Studies [J]. IEEE Transaction on Robotics and Automation. 2000, 16: 835-839.
    [104] Bhattacharya S, Agrawal S. Experiments and motion planning of a spherical rolling robot [C]. Proc. of the 2000 IEEE International Conference on Robotics and Automation. San Francisco, USA, 2000, 1207-1212.
    [105] Xu Y S, Au S K. Stabilization and Path Following of a Single Wheel Robot [J]. IEEE/ASME Transactions on Mechatronics. 2004, 9(2): 407-419.
    [106] Xu Y S, Sun L W. Dynamics of a Rolling Disk and a Single Wheel Robot on an Inclined Plane [C]. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu, Japan, 2000, 811-816.
    [107] Xu Y S, Sun L W. Stabilization of a Gyroscopically Stabilized Robot on anInclined Plane [C]. Proc.of IEEE Int.Conf.on Robots and Automation.San Francisco, USA, 2000, 3549-3554.
    [108] Ranjan M, Mark A M, Jay T P. Motion planning for a spherical mobile robot: Revisiting the classical ball-plate problem [J]. Journal of Dynamic Systems, Measurement and Control. 2002, 102(4):502~511.
    [109] Mitsuji M, Shintaro M, Mitsuru S, et al. Feedback solution to ball-plate problem based on time-state control form [C]. Proceedings of the 1999 American Control Conference San Diego, USA, 1999, 1203~1207.
    [110] Mukherjee R, Pukrushpan J T. Class rotations induced by spherical polygons [J]. AIAA Journal of Guidance Control and Dynamics. 2000, 23(4): 746-749.
    [111] Li Z X, Canny J. Motion of Two Rigid Bodies with Rolling Constraint [J]. IEEE Transaction on Robotics and Automation. 1990, 6(1): 62-72.
    [112] Yamanaka T, Nakaura S, Sampei M. Hopping Motion Analysis of 'Superball'-like Spherical Robot Based on Feedback Control [C]. Proc.of IEEE on Intelligent Robot and Systems. Las Vegas, USA, 2003, 3805-3810.
    [113] Batten C, Wentzlaff D. Kickbot: a spherical autonomous robot [R]. Technical report, Massachusetts Institute of Technology, 2006.
    [114]刘延柱.高等动力学[M].上海,高等教育出版社, 2000.
    [115] Umashankar N, Anish M, George A K. State Transition, Balancing, Station Keeping, and Yaw Control for a Dynamically Stable Single Spherical Wheel Mobile Robot [C]. 2009 IEEE International Conference on Robotics and Automation. Osaka, Japan, 2009, 998-1003.
    [116] Umashankar N, George K, Ralph L H. Trajectory Planning and Control of an Underactuated Dynamically Stable Single Spherical Wheeled Mobile Robot [C]. 2009 IEEE International Conference on Robotics and Automation. Osaka, Japan, 2009, 3743-3748.
    [117] Lauwers T B, Kantor G A, Hollis R L. A Dynamically Stable Single-Wheeled Mobile Robot with Inverse Mouse-Ball Drive [C]. 2006 IEEE International Conference on Robotics and Automation. Orlando, USA, 2006, 2884-2889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700