基于现代设计理论的车身结构设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车身作为车辆的重要组成部分,对整车的安全性、动力性、经济性、舒适性及操控性有着重要的影响,同时汽车的个性化也是通过车身设计表现出来。本文以某大客车为研究对象,综合利用现代设计方法中的相关理论,研究了作为汽车三大总成之一的车身结构的静、动态特性及轮胎的刚度特性。
     通过建立坐标系,将截面离散化,用截面上关键点的坐标值来描述截面形状,使数与形结合。用代数方法研究几何问题,推导出实用性强、计算精度高且适合计算机编程计算的任意形状开口及闭口薄壁截面的几何特性参数计算公式,解决了准确地确定任意复杂薄壁截面的形心、弯心及形心主轴位置的问题,并给出了算例。
     在UG软件中建立车身骨架的几何模型后,用接口程序生成命令流文件将模型导入到ANSYS环境中,建立了车身骨架有限元模型,用有限元理论分析了静态工况下承载式客车车身骨架的强度特性。探讨了承载式车身骨架不同部位的受力特性,提出了通过对骨架结构进行局部改进来提高整体结构强度的方法及对原结构进行改进设计的方案。
     在车身结构有限元静态强度分析的基础上,利用ANSYS软件进行了车身结构的模态分析。研究了由路面不平度引起的车身动应力的仿真计算方法。考虑到轮胎结构及其材料和动力学特性的复杂性,在仿真分析中,为了避免由于轮胎的过度简化带来的误差,将整车划分为簧上和簧下两大系统。把簧上部分作为振动系统进行研究,车桥传到悬架的动载荷作为系统的输入,车身弹性体的动态响应(包括车身上各节点的动应力响应)作为系统的输出,建立了系统的动力学方程,根据弹性力学理论推导了车身动应力的计算公式。
     研究了车身及悬架弹性对动力悬置系统隔振性能的影响。将发动机及其悬置系统、弹性车身、悬架作为振动分析系统,利用模态综合理论建立了系统的振动分析模型。用四端参数技术,分析了弹性基础情况下动力悬置系统的隔振特性;探讨了在高、底频区,弹性车身对悬置系统的动态特性的影响及在发动机高频激振下,悬置系统的传递率出现过大的原因。
     提出了根据轮胎结构的微观变形量分析轮胎侧偏刚度的思路。在对轮胎提出合理的运动假设前提下,推导了轮胎侧偏刚度与轮胎变形之间的定量关系,建立了在侧向力作用下,轮胎有限元模型中相关节点位移与轮胎侧偏角关系的数学模型。以子午线轮胎(185/60R1482H)为例,利用ANSYS软件对子午线轮胎进行了基于非线性模型的有限元分析。将计算结果和试验结果进行了比较,验证了理论计算结果的可靠性。
     以结构及工作条件均较简单的集装箱半挂车车架结构为例,在结构设计的开始阶段引入拓扑优化理论,先对结构进行布局优化,获得较合理的初始结构方案,再通过结构参数优化设计,得到满足结构强度、刚度及设计工艺要求的最优结构。在ANSYS软件平台上利用其程序设计语言(APDL)将ANSYS命令组织起来,编写出参数化的用户程序,实现优化设计的全过程。通过用户界面设计语言(UIDL),创建了主菜单和新的函数文件,生成具有行业分析特点和符合用户需要的集装箱半挂车车架优化设计专用软件模块。
     研究了车身结构的静动态强度试验中的相关问题,在定远试验场对样车进行了强化试验,分析了样车在各种强化路面上的应力状况,通过对试验结果及理论计算数据的分析,验证了理论分析结果的正确性。
Modern vehicle body plays a very important part in the vehicle's performance. The individual characters of vehicles can be showed through the bodies. The overall objective of this study is to study dynamic characters of bodies and the stiffness characteristic of Tires and static by the means of modern theories and methods of design.The thin wall sections which shapes are very complicate is divided into finite segments. The coordinate axes are built to describe the shapes by the values of the key points. The formulas which can be used to calculate the geometric parameters of the sections easily and accurately are carried out depending on the theory of integral and analytic geometry. The sections' center position of figure, twist and flexure are fixed precisely. The moment of inertia can be calculated precisely. The practice indicated that this development can contribute to the shape optimization of the thin sections by changing the positions of the notes. The practice indicated that this development can contribute to the shape optimization of the thin wall sections by changing the positions of the key points.The geometric model of the vehicle body is built in Unigraphics software and then is introduced to ANSYS software. Theoretic strength analysis of the body frame was carried out by using ANSYS software. The effects of all the parts on the stiffness of the bus body are discussed. The mechanical characteristics of the rectangular sections which are widely used in buses are given. The method is given to adjust the stiffness of some parts to make them suitable as a whole. Theoretical and experimental results of both improved and original bus body are discussed and commented on. The corresponding experiment was also conductedThe simulation method is studied to calculate dynamic stress of the vehicle body caused by the uneven road. Taking account of the complex nature of tires, the vehicle is divided into two parts which are upon and under the suspensions to avoiding the errors caused by the simplified tires. The system being studied is the part upon the suspensions. The input of the system is the dynamic load translated from axles to suspensions and the output is the dynamic responses of vehicle body. The Equations of vibration of the system are derived. The formulas are got on the basis of the theory of elastic mechanics.It is developed that the cornering force characteristics of tires may be got by researching the micro-deflection of tires. Based on the three suppositions about the motion of tires, the relationship between the cornering force characteristics and the micro-deflection of tires is built. A detailed finite element model of a radial tire is constructed for the prediction of stiffness characteristics by using ANSYS software. The nonlinear mechanical properties of the elastomer were modeled by the Mooner-Rivilin model. A example of the radial tire (185/60R1482H) is given. The calculated results are compared with the experimental results and it is showed that the model reliability is fairly good.The flexible foundation effects on isolation performance of engine-mount systems are discussed. Depending on the theory of modal analysis of vehicle body, equations of vibration for the engine-mount systems, which include engine-mount systems, flexible chassis and suspensions, are derived. The isolation performance of engine-mount systems mounted on the flexible
    foundations is studied by use of Four-End parameters method. It is shown that the flexibility of the foundations has significant effect on the dynamic responses of engine-mount systems especially near the natural frequencies of the supporting structures.The Frame of the Container Semi-dragging Truck is taken to be as an example because of its simple structure and load. The optimal theory of both topology and parameters is introduced into the design of continuum structures to obtain better designs of structures. The procedure can be briefly described as three stages. The first is to get a primal structure depending on the theory of topology. The second is to build a functional structure which is satisfied with the technological requirements. In the final stage the optimal structure of the frame is got depending on the parametric optimization. The optimal design of the frame of a container semi-dragging truck is carries out by means of ANS YS software. The process of it is described in detail. The problem of determining the original structure of the frame is considered. According to result of the topology optimization of the frame the optimal structure of the frame is got depending on the parametric optimization. The comprehensive application of the optimal and parameters theory in the automobile structure design is realized. The dual exploitation of ANSYS software is done by using the languages of ANSYS (APDL and UIDL).
引文
[1] 孙靖民.现代机械设计方法[M].哈尔滨:哈尔滨工业大学出社,2003.
    [2] 王风歧,张连洪,邵宏宇.现代设计方法[M].天津:天津大学出版社,2004.
    [3] 龙驭球,龙志飞,岑松.新型有限元[M].北京:清华大学出版社,2003.
    [4] 王焕定,吴德伦.有限单元法及计算程序[M].北京:中国建筑工业出版社,2004.
    [5] 俞铭华,吴剑国,曹骥等.有限元法与面向对象编程[M].北京:科学出版社,2004.
    [6] 王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [7] 童秉枢.现代CAD技术[M].北京:清华大学出版社,1999.
    [8] 童秉枢,李学志,吴志军等.机械CAD技术基础[M1.北京:清华大学出版社,1999.
    [9] Klosterman A.L. A Combined Experimental and Analytical Procedure for Improving Automotive Systems [J]. SAE 720093.
    [10] Wayna A. Mullell, Albert L.Klosterman. NASTRAN for Dynamic Analysis of Vehicle Systems[J]. SAE TRAN.740326
    [11] 郑兆昌,陈淦,郭泰.拖拉机—拖车系统动力分析与随机振动响应分析的模态综合技术[J].农业机械学报,1982,23(1):8-11.
    [12] 郑兆昌,吴建基.汽车结构动力分析的模态综合技术[J].清华大学学报,1981,21(3):37-42.
    [13] A.G.M.Michell. The limits of Economy of Materials in Frame Structures [J]. Philosophical Magazine, Series 6,1904,8(47):589-597.
    [14] W.S.Dorn, R.E.Gomory,H.J.Greenberg. Automatic Design of Optimal Structure [J]. J.de Mechnique, 1964,3(1):25-52
    [15] U.T.Ringertz. on Topology Optimization of Trusses [J]. Eng. Opt., 1985, 9: 209-218.
    [16] U.Kirsch. Behavior of Truss Structures, Comp. Math. App. Mech. Engrg., 1989, 72(1): 126-132.
    [17] 段宝岩,叶尚辉.两工况作用下杆系结构拓扑优化设计[J].计算结构力学及其应用,1991,11(8),170-177.
    [18] 段宝岩,叶尚辉.考虑性态约束时多工况桁架结构拓扑优化设计[J].力学学报,1992,24(1):59-69.
    [19] M.Dobbs, I.Felton. Optimization of Truss Geometry [J]. J. Struct. Div., ASCE, 1969,95(10):2105-2118.
    [20] C.Sheu, Schmit. Minimum Weight Design of Elastic Redundant Trusses Under Multiple Static Loading Conditions [J]. AIAA,J., 1972,10:155-162.
    [21] U.Kirsch. Topping B H V. Minimum Weight Design of Structural Topologies [J]. J. Structural Eng. 1992, 8: 1770-1785.
    [22] M.Zhou, G.I.N.Rozvany. The COC Algorithm, Part Ⅱ: Topological Geometrical and Generalized Shape Optimization. Comp. Meth. App. Mech. Engrg., 1991, 89(1):309-336.
    [23] 许素强,夏人伟.桁架结构拓扑优化和遗传算法[J].计算结构力学及其应用,1991,11(4),436-445.
    [24] 蔡文学,程耿东.桁架结构拓扑优化设计的模拟退火算法[J].华南理工大学学报,1998,26(9):78-83.
    [25] 高峰,王德俊,胡俏.多工况多约束离散变量桁架拓扑优化的GA算法[J].东北大学学报,1999,20(1):94-97.
    [26] Kawamura H, Ohmori H, Kito N. Truss Topology Optimization by a Modified Genetic Algorithm [J]. Struct. Optim., 2002, 23: 467-472.
    [27] 孙焕纯,柴山,王跃方.离散变量结构优化设计的发展、现状及展望[J].力学与实践,1997,19(4):7-11.
    [28] 柴山,石连栓,孙焕纯.包含两类变量的离散变量桁架结构拓扑优化设计[J].力学学报,1999,3l(5):574-583
    [29] 段宝岩,陈建军.基于极大熵思想的杆系结构拓扑优化设计研究[J].固体力学学报,1997.18(4):329-235.
    [30] M.P.Rossow, J. E. Talylor. A Finite Element Method for the Optimal Design of Variable Thickness Sheets[J]. AIAAJ, 1973, 11(11): 1566-1569.
    [31] K.T.Cheng, N.Olhoff. An Investigation Concerning Optimal Design of Solid Elastic Plates [J]. Int. J. Solids and structures, 1981, 16: 30-323.
    [32] K.T.Cheng, N.Olhoff. Regularized Formulation for Optimal Design of Axis symmetric Plates. Int. J. Solids and structures, 1982, 18: 153-170.
    [33] M.P.Bendsoe, N.Kikuchi. Generating Optimal Topologies in Structural Design Using a Homogenization Method[J]. Comp. Math. App. mech. Eng. 1988, 71: 197-224.
    [34] J.M. Guedes, N.Kikuchi. Preprocessing and Post processing for Materials Based on the Homogenization method with Adaptive Finite Element Methods[J]. Comp. Math. App. Meth. Engrg. 1990, 83: 123-168.
    [35] A.R.Diza, M.P.Bendsoe. Shape Optimization of structures for Multiple Loading Conditions Using a Homogenization Method [J]. Structural Optimization, 1992, 4: 17-23.
    [36] J.Fukushima, K.Suzuki. Applications to Car Bodies: Generalized Layout Design of Three-Dimensional Shells for Car bodies, Lecture Nodes. Essen University Germany, 1991, Sep.23-Oct. 3: 110-126.
    [37] H.P.Mlejnek. Some Aspects of the Genesis of Structures [J]. Structural Optimization, 1992, 5: 1-26.
    [38] 张东旭.连续体结构拓扑优化及形状优化若干问题[D].大连理工大学博士学位论文,1992.
    [39] R.J.Yang, C.H.Chuang. Optimal Topology Design Using Programming [J]. Comp.& Stru. 1994, 52(2): 265-275.
    [40] R.J.Yang, A.I.Chahandle. Automotive Applications of Topology Optimization[J]. Structural Optimization.1996, 9: 1533-1535.
    [41] 赵丽红,郭鹏飞,孙洪军等.结构拓扑优化设计的发展、现状及展望[J].辽宁工学院学报,2004,24(1):46-49.
    [42] 陈茹雯.浅谈拓扑优化[J].机电信息,2004,80(20):42-44.
    [43] Frederique Muyl, Laurent Dumas, Vincent Herbert. Hybrid method for aerodynamic shape optimization in automotive industry[J]. Computers & Fluids, 2004, 33(6): 849-858.
    [44] Debra A. Elkins, Ningjian Huang, Jeffrey M. Alden. Agile manufacturing systems in the automotive industry [J]. International Journal of Production Economics. 2004, 91(3): 201-214.
    [45] Sheppard S D. Structural Design and Crashworthiness of Automobile. Great Britain: A Computational Mechanical Publication, 1987.
    [46] Moisey B. Applications of the Thin-walled Beam Theory in the Analysis of Automobile Structures. International Conference on Vehicle Structural Mechanics, Michigan, 1984, SAE 84073
    [47] Michell A G M. The limits of economy of materials in frame structures. Philosophical Magazine, 1985, 47(6): 589-597.
    [48] 陈伯真.薄壁结构力学[M].上海:上海交通大学出版社,1988
    [49] 李明昭,周竞欧.薄壁杆结构计算[M].北京:高等教育出版社,1992.
    [50] 李育楷,王全凤.考虑剪切变形的矩形截面薄壁杆件畸变分析[J].计算力学学报,2004,21(2):247-252.
    [51] Nikolaidis E, Zhu M. Translators for Design Guidance of Joints in Automotive Structures. International Conference on Vehicle Structural Mechanics and CAE, Michigan, 1995, SAE 951109
    [52] Masanori Talcamatsu. Development of Lighter-Weight Higher-Stiffness Body for NewRX-7, SAE920244
    [53] McKnight J. The development of a low floor city-bus-Volvo B1 OL. Proc, Ins. Mech. Engrs., Part D, 1995:209-793
    [54] 王敏中,王炜,武际可.弹性力学教程[M].北京:北京大学出版社,2002.
    [55] 黄天泽,黄金陵.汽车车身结构与设计[M].北京:机械工业出版社,2002.
    [56] 冯国胜.客车车身结构的有限元分析[J].机械工程学报,1999,35(1):91—95.
    [57] 管延锦,黄晓慧,吴向红等,LCK6896H型大客车车身结构的有限元分析[J].山东大学学报,2002:32(3):23-226
    [58] 王海霞,汤文成,钟秉林等,CJ6121GCHK型客车车身结构骨架有限元建模及结果分析方法研究[J].汽车工程,2001,23(1):33—36
    [59] 兰凤崇,李涛.客车车身结构件对整车刚度的影响[J].汽车工程,2002,24(2):137—140
    [60] D. Kecman. Program'WEST-EX' for the Optimisation of the Rectangular Section Tubes Meeting Safety Requirements [M]. Structural Design and Crashworthiness of Automobiles. Printed in Great Britain, 1987.
    [61] 程耀东.机械振动学[M].杭州:浙江大学出版社,2001.
    [62] 靳晓雄,张立军,江浩.汽车振动分析[M].上海:同济大学出版社,2002.
    [63] C.W. Mousseau, T.A. Laursen, M. Lidberg, R.L. Taylor. Vehicle dynamics simulations with coupled multi-body and finite element models[J]. Finite Elements in Analysis and Design, 1999, 31: 295-315.
    [64] Kunihiro Takahashi. Optimum constitution of vehicle body structure [J]. JSAE Review, 1995, 16(3):308.
    [65] Akifumi Okabe, Noboru Tomioka. Joint stiffness identification of body structure using neural network [J]. JSAE Review, 1997, 18(2):200.
    [66] Jacqueline El-Sayed, Hakcheen Kim, Robert Frutiger. Plane strain formability analysis of automotive body structures using DYNA2D [J]. Journal of Materials Processing Technology, 2004,147(1): 79-84.
    [67] C. Fremgen, L. Mkrtchyan, U. Huber, M. Maier. Modeling and testing of energy absorbing lightweight materials and structures for automotive applications [J]. Science and Technology of Advanced Materials, 2005, 6(8): 883-888.
    [68] Walter Smetana, Heinz Homolka, Roland Reicher, Martin Mundlein. FEM failure analysis of thick-film initiators for automotive applications [J]. Engineering Failure Analysis. 2004, 11(4): 475-484.
    [69] Sankaran Mahadevan, Kan Ni. Damage tolerance reliability analysis of automotive spot-welded joints [J]. Reliability Engineering & System Safety. 2003, 81(1): 9-21
    [70] 王国权,许先峰,王蕾等.汽车平顺性的虚拟样机试验[J].农业机械学报,2003,34(3):26-34.
    [71] 王连明,宋宝玉,周岩等.汽车平顺性建模及其仿真研究[J].哈尔滨工业大学学报,1998,30(5):80-84.
    [72] T. Bertram, F. Bekes, R. Greul, O. Hanke. Modelling and simulation for mechatronic design in automotive systems [J]. Control Engineering Practice. 2003, 11(2): 179-190.
    [73] T. Zou, S. Mahadevan, Z. Mourelatos, P. Meernik. Reliability analysis of automotive body-door subsystem [J]. Reliability Engineering & System Safety.2002,78(3): 315-324
    [74] Michael Tovar, John Owen. Sketching and direct CAD modelling in automotive design Design Studies [J]. 2000, 21(6): 569-588.
    [75] William F. Powers, Paul R. Nicastri. Automotive vehicle control challenges in the 21st century [J]. Control Engineering Practice. 2000, 8(6): 605-618.
    [76] Kim T,卢耀祖等.机械与汽车结构的有限元分析.上海:同济大学出版社,2003
    [77] 高云凯,监晓理,陈鑫。轿车车身模态修改灵敏度计算分析[J].汽车工程,2001, 23(5):352-355.
    [78] 周长路,范子杰,陈宗渝等.微型客车白车身模态分析[J].汽车工程,2004,26(1):78-80.
    [79] 朱西产,钟荣华.薄壁直梁件碰撞性能计算机仿真方法的研究[J].汽车工程,2002,22(2):86-89.
    [80] 王宏雁,徐少英.车门的轻量化设计[J].汽车工程,2004,26(3):350-353.
    [81] 朱茂桃,何志刚,徐凌等.车身模态分析与振型相关性研究[J].农业机械学报,2004,35(3):13-19.
    [82] 杨波,王学林,胡于进等.多轴汽车平顺性的柔性模型研究[J].机械工程学报,2003,39(12):145-150.
    [83] 朱幢瑞,孙庆鸿,孙凌玉等.基于模态试验的客车白车身动力学模型修正研究汽车工程,2001,23(2):127-129.
    [84] 陈铭年,H.J.Beermann,庄继德.客车结构杆连接的真实形状对结构计算的影响[J].汽车工程,1996,18(1):44-50.
    [85] 王焕定,章梓茂,景瑞.结构力学(第2版)(Ⅱ)[M].北京:高等教育出版社,2004.
    [86] 王岩松,李章明,何辉等.四轮车辆非平稳路面不平度时域模拟及小波分析[J].汽车工程,2004,26(1):42-47.
    [87] 余志生.汽车理论(第3版)[M].北京:机械工业出版社,2000.
    [88] 周志革,武一民等.发动机悬置系统参数的优化设计[J].机械设计,2003,20(3):53-54.
    [89] 范兴华,陈金玉等.发动机悬置系统多目标优化设计[J].重庆大学学报,2001,24(2):42-44
    [90] Martyn Pinfold, Craig Chapman. The application of KBE techniques to the FE model creation of an automotive body structure [J]. Computers in Industry. 2001, 44(1): 1-10
    [91] Yunhe Yu, Nagi G. Naganathan, Rao V. Dukkipati. A literature review of automotive vehicle engine mounting systems [J]. Mechanism and Machine Theory. 2001, 36(1): 123-142
    [92] Martyn Pinfold, Craig Chapman. The application of KBE techniques to the FE model creation of an automotive body structure [J]. Computers in Industry, 2001,44(1): 1-10
    [93] 严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社,1985.
    [94] Jang Moo Lee, Hong Jae Yim, Jong-Hyun Kim. Flexible Chassis Effects on Dynamic Response of Engine Mount Systems [J]. SAE Paper 951094
    [95] H. Ashrafuion, C. Nataraj. Dynamic Analysis of Engine-Mount Systems, Journal of Vibration and Acoustics. [J]. 1992, 114: 79-83.
    [96] 庄继德.汽车轮胎学.北京:北京理工大学出版社,1996.
    [97] 郭孔辉 轮胎侧偏特性的一般理论模型[J] 汽车工程,1990,12(3):1-12
    [98] 郭孔辉,刘青 考虑胎体复杂变形的轮胎稳态侧偏特性理论模型[J] 机械工程学报 1999,35(2):15-18
    [99] 郭孔辉,刘青稳态条件下用于车辆动力学分析的轮胎模型[J] 汽车工程,1998,20(3):129-134
    [100] 刘青,郭孔辉 基于“弦”胎体理论的轮胎转偏模型[J]农业工程学报,1999,15(4):4-8
    [101] 刘青,郭孔辉 陈秉聪 轮胎刷子模型分析Ⅰ(稳态侧偏刷子模型)[J]农业机械学报,2000,31(1):19-22
    [102] 刘青,郭孔辉 轮胎刷子模型分析Ⅱ(稳态纵滑与纵滑侧偏刷子模型)[J]农业机械学报,2000,31(2):4-8
    [103] 隋军,郭孔辉,魏文若等 新型轮胎静特性试验台的开发调试及其在轮胎特性研究中的应用[J] 吉林工业大学学报,1995,25(4)
    [104] 张宝军,郭孔辉,刘青等 轮胎侧偏特性在时变载荷条件下的试验设计[J]农业工程学报1998,14(3):135-137
    [105] 崔胜民,余群.汽车轮胎行驶性能与测试[M].北京:机械工业出版社出版,1995.
    [106] 王登祥,Tim Fry.轮胎有限元研究进展及应用成果[J].轮胎工业.1998,18:395-402
    [107] 缪红燕,徐鸿.子午线轮胎的有限元分析[J].轮胎工业,2001,21(2):16-20.
    [108] 王伟,邓涛.轮胎与轮辋接触的有限元分析[J].特种橡胶制品,2003,4:18-21.
    [109] 王吉忠.建立轮胎有限元结构分析模型应注意的问题[J].轮胎工业.2002,22:202-204
    [110] Dohrmann C R. Dynamics of a tire-wheel-suspension assembly [J]. Journal of Sound and Vibration, 1998, 210(5): 627-642.
    [111] 管迪华,董培蕾,范成建.轮胎自由与约束悬置的模态试验与综合分析[J].汽车工程,2003,25(4):353-355.
    [112] 管迪华,范成建.用于不平路面车辆动力学仿真的轮胎模型综述[J].汽车工程,2004,26(2):162-167.
    [113] 管迪华,孙永伶.利用模态分析技术获取轮胎的模态参数[J].汽车工程,2001,23(3):148-151.
    [114] Huang S C, Su C K. In-plane dynamics of tires on the road based on an experimentally verified rolling model [J]. Vehicle System Dynamics, 1992, 21: 247—267.
    [115] Soedel W. On the dynamic response of rolling tires according to thin shell approximations [J]. Journal of Sound and Vibration, 1975, 41: 233—246.
    [116] Soedel W, Prasad M G. Calculation of natural frequencies and modes of tires in road contact by utilizing eigenvalues of the axisymmeric non-contacting tire [J]. Journal of Sound and Vibration, 1980, 70: 573—584.
    [117] Richards T R, Brown J E, Honman R L. Modal analysis of tires relevant to vehicle system dynamics[C]. Third International Modal Analysis Conference, 1985:857—863.
    [118] Kung L E, Soedel W, Yang T Y. Natural frequencies and mode shapes of an automotive tire with interpretation classification using 3-d computer graphics [J]. Journal of Sound
    Modern theories of design;Finite Element Method;Modal analysis;Optimization;Vehicle structure;Thin wall sections;Strength;Vibration;ANSYS software International Journal of Solids and Structures. 2000 (37): 477-493.
    [138] Daeyoon Jung, Hae Chang, Gea. Topology optimization of nonlinear structures [J]. Finite Elements in Analysis and Design 2004 (40): 1417—1427
    [139] 苏先基,励争.固体力学动态测试技术[M].北京:高等教育出版社,1997.
    [140] 李晓莹.传感器与测试技术[M].北京:高等教育出版社,2004.
    [141] 刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社,2004.
    [142] 贾民平、张洪亭、周剑英.测试技术[M].北京:高等教育出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700