动载荷反演问题时域分析理论方法和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确地确定结构在运行过程中所受的动态载荷,是结构设计及其优化的一个重要方面。此外,动载荷的确定对结构健康监测、参数辨识、以及结构疲劳寿命估计,也具有重要意义。然而,在实际工程中结构所受动态载荷往往难以直接测量,如力传感器的引入会阻碍结构的工作路径,或改变结构的固有特性等等。在此背景下,载荷识别技术得以提出,也即根据结构部分测点得到的响应信息和结构动力学反演模型来估计结构所受的动态载荷。结构动态载荷识别技术在现代工程设计中有着广泛的应用前景,属于结构动力学反问题中的第二类反问题,而且具有学科交叉的特征,涉及到计算机仿真、动态测试技术以及反演问题求解技术等多种学科。本文对动态载荷反演问题开展了一些应用基础性研究,具体工作有以下几个方面:
     首先总结了动态载荷反演问题研究发展现状,并对已有的动态载荷识别方法进行分析,指出当前动载荷识别方法仍存在的局限性,确定本文的研究思路为在时域内开展动态载荷反演问题分析理论和实验方面研究,重点讨论动载荷反演问题的不适定性、动载荷反演精细模型的建立、动载荷反演算法的稳定性、动载荷反演实验技术以及动载荷反演技术在工程中的应用等几方面。
     将反演问题求解的正则化理论应用到动载荷反演问题中,提出了基于正则化技术的动态载荷反演问题的求解方法,来抑制测量噪声在载荷反演过程中产生的振荡,得到满足实际工程要求的稳定近似解。然而,正则化技术仅从数学角度来处理动载荷反演问题的不适定性,并不能完全消除模型误差和响应数据中的测量噪声带来的影响。因此,建立合适的动载荷反演模型成为亟需解决的问题。
     提出了基于Markov参数精细计算的动态载荷识别方法,为避免递推迭代格式中动载荷反演问题求解误差累积,把整个时域过程离散展开,在状态空间建立了离散动力系统滑动平均模型,并用2N算法精细计算了系统模型的马尔科夫(Markov)参数矩阵,给出了Toeplitz矩阵形式的全局时域内多点分布动态载荷识别问题的载荷识别模型,最后采用正则化技术求解该载荷反演模型。
     提出了基于线性空间逼近的动载荷反演问题参数化求解方法,通过对单一载荷基函数在时间和空间上多点逼近未知输入载荷,实现动态载荷识别的参数化,使得载荷反演问题转化为多点权系数求解问题。该方法可以有效地解决模态截断或建模不精确造成的求解误差问题,具有在时间和空间上配置逼近节点的灵活性,可以有效的利用两方面的约束信息提高识别精度。
     提出了基于灵敏度分析的动态载荷识别方法,将结构输入载荷表示为一系列参数的形式,建立基于灵敏度分析的参数化反演模型,通过灵敏度迭代求解确定载荷输入参数来重构结构动态载荷。进一步推广上述方法提出了基于灵敏度矩阵精细计算的动态载荷识别技术。由于反演问题的特点,建立的动态载荷反演模型仍为不适定的,在求解过程中都需应用正则化技术来抑制测量噪声带来的不稳定性。
     开展了动态载荷识别实验研究,根据提出的动载荷识别理论,设计了动态载荷识别试验,以悬臂梁结构和变截面梁结构为试验对象,验证了本文提出动态载荷识别方法的正确性和有效性。基于本文所建立的动载荷识别算法开发了动态载荷识别程序模块,并应用到高速运载工具在发射过程中的动态载荷识别。利用飞行器结构在发射和运行过程中得到的遥测响应数据,重构高速运载工具在运行过程中经受恶劣工况下的载荷,为高速运载工具的优化设计提供载荷设计依据。
Accurately knowledge of the dynamic force acting on the structure during its designated life can be very important components in the design of mechanical systems, from the spacecraft and processing plants to electronic circuits. Regardless of actual application or the underlying physics, the expected force plays a key role in the structural health monitoring, the determination of the system properties or parameters, and the fatigue life estimationof operating systems. Unfortunately, in many practical situations, it is difficult, if not impossible, to perform direct measurements or calculations of the external forces acting on vibrating structures. For example, if the force gauges are inserted into force transfer path to measure those dynamic forces directly, they may either alter the system properties or intrude the load path. Instead, the vibration responses can often be conveniently measured. In such cases, indirect estimating these dynamic forces by using measured vibration responses in some sort of inverse model is sometimes necessary, which means that unknown force is established as the solution to an inverse problem, based on the measured vibration responses. The dynamic force identification, as the second type inverse problem in structural dynamics, has some splendent prospects in the state-of-art engineering design, and is also related to a variety of disciplines such as the numerical simulation, the dynamic vibration test and the theory of inverse problem. In this thesis the issues of basic applications of the dynamic force identification are studied, and the specific research works are as follows.
     Firstly, the force identification methods proposed by many researchers in the area of vibration and acoustics are reviewed, and the limitations of the current force identification methods are pointed out, and the idea of study on the force identification problem in the framework of theoretical and experimental study in time domain is established, and the interest areas in this thesis mainly focus on the ill-posedness of force identification problem, the foundation of precise force identification model, the stability of force identification algorithm, and the application of force identification technique.
     In general, the inverse problem of force identification is ill-posed, i.e. an arbitrarily small perturbation of the measured responses can cause arbitrarily large perturbation of the solution. In order to deal with this issue, the regularization technique of the mathematical theory to solve the inverse problem is utilized in this thesis to single out a useful and stable solution. The regularization technique, however, is only to cope with the ill-posed problem from the mathematical view, and not to completely eliminate the influence of errors in force identification model and the white noise in the measured vibration responses. Thus the establishment of proper force identification model is worth being concerned.
     In this thesis, three force identification models are established for the sake of reconstructing the input force of the structural systems. The force identification algorithm based on the precise computation for Markov parameters, is firstly presented to remove the numerical rounding errors of the dynamic force identification model, where a discrete moving average model of force identification is founded in state space, and the Markov parameter matrix is computed by the 2N type precise computation algorithm, and then the force identification model is recasted as Toeplitz matrix forms with a global multi-points distribution in time domain. The parameter estimation method for the force identification of the linear structural system is secondly proposed, in order to eliminate the effects of errors caused by the theoretical model or the truncated modal parameters in the experiment. The input force is expressed as a single base function, and the force identification problem is transformed into a problem of finding the parameters of the base function on the discrete time points. This force identification method is robust to improve the accuracy and the stability of the identified force. Finally, the force identification algorithm based on sensitivity analysis is proposed, where the input force is expressed as a series of parameters, and the sensitivity analysis method is used to iteratively update these parameters of input force in the inverse analysis. Furthermore, the sensitivity response matrix can be computed precisely when the input force is expressed as the harmonic functions. All these force identification methods presented in this thesis are still ill-posed, and the regularization process is necessary to suppress the fluctuations caused by the white noise in measured data.
     Finally, three force estimation experiments, corresponding to the force identification methods, are implemented, in order to verify that these force identification methods are valid. The forces, applied on the cantilever beam and the variable section beam in laboratory, are successfully reconstructed by the presented force identification methods in this thesis. Furthermore, the force identification program modules are developed and applied to estimate the input force acting on the high-speed aircraft in the launching process. The time history of harsh loads applied on the space aircrafts, are reconstructed by the telemetry response data, in order to optimize the design of high-speed aircrafts.
引文
[1]Roy R. Craig, Jr., Structural dynamics:an introduction to computer methods [M], New York:Wiley,1981.
    [2]林家浩,张亚辉,随机振动的虚拟激励法[M],北京科学出版社,2004.
    [3]William T. Thomson, Marie Dillon Dahleh, Theory of vibration with applications [M],北京:清华大学出版社,2005.
    [4]Roy R. Craig, Jr. and Andrew J. Kurdila, Fundamentals of structural dynamics [M], Hoboken, NJ:John Wiley,2006.
    [5]谢官模,振动力学[M],北京国防工业出版社,2007.
    [6]张雄,王天舒,计算动力学[M],清华大学出版社,2007.
    [7]金先龙,李渊印,结构动力学并行计算方法及应用[M],北京国防工业出版社,2008.
    [8]Thorby Douglas, Structural dynamics and vibration in practice:an engineering handbook [M], Amsterdam:Elsiver/Butterworth-Heinemann,2008.
    [9]付志方,华宏星,模态分析理论与应用[M],上海交通大学出版社,2000.
    [10]李德葆,陆秋海,实验模态分析及其应用[M],北京:科学出版社,2001.
    [11]沃德·海伦,斯蒂芬·拉门兹,波尔·萨斯著,白化同,郭继忠译,模态分析理论与试验[M],北京:北京理工大学出版社,2001.
    [12]李德葆,陆秋海,工程振动试验分析[M],北京:清华大学出版社,2004.
    [13]米罗维奇(美国)著,陈幼明,沈守正译,结构动力学计算方法,北京国防工业出版社,1987.
    [14]张亚辉,林家浩,结构动力学基础[M],大连理工大学出版社,2007.
    [15]张子明,杜成斌,周星德,结构动力学[M],北京清华大学出版社,2008.
    [16]Victor Isakov, Inverse problems for partial differential equations [M]北京:世界图书出版公司,2004.
    [17]Graham M. L. Gladwell, Inverse problems in vibration [M], Dordrecht:Kluwer Academic Publishers,2004.
    [18]Ramm, A. G., Inverse problems:mathematical and analytical techniques with application to engineering [M], New York:Springer Science,2005.
    [19]徐果明,反演理论及其应用[M],北京:地震出版社,2003.
    [20]Alexander G. Ramm, Inverse problems, tomography, and image processing [M], New York:Plenum Press,1998.
    [21]K. K. Stevens, Force identification problems:an overview [C], Proceeding of the SEM Spring Conference on Experimental Mechanics, Houston,1987.
    [22]B. J. Dobson, E. Rider, A review of the indirect calculations of excitation forces from measured structural response data [C], Proceeding of the Institution of Mechanical
    Engineering Science C2,1990, Vol.204 69-75.
    [23]Hirotsugu Innoue, John J Harrigan and Stephen R Reid, Review of inverse analysis for indirect measurement of impact force [J], Applied Mechanics Review,2001, Vol. 54, No.6,503-524.
    [24]L. J. L.Nordstron, T. P. Nordberg, A critical comparison of time domain load identification methods[C], Proceeding of the Sixth International Conference on Motion and Vibration Control,2002, Vol.2 1151-1156.
    [25]许锋,陈怀海,鲍明,机械振动载荷识别研究的现状与未来[J],中国机械工程,2002,第13卷,第6期526-530.
    [26]郭杏林,结构随机载荷识别的理论和实验研究[D],大连理工大学博士学位论文,2003.
    [27]蔡元奇,时域内动态载荷识别理论及实施技术研究[D],武汉大学博士学位论文,2004.
    [28]许峰,动载荷识别若干前沿理论及应用研究[D],南京航空航天大学博士学位论文,2001.
    [29]J. F. Doyle, An experimental method for determining the location and time of initiation of an unknown dispersing pulse [J], Experimental Mechanics,1987, Vol.27, No.3 229-233.
    [30]M. T. Martin and J. F. Doyle, A genetic algorithm for determining the location of structural impacts [J], Experimental Mechanics,1994, Vol.34,37-44.
    [31]J. F. Doyle, Impact force location in frame structures [J], International Journal of Impact Engineering,1996, Vol.18, No.1 79-97.
    [32]Keeyoung Choi and Fu-Kuo Chang, Identification of impact force and location using distributed sensors [J], AIAA Journal,1996, Vol.34, No.1 136-142.
    [33]C. Pezerat, Q. Leclere, N. Totaro and M. Pachebat, Identification of vibration excitations from acoustic measurements using near field acoustic holograph and the force analysis technique [J], Journal of Sound and Vibration,2009, Vol.325 540-556.
    [34]Hideki Sekine and Satoshi Atobe, Identification of locations and force histories of multiple point impact on composite isogrid-stiffened panels [J], Composite Structures,2009 Vol.89, No.1 1-7.
    [35]M. C. Djamaa, N. Ouelaa, C. Pezerat, J. L. Guyader, Reconstruction of a distributed force applied on a thin cylindrical shell by an inverse method and spatial filtering [J], Journal of Sound and Vibration,2007, Vol.301 560-575.
    [36]G. R. Liu, W. B. Ma and X. Han, An inverse procedure for identification of loads on composite laminates [J], Composites:Part B,2002, Vol.33 425-432.
    [37]S. E. S. Karlsson, Identification of external structural loads from measured harmonic responses [J]. Journal of Sound and Vibration,1996, Vol.196, No.1 59-74.
    [38]Bernhard Knigge and Frank E. Talke, Contact force measurement using acoustic emission analysis and system identification methods [J], Tribology International,
    2000.Vol.33 639-646.
    [39]许峰,陈怀海,鲍明,动载荷识别的广义域模态模型及其精度分析研究[J],计算力学学报,2003, 第20卷,第2期,218-222.
    [40]张方,朱德懋,张福祥,动载荷识别的时间有限元模型理论及其应用[J],振动与冲击,1998,第17卷,第2期,1-4.
    [41]张方,秦远田,邓吉宏,复杂分布动态载荷识别技术研究[J],振动工程学报,2006,第19卷,第1期,81-85.
    [42]李东升,李宏男,郭杏林,广义小量分解法在载荷识别中的应用[J],振动与冲击,2004,第23卷,第3期,52-54.
    [43]Lin J. H., Guo X. L., Zhi H. and Howson, W. P. and Williams F. W., Computer simulation of structural random loading identification [J], Computer Structure,2001, Vol.79 375-387.
    [44]Xing-Lin Guo and Dong-Sheng Li, Experiment study of structural random loading identification by the inverse pseudo excitation method [J], Journal of Structural Engineering and Mechanics,2004, Vol.18, No.6 791-806.
    [45]Nerio Tullini, Ferdinando Laudiero, Dynamic identification of beam axial loads using one flexural mode shape [J], Journal of Sound and Vibration,2008, Vol.318 131-147.
    [46]Ahmed A. Elshafey, Mahmoud R. Haddara and H. Marzouk, Identification of the excitation and reaction forces on offore platforms using the random decrement technique [J], Ocean Engineering,2009, Vol.36, Issues 6-7 521-528.
    [47]Z. R. Lu and S. S. Law, Force identification based on sensitivity in time domain [J], ASME Journal of Engineering and Mechanics,2006, Vol.132,1050-1056.
    [48]Z. R. Lu, S. S. Law, Identification of system parameters and input force from output only [J], Mechanical Systems and Signal Processing,2007, Vol.21 2099-2111.
    [49]D. C. Kammer, Input force reconstruction using a time domain technique [C], in:AIAA Dynamics Specialists Conference, Salt Lake City, UT,1996, pp.21-30.
    [50]A. D. Steltzner, D. C. Kammer, Input force estimation using an inverse structural filter[C], in:17th International Modal Analysis Conference (IMAC XXVII), Kissimmee, Florida,1999, pp.954-960.
    [51]D. C. Kammer, A. D. Steltzner, Structural identification of Mir using inverse system dynamics and Mir/shuttle docking data [J], Journal of Vibration and Acoustics,2001, Vol.123,230-237.
    [52]Adam D. Steltzner, Daniel C. Kammer and Paul Milenkovic, A time domain method for estimating forces applied to an unrestrained structure [J], Journal of Vibration and Acoustics,2001, Vol.123,524-532
    [53]Jui-Jung Liu, Chin-Kao Ma, I-Chung Kung and Dong-Cherng Lin, Input force estimation of a cantilever plate by using a system identification technique [J], Computer Methods in Applied Mechanics and Engineering,2000, Vol.190,1309-1322.
    [54]Ching-China Ji, Su Ay and Chao Liang, A study on an estimation technique for the transverse impact of plates [J], International Journal for Numerical Methods in Engineering,2001, Vol.50,579-593.
    [55]Matthew S. Allen, Thomas G. Carne, Delayed, multi-step inverse structural filter for robust force identification [J], Mechanical Systems and Signal Processing,2008, Vol.22 1036-1-54.
    [56]D. L. Gregory, T. G. Priddy, D.0. Smallwood, Experimental determination of the dynamic forces acting on non-rigid bodies[C], in:Aerospace Technology Conference and Exposition, Long Beach, California,1986, p. SAE,861-791.
    [57]D.0. Smallwood, D. L. Gregory, Experimental determination of the mass matrix using a constrained least squares solution[C], in:AIAA/ASME SDMC Conference, Monterey, CA,1987.
    [58]Carne, T. G., V.I. Bateman and R. L. Mayes, Force reconstruction using a sum of weighted accelerations technique [C], in 10th International Modal Analysis Conference.1992. San Diego, Ca.:SEM.
    [59]Matthew S. Allen and Thomas G. Carne, Comparison of Inverse Structural Filter (ISF) and Sum of Weighted Accelerations Technique (SWAT) Time Domain Force Identification Methods[C],47th AIAA Structures, Structural Dynamics, and Materials Conference, 1-4May 2006 Newport, Rhode Island.
    [60]G. Genaro, D. A. Rade, Input force identification in the time domain [C], in:16th International Modal Analysis Conference (IMACXVI), Santa Barbara, California,1998, pp.124-129.
    [61]路敦勇,吴淼,动态载荷识别的SWAT方法研究[J],振动与冲击,1999,18(4)78-82
    [62]E. Jacquelin, A. Bennani, P. Hamelin, Force reconstruction:analysis and regularization of a deconvolution problem [J], Journal of Sound and Vibration,2003, Vol.265,81-107.
    [63]Yi Liu, W. Steve Shepard Jr., Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain [J], Journal of Sound and Vibration,2005, Vol.282,37-60.
    [64]T. Patrik Nordberg, Ivar Gustafsson, Using QR factorization and SVD to solve input estimation problems in structural dynamics [J], Computer Methods in Applied Mechanics and Engineering,2006, Vol.195,5891-5908.
    [65]T. Patrik Nordberg, Ivar Gustafsson, Dynamic regularization of input estimation problems by explicit block inversion [J], Computer Methods in Applied Mechanics
    and Engineering,2006, Vol.195,5877-5890.
    [66]J. S. Tao, G. R. Liu and K. Y. Lam, Excitation force identification of an engine with velocity data at mounting points [J], Journal of Sound and Vibration,2001, Vol.242, No.2 321-331.
    [67]Mira Mitra, S. Gopalakrishnan, Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides [J], International Journal of Solids and Structures,2005, Vol.42 4695-4721.
    [68]Jhojan E. Rojas Flores, Frelipe A. Chegury Viana, Domingos A. Rade and Valder Steffen, Jr., Force identification of mechanical systems by using particle swarm optimization [C],10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,30 August-1September 2004, Albany, New York.
    [69]Jhojan E. Rojas Flores, Frelipe A. Chegury Viana, Domingos A. Rade and Valder Steffen, Jr., Identification of external forces in mechanical systems by using LifeCycle model and stress-stiffening effect [J], Mechanical Systems and Signal Processing, 2007, Vol.21 2900-2917.
    [70]Y. W. Yang, C. W. a. C. K. S., Force identification of dynamic systems using genetic programming [J], International Journal for Numerical Methods in Engineering,2005, Vol.63 1288-1312.
    [71]Yaowen Yang, Chao Wang and Chee Kiong Soh, Hybrid Genetic Programming with Local Search Operators for Dynamic Force Identification [J], ASCE Journal of Computing in Civil Engineering,2007, Vol.21, No.5 311-320.
    [72]L. Cremer, M. Heckl, E.E. Ungar, Structure-borne sound:structural vibration and sound radiation at audio frequencies [J], Springer, Berlin,1973.
    [73]X. Cao, Y. Sugiyama and Y. Mitsui, Application of artificial neural networks to load identification [J]. Computer and Structures,1998, Vol.69,63-78.
    [74]S. Granger and L. Perotin, An inverse method for the identification of distributed random excitation acting on a vibrating structure Part 1:theory [J], Journal of Mechanical Systems and Signal Processing.1999, Vol.13, No.1 53-65.
    [75]L. Perotin and S. Granger, An inverse method for the identification of distributed random excitation acting on a vibrating structure Part 2:flow-induced vibration application [J], Journal of Mechanical Systems and Signal Processing.1999, Vol.13, No.1 67-81.
    [76]C. Pezerat, J. L. Guyader, Two inverse methods for location of external sources exciting a beam [J], Acta Acoustica 1995. Vol.3,1-10.
    [77]Pezerat C., Guyader J. L., Force Analysis Technique:Reconstruction of Force Distribution on Plates. Acustica united with Acta Acustica [J],2000, Vol.86, 322-332.
    [78]Pezerat C.,Guyader J. L., Reconstruction of a distributed force applied on a thin cylindrical shell by an inverse method and spatial filtering[J], Journal of Sound and Vibration,2007, Vol.301,560-575.
    [79]Yi Liu, W. Steve Shepard Jr., An improved method for the reconstruction of a distributed force acting on a vibrating structure [J], Journal of Sound and Vibration,2006, Vol.291,369-387.
    [80]X. Q. Jiang, H. Y.Hu, Reconstruction of distributed dynamic loads on an Euler beam via mode-selection and consistent spatial expression [J], Journal of Sound and Vibration,2009, Vol.316,122-136.
    [81]X. Q. Jiang, H. Y. Hu, Reconstruction of distributed dynamic loads on a thin plate via mode-selection and consistent spatial expression [J], Journal of Sound and Vibration,2009, Vol.323,624-644.
    [82]C. H. Huang, An inverse non-linear force vibration problem of estimating the eternal forces in a damped system with time-dependent system parameters [J], Journal of Sound and Vibration,2001, Vol.242, No.5 749-765.
    [83]C. H. Huang, A nonlinear inverse problem in estimating simultaneously the eternal forces for a vibration system with displacement-dependent parameters [J], Journal of Sound and Vibration,2001, Vol.248, No.5,789-807.
    [84]Chih-Kao Ma, Chih-Chergn Ho, An inverse method for the estimation of input forces acting on non-linear structural systems [J], Journal of Sound and Vibration,2004, Vol.275,953-971
    [85]Lars J. L. Nordstrom, Hakan Johansson and Fredrik Larsson, A strategy for input estimation with sensitivity analysis [J], International Journal for Numerical Methods in Engineering,2007, Vol.69,2219-2246.
    [86]刘玉华,张景绘,一类非线性系统载荷识别的组合迭代法[J],应用力学学报,2007,第24卷,第4期,522-525.
    [87]C. Koniditsiotis, R. Buckmaster, P. Fraser, Australian highway speed weigh-in-motion-an overview[G], Road Transport Technology-4,Proceedings of the Fourth International Symposium on Heavy Vehicle Weights and Dimensions, University of Michigan, Transportation Research Institute, Ann Arbor,1995, pp.143-151.
    [88]F. Moses, Weigh-in-motion system using instrumented bridges [J], Journal of Transport Engineering, ASCE 105,1978,233-249.
    [89]O.K. Norman, R. C. Hopkins, Weighing vehicles in motion [J], Public Road,1952, Vol.27, No.1,1-17.
    [90]R. J. Peters, Axway-a system to obtain vehicle axle weights [C], Proceedings of 12th ARRB Conference, Australia,1984, pp.19-29.
    [91]R. J. Peters, Culway-an unmanned and undetectable high speed vehicle weighing system[C], Proceedings of 13th ARRB/Fifth REAAA Conference, Australia,1986, pp. 70-83.
    [92]Y. S. Cheng, F. T. K. Au and Y. K. Cheung, Vibration of railway bridges under a moving train by using bridge-track-vehicle element[J], Engineering Structures,2001, Vol.23,1597-1606.
    [93]M. A. Foda and Z. Abduljabbar, A dynamic green function formulation for the response of a beam structure to a moving mass [J], Journal of Sound and Vibration,1998, Vol.210,295-306.
    [94]X. Q. Zhu, S. S. Law, Moving forces identification on a multi-span continuous bridge [J], Journal of Sound and Vibration,1999, Vol.228 377-396.
    [95]X. Q. Zhu, S. S. Law, Dynamics load on continuous multi-lane bridge deck from moving vehicles [J]. Journal of Sound and Vibration,2002, Vol.251, No.4 697-716.
    [96]Tommy H. T. Chan, Demeke B. Ashebo, Theoretical study of moving force identification on continuous bridges [J]. Journal of Sound and Vibration,2006, Vol.295,870-883.
    [97]M.S. Troitsky, Orthotropic bridges theory and design [M], Cleveland, OH:James F. Lincoln Arc Welding Foundation,1987.
    [98]S. S. Law, J. Q. Bu, X. Q. Zhu, S. L. Chan, Moving load identification on a simply supported orthotropic plate [J], International Journal of Mechanical Sciences, 2007, Vol.49,1262-1275.
    [99]C. OConnor, T. H.T.Chan, Dynamic loads from bridge strains [J], Journal of Structural Engineering, ASCE,1988, Vol.114 1703-1723.
    [100]T. H. T. Chan, S. S. Law, T. H. Yung, X. R. Yuan, An interpretive method for moving force identification [J], Journal of Sound and Vibration,1999, Vol.219, No.3,503-524.
    [101]S. S. Law, T. H. T. Chan, Q. H. Zeng, Moving force identification:a time domain method [J], Journal of Sound and Vibration,1997, Vol.201, No.1,1-22.
    [102]S. S. Law, T. H. T. Chan, Q. H. Zeng, Moving forces identification:a frequency and time domains analysis [J], ASME Journal of Dynamic System Measurement and Control,1999, Vol.12, No.3,394-401.
    [103]L. Yu,Accounting for bridge dynamic loads using moving force identification system (MFIS)[D], PhD Thesis, The Hong Kong Polytechnic University, Hong Kong,2002
    [104]L. Yu, Tommy H. T. Chan, Moving force identification based on the frequency-time domain method[J], Journal of Sound and Vibration,2003, Vol.261,329-349.
    [105]L. Yu, T. H. T. Chan, Identification of multi-axle vehicle loads on bridges [J], Journal of Vibration and Acoustics,2004, Vol.126, No.1 17-26.
    [106]T. H. T. Chan, S. S. Law, T. H. Yung, Moving force identification using an existing
    prestressed concrete bridge[J], Engineering Structures,2000, Vol.22,1261-1270.
    [107]Tommy H. T. Chan, Ling Yu and S. S. Law, comparative study on moving force identification from bridge strains in laboratory [J], Journal of Sound and Vibration, 2000, Vol.235, No.1,87-104.
    [108]X. Q. Zhu, S. S. Law, Dynamic axle and wheel loads identification:laboratory studies [J], Journal of Sound and Vibration,2003, Vol.268,855-879.
    [109]L. Yu and Tommy H. T. Chan, Recent research on identification of moving load on bridges [J], Journal of Sound and Vibration,2007, Vol.305,3-21.
    [110]余岭,陈鸿天,罗绍湘,移动车载识别的两种解法及其试验验证[J],长江科学院院报,2001,第15卷,第5期,84-87.
    [111]李忠献,陈锋,基于梁格法的桥梁移动载荷识别[J],土木工程学报,2006,第39卷,第12期,83-87.
    [112]袁向荣,卜建清,满红高,高勇利,移动载荷识别的函数逼近法[J],振动与冲击,2000,第19卷,第1期,58-60.
    [113]A. Gonzalez, C.Rowley and E. J. OBrien, A general solution to the identification of moving vehicle forces on a bridge[J], International Journal of Numerical Method in Engineering,2008, Vol.75,335-354.
    [114]侯秀慧,邓子辰,黄立新,基于精细积分法的桥梁结构动载荷识别[J],振动与冲击,2007,Vol.26, No.9,142-245.
    [115]张方,秦远田,邓吉宏,桥梁结构移动载荷识别的新方法[J],南京航空航天大学学报,2006,第38卷,第1期,22-26.
    [116]BSI,:Steel concret and composite bridge, Part2. Specification for loads [S], BS5400; 1978.
    [117]Wheeler JE. Prediction and control of pedestrian-induced vibration in footbridges [J], J Structural Division, ASCE,1982, Vol.108(ST9), No.20,45-65.
    [118]Takashi Obata, Yasunori Miyamori, Identification of a human walking force model based on dynamic monitoring data from pedestrian bridges [J], Computers and Structures,2006, Vol.84,541-548.
    [119]S. Zivanovic, A. Pavic, P. Reynolds, Vibration serviceability of footbridges under human-induced excitation:a literature review [J], Journal of Sound and Vibration, 2005, Vol.279,1-74.
    [120]V. Racic, A. Pavic, J. M. Brownjohn, Experimental identification and analytical modeling of human walking forces:Literature review [J], Journal of Sound and Vibration,2009, Vol.326,1-49.
    [121]Jensen J R, Introductory digital image processing-a remote sensing perspective [M], Prentice-Hall,1996.
    [122]Demoment, G, Image reconstruction and restoration:an overview of common estimation
    structures and problems [J], IEEE Transaction on Acoustics, Speech and Signal Processing,1989, Vol.37, No.12,2024-2036.
    [123]S. F. Gull, G. J. Daniell, Image reconstruction from incomplete and noise data[J], Nature,1978, Vol.272,686-690.
    [124]G.T.Herman, Image reconstruction from projections [J], Real-Time Imaging,1995, Vol.1, No.1,3-18.
    [125]何宝侃,地球物理反问题中的最优化方法[M],北京:地质出版社,1980.
    [126]杨文采,地球物理反应和地震层析成像[M],北京:地质出版社,1989.
    [127]杨文采,地球物理反演的理论与方法[M],北京:地质出版社,1997.
    [128]王家映,地球物理反演理论[M],武汉:中国地质大学出版社,1998.
    [129]黄克智,徐秉业,固体力学发展趋势[M],北京:北京理工大学出版社,1995.
    [130]Keller, J.B., Inverse problems [J], American Mathematical Monthly,1976.
    [131]Hadmard J., Lectures on the Cauchy problems in linear partial differential equations [M], New Haven:Yale University Press,1923.
    [132]N. Tikhonov, On solving incorrectly posed problems and method of regularization [M]. Doklady Akademii Nauk USSR,1963.
    [133]L. Landweber, An iteration formula for Fredholm integral equations of the first kind [J], American Journal of Mathematics,1951, Vol.73, No.3 615-624.
    [134]M. Z. Nashed, Generalized inverses and applications [M], New York:Academic Press, 1976.
    [135]V. A. Morozov, Methods for solving incorrectly posed problems [M], New York:Springer, 1984.
    [136]M. Hanke, Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems [J], Numerical Functional Analysis and Optimization,1997, Vol.18, 971-993.
    [137]T. Steihaug, The conjugate gradient method and trust regions in large scale optimization [J]. SIAM Journal on Numerical Analysis,1983, Vol.20, No.3,626-637.
    [138]冯康,数学物理中的反问题[M],北京:中国科学院计算中心,1985.
    [139]王彦飞,反演问题的计算方法及其应用[M],北京:高等教育出版社,2007.
    [140]Kirsch A, An introduction to the mathematical theory of inverse problems, Applied Mathematical Sciences [M], New York, Verlag-Springer,1996.
    [141]Isakov V., Inverse problems for partial differential equations [M], New York, Verlag-Springer,1998.
    [142]Engl H. W., Gfrerer H., A posterior parameter choice for general regularization methods for solving linear ill-posed problems [J]. Applied Numerical Mathematics, 1988, Vol.4,395-417.
    [143]G. H. Golub, C. F. Van Loan, Matrix computations, third edition [M], Johns Hopkins, Baltimore,1996.
    [144]C. Lanczos, Linear differential operators [M], Dover, Mineola, New York,1997.
    [145]G. Strang, Linear algebra and its applications [M],3rd edition, Harcourt Brace Jovanovich Inc., San Diego,1988.
    [146]E. H. Moore, On the reciprocal of the general algebraic matrix [J], Bulletin of the American Mathematical Society,1920, Vol.26,394-395.
    [147]R. Penrose, A generalized inverse for matrices [G], Proceeding of the Cambridge Philosophical Society,1955, Vol.51,406-413.
    [148]Richard C. Aster, Brian Borchers, and Clifford H. Thurber, Parameter estimation and inverse problems [M], Elsevier Academic Press,2005.
    [149]P. C. Hansen, Rank-deficient and discrete ill-posed problems:numerical aspects of linear version [M], SIAM, Philadelphia,1998.
    [150]Kunisch K., On s class of damped Morozov principle [J], Computing,1993, Vol.50, 185-198.
    [151]V. A. Morozov, Regularization methods for ill-posed problems [M]. Florida:CRC Press, 1993.
    [152]Kunish K., Zou J., Interative choice of regularization parameter in linear inverse problems [J], Inverse problems,1998, Vol.14,1247-1264.
    [153]Wang Y. F., Xiao T Y., Fast realization algorithms for determining regularization parameters in linear inverse problems [J]. Inverse problems,2001, Vol.17,281-291.
    [154]肖庭延,于慎根,王彦飞,反问题的数值解法[M],北京:科学出版社,2003.
    [155]Hanke M, Hansen P. C., Regularization method for large-scale problems [J], Surv. Math. 1nd,1993, Vol.3,253-315.
    [156]Engl H. W., Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates [J]. Journal of Optimization Theory and Applications,1987, Vol.52,209-215.
    [157]Vogel C. R., Non-convergence of the L-curve regularization parameter selection method [J]. Inverse Problems,1996, Vol.12,535-547.
    [158]Gloub G. H., Heath M., Wahba G., Generalized cross-validation as a method for choosing a good ridge parameter [J]. Technometrics,1979, Vol.21,215-223.
    [159]孙继广,矩阵扰动分析(第二版) [M],北京:科学出版社,2001.
    [160]Kurt S. Riedel, A Sherman Morrison woodbury identity for rank augmenting matrices with application to centering [J], SIAM J. MAT. ANAL.1991, Vol.12, No.1,80-95.
    [161]Elden L., A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems [J], BIT,1984, Vol.24,467-472.
    [162]Wei Liu, Zhikun Hou, Michael A. Demetriou, A computational scheme for the optimal sensor/actuator placement of flexible structures using spatial measures [J], Mechanical System and Signal Processing,2006, Vol.20,881-895.
    [163]A. N. Thite, D.J.Thompson, Selection of response measurement locations to improve inverse force determination [J], Applied Acoustics,2006, Vol.67,797-818.
    [164]钟万勰,应用数学的辛数学方法[M],高等教育出版社,2006
    [165]Moler C B, Van Loan C F, Nineteen dubious ways to compute the exponential of a matrix [J], SIAM Review,1978, Vol.20,801-836.
    [166]钟万勰,计算结构力学与最优控制[M], 大连:大连理工大学出版社,1993.
    [167]钟万勰,结构动力学方程的精细时域积分方法[J],大连理工大学学报,1994,第34卷,第2期,131-136.
    [168]Lin J. H., Shen W. P., Williams F. W., A high precision direct integration scheme for structures subjected to transient dynamic loading [J], Computer & Structures, 1995, Vol.56, No.1,113-120.
    [169]C. Papadimitriou, Optimal sensor placement methodology for parametric identification of structural systems [J], Journal of Sound and Vibration,2004, Vol.278,923-947.
    [170]K. Worden, A.P. Burrows, Optimal sensor placement for fault detection [J], Engineering Structures,2001, Vol.23,885-901.
    [171]L. Meirovitch, Elements of vibration analysis [M], McGraw-Hill, New York,1975
    [172]Friswell, M.I. and Mottershead, J. E., Finite element model updating in structural dynamics [M], Kluwer Academic, Dordrecht, The Netherlands,1995.
    [173]朱斯岩,朱礼文,运载火箭动态载荷识别研究[J], 《振动工程学报》,2008,第21卷,第2期,135-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700