基于结构和材料一体化的多尺度动力优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用结构优化技术研究结构和材料动力性能优化的一体化设计方法。为实现这一目标,针对有广泛应用前景的有序多孔材料结构和纤维增强复合材料结构,提出多尺度动力优化方法,得到考虑动力性能指标的材料微观拓扑和结构宏观拓扑的最优形式。
     本文的主要研究内容如下:
     1.提出、改进和实现了由周期性微结构的材料构成的结构的等效分析方法。包括:对于正交各向异性三角形和Kagome单胞蜂窝材料,推导了其等效刚度和强度的解析表达式,给出了初始屈服函数和近似弹性屈曲强度,讨论了等效刚度与各向异性率和相对密度的关系;采用数值均匀化方法对三维类桁架材料组成的结构进行等效弹塑性分析,并和离散建模的空间桁架计算进行对比,说明等效分析可以大大节省计算时间,缩小计算规模;对蜂窝材料等效为微极连续介质的多种不同方法进行总结,注意到对同一种单胞不同文献得到不同本构关系参数,提出了一种基于边界位移连续和内部平衡约束的推导微极等效本构参数的新方法。以正方形和六角形单胞制成的结构为例,在多种条件下比较了离散完全计算、经典连续介质等效和不同微极连续体等效本构的计算结果,建议了较好的微极本构参数值。
     2.通过回顾经典的给定材料体积约束下最小化结构柔顺性(最大刚度)拓扑优化问题,对比不同的优化求解方法得到的拓扑优化结果最优KKT (Karush-Kuhn-Tucker)条件的满足情况。进而,基于广义最优准则和动力优化连续化方法,考虑激励频率在一个频率带内变化的简谐激励作用下,振动的双材料板动态柔顺性和材料使用量协同最小化设计问题。
     3.基于结构和材料一体化设计概念,研究复合材料结构的振动与声学优化设计问题。考虑具有指定频率和振幅的简谐激励作用下复合材料层合板的振动,设计目标是最小化从层合板表面辐射到周围声学介质中的声功率。考虑到复合材料层合板具有较平的表面构型,采用近似的Rayleigh积分计算从板表面辐射的声功率。采用离散材料设计方法实现纤维角度、铺层顺序及多材料选择的优化。
     4.提出一种以基频最大化为目标的宏观结构和微观单胞并发优化的方法。在此方法中,具有两类独立的设计变量,分别为宏观和微观单元密度,通过均匀化方法两个尺度的优化统一到同一框架下,基体材料自动实现在宏微观两个层次的分布。并且假设宏观结构由均一的微观单胞周期性排列形成,方便制造。论文还将此两尺度并发设计方法推广到多孔板的面外振动问题,说明本方法的广泛适用性。
     本论文工作得到国家自然科学基金(编号:90816025,10332010)和国家重点基础研究发展计划(编号2006CB601205)的资助,在此表示感谢。
This dissertation aims at extending structural optimization techniques to the integrated design of structures and materials used in dynamic environments. In order to achieve this, methods are proposed to realize the multi-scale dynamic design optimization of structures made of promising cellular material and composite material. The ultralight microstructure in the microscale and structural configuration in the macroscale with optimum dynamic performances are obtained simultaneously by the multi-scale optimization. The main works of this dissertation are as follows:
     1. For materials with periodic microstructures, equivalent analysis methods are proposed and improved in order to obtain effective properties of the material and realize multiscale analysis of the macrostructure made of the periodic material. First, effective elastic stiffness and initial yield strength and elastic buckling limits are derived in analytical forms for the periodic honeycomb structures with orthotropic isosceles triangle and Kagome cells. The dependence of the effective stiffness on the shape anisotropic ratio and relative density is discussed. Second, based on the numerical homogenization method, the elasto-plastic behavior is equivalently analyzed for the three dimensional (3D) heterogeneous structure made of truss-like material with periodic microstructures. The comparison with results of discrete modeling in time consumption and precision verifies the advantages of the effective multiscale analysis. Finally, methods in literatures to realize the micropolar equivalent continuum modeling of cellular materials are summarized. Different effective micropolar constants are observed in different papers for the same microstructure. A new approach is proposed to formulate the equivalent micropolar constitutive relation of 2-D periodic cellular materials. The new approach takes both displacement compatibility on the boundary and equilibrium inside the cell into account in the micromechanical analysis of a cell structure. The solutions from the classical Cauchy-type continuum and three kinds of micropolar continuum modelings using different effective micropolar constants by different authors are compared with the exact discrete simulations of the same structure under various conditions. It is found that the micropolar constants developed in this dissertation give satisfying results of equivalent analysis for square, triangular and hexagonal cells.
     2. For the well-known minimum compliance problem with the constraint of given material amount, the satisfactions of the Karush-Kuhn-Tucker necessary conditions for optimality are checked for different optimum solutions obtained from different optimization algorithms. Furthermore, using the extended optimality and continuation technique, the problem of minimizing the product of the dynamic compliance and the total cost of material is considered for vibrating bi-material plate structures subjected to time-harmonic external mechanical loading with a given band of external excitation frequencies. This objective appears to facilitate reduction of vibration by driving the resonance frequencies of the structure as far away as possible from the prescribed range of excitation frequencies while simultaneously minimizing the amount of material to be used for the structure.
     3. Based on the integrated design of structure and material, the problem of vibro-acoustic optimization of laminated composite plates is considered. The vibration of the laminated plate is excited by time-harmonic external mechanical loading with prescribed frequency and amplitude, and the design objective is to minimize the total sound power radiated from the surface of the laminated plate to the surrounding acoustic medium. Instead of solving the Helmholtz equation for evaluation of the sound power, advantage is taken of the fact that the surface of the laminated plate is flat, which implies that Rayleigh's integral approximation can be used to evaluate the sound power radiated from the surface of the plate. The Discrete Material Optimization (DMO) formulation has been applied to achieve the design optimization of fiber angles, stacking sequence and selection of material for laminated composite plates.
     4. A two-scale optimization method is developed to realize the integrated design of macro-structure and micro-structure of cellular material for maximizing structural fundamental eigenfrequency. In this method macro and micro densities are introduced as independent design variables for the macrostructure and microstructure respectively: Optimizations at two scales are integrated into one system through homogenization theory and base material is distributed between the two scales automatically with the optimization model. Microstructure of materials is assumed to be homogeneous at the macro scale to meet today's manufacture practice and reduce manufacturing cost. Plane structure with homogeneous cellular material and perforated plate are studied. Numerical experiments validate the proposed method and computational model.
     The research of this dissertation was partially supported by the National Natural Science Foundation of China (Grant No.90816025,10332010), and National Basic Research Program of China (Grant No.2006CB601205). This support is gratefully acknowledged by the author.
引文
[1]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1),1-12.
    [2]Ashby M F. Overview no.92:Materials and shape[J]. Acta Metallurgica et Materialia,1991,39(6), 1025-1039.
    [3]Borst R d. Challenges in computational materials science:Multiple scales, multi-physics and evolving discontinuities[J]. Computational Materials Science,2008,43(1),1-15.
    [4]Park H S, Liu W K. An introduction and tutorial on multiple-scale analysis in solids[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(17-20),1733-1772.
    [5]白以龙,汪海英,夏蒙棼,等.固体的统计细观力学-连接多个耦合的时空尺度[J].力学进展,2006,36(2),286-305.
    [6]陈建军,车建文,崔明涛,等.结构动力优化设计评述与展望[J].力学进展,2001,31(2),181-192.
    [7]Gibson L J, Ashby M F. Cellular solids:Structure and properties[M]. Cambridge:Cambridge University Press,1997.
    [8]Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science,2001,46(3-4),309-327.
    [9]卢天健,何德坪,陈常青,等.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4),517-535.
    [10]方岱宁,张一慧,崔晓东.轻质点阵材料力学与多功能设计[M].北京:科学出版社,2009.
    [11]Hayes A M, Wang A J, Dempsey B M, et al. Mechanics of linear cellular alloys[J]. Mechanics of Materials,2004,36(8),691-713.
    [12]王博.蜂窝结构多功能优化设计[D].大连:大连理工大学,2007.
    [13]王博,王斌,程耿东.Kagome蜂窝夹层平板的多功能优化设计[J].复合材料学报,2007,24(3),109-115.
    [14]Deshpande V S, Ashby M F, Fleck N A. Foam topology bending versus stretching dominated architectures[J]. Acta Materialia,2001,49(6),1035-1040.
    [15]Wallach J C, Gibson L J. Mechanical behavior of a three-dimensional truss material[J]. International Journal of Solids and Structures,2001,38(40-41),7181-7196.
    [16]Wallach J C, Gibson L J. Defect sensitivity of a 3d truss material[J]. Scripta Materialia,2001,45(6), 639-644.
    [17]Wadley H N G. Multifunctional periodic cellular metals[J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences,2006,364(1838),31-68.
    [18]Brittain S T, Sugimura Y, Schueller O J A, et al. Fabrication and mechanical performance of a mesoscale space-filling truss system[J]. Journal of Microelectromechanical Systems,2001,10(1), 113-120.
    [19]Deshpande V S, Fleck N A, Ashby M F. Effective properties of the octet-truss lattice material[J]. Journal of the Mechanics and Physics of Solids,2001,49(8),1747-1769.
    [20]Cochran J K, Lee K J, McDowell D, et al. Multifunctional metallic honeycombs by thermal chemical processing, Processsing and Properties of Lightweight Cellular Metals and Structures [C]. TMS, Warrendale, PA,2002.
    [21]Deshpande V S, Fleck N A. Collapse of truss core sandwich beams in 3-point bending[J]. International Journal of Solids and Structures,2001,38,6275-6305.
    [22]Wicks N, Hutchinson J W. Optimal truss plates[J]. International Journal of Solids and Structures, 2001,38(30-31),5165-5183.
    [23]Liu J S, Lu T J. Multi-objective and multi-loading optimization of ultralightweight truss materials[J]. International Journal of Solids and Structures,2004,41(3-4),619-635.
    [24]Wang A J, McDowell D L. In-plane stiffness and yield strength of periodic metal honeycombs [J]. Journal of Engineering Materials and Technology-Transactions of the ASME,2004,126(2), 137-156.
    [25]Wang X L, Stronge W J. Micropolar theory for two-dimensional stresses in elastic honeycomb[J]. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,1999,455(1986),2091-2116.
    [26]Banerjee S, Bhaskar A. Free vibration of cellular structures using continuum modes[J]. Journal of Sound and Vibration,2005,287(1-2),77-100.
    [27]Bhaskar A, Banerjee S. The use and limitations of continuum modes for response calculations of cellular structures [J]. Journal of Sound and Vibration,2007,302(3),457-470.
    [28]Gonella S, Ruzzene M. Homogenization and equivalent in-plane properties of two-dimensional periodic lattices[J]. International Journal of Solids and Structures,2008,45(10),2897-2915.
    [29]Ruzzene M. Vibration and sound radiation of sandwich beams with honeycomb truss core[J]. Journal of Sound and Vibration,2004,277(4-5),741-763.
    [30]Nilsson E, Nilsson A C. Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores[J]. Journal of Sound and Vibration,2002,251(3), 409-430.
    [31]Zhong W X, Williams F W. On the direct solution of wave-propagation for repetitive structures[J]. Journal of Sound and Vibration,1995,181(3),485-501.
    [32]Kohrs T, Petersson B A T. Wave beaming and wave propagation in light weight plates with truss-like cores[J]. Journal of Sound and Vibration,2009,321(1-2),137-165.
    [33]Xue Z Y, Hutchinson J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences,2003,45(4),687-705.
    [34]Xue Z Y, Hutchinson J W. Crush dynamics of square honeycomb sandwich cores[J]. International Journal for Numerical Methods in Engineering,2006,65(13),2221-2245.
    [35]Zhang X, Cheng G. A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns[J]. International Journal of Impact Engineering,2007,34(11), 1739-1752.
    [36]Hohe J, Becker W. Effective stress-strain relations for two-dimensional cellular sandwich cores: Homogenization, material models, and properties [J]. Applied Mechanics Reviews,2002,55(1), 61-87.
    [37]Benssousan A, Lions J L, Papanicoulau G. Asymptotic analysis for periodic structures[M]. Amesterdam:North Holland,1978.
    [38]Hassani B, Hinton E. A review of homogenization and topology optimization i-homogenization theory for media with periodic structure[J]. Computers & Structures,1998,69(6),707-717.
    [39]Hassani B, Hinton E. A review of homogenization and topology optimization ii-analytical and numerical solution of homogenization equations[J]. Computers & Structures,1998,69(6),719-738.
    [40]刘书田.复合材料性能预测与梯度功能材料优化设计[D].大连:大连理工大学,1994.
    [41]Yan J, Cheng G, Liu S, et al. Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure[J]. International Journal of Mechanical Sciences,2006,48(4),400-413.
    [42]Fish J, Shek K, Pandheeradi M, et al. Computational plasticity for composite structures based on mathematical homogenization:Theory and practice[J]. Computer Methods in Applied Mechanics and Engineering,1997,148(1-2),53-73.
    [43]Ghosh S, Lee K, Moorthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and voronoi cell finite element model[J]. Computer Methods in Applied Mechanics and Engineering,1996,132(1-2),63-116.
    [44]Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(40-41), 5427-5464.
    [45]刘岭,阎军,程耿东.二维类桁架材料结构弹塑性分析[J].力学学报,2007,39(1),54-62.
    [46]Zhang H, Wu J, Fu Z. Extended multiscale finite element method for elasto-plastic analysis of 2d periodic lattice truss materials [J]. Computational Mechanics,2010,45(6),623-635.
    [47]Diebels S, Steeb H. The size effect in foams and its theoretical and numerical investigation[J]. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,2002,458(2028),2869-2883.
    [48]Onck P R, Andrews E W, Gibson L J. Size effects in ductile cellular solids. Part I:Modeling[J]. International Journal of Mechanical Sciences,2001,43(3),681-699.
    [49]Tekoglu C, Onck P R. Size effects in the mechanical behavior of cellular materials[J]. Journal of Materials Science,2005,40(22),5911-5917.
    [50]Liu S T, Su W Z. Effective couple-stress continuum model of cellular solids and size effects analysis[J]. International Journal of Solids and Structures,2009,46(14-15),2787-2799.
    [51]Lakes R S. Experimental microelasticity of two porous solids [J]. International Journal of Solids and Structures,1986,22(1),55-63.
    [52]Andrews E W, Gioux G, Onck P, et al. Size effects in ductile cellular solids. Part II:Experimental results[J]. International Journal of Mechanical Sciences,2001,43(3),701-713.
    [53]Eringen A C. Theory of micropolar elasticity[M]. New York:Academic Press,1968.
    [54]Eringen A C. Microcontinuum field theories i:Foundations and solids[M]. New York:Springer, 1999.
    [55]Muhlhaus H B. (ed). Continuum models for materials with microstructure[M]. New York:John Wiley & Sons,1995.
    [56]Jasiuk I, Ostoja-Starzewski M. Planar cosserat elasticity of materials with holes and intrusions[J]. Applied Mechanics Reviews,1995,48(11),11-18.
    [57]Dendievel R, Forest S, Canova G. An estimation of overall properties of heterogeneous cosserat materials[J]. Journal De Physique Iv,1998,8(P8),111-118.
    [58]Forest S, Sab K. Cosserat overall modeling of heterogeneous materials[J]. Mechanics Research Communications,1998,25(4),449-454.
    [59]Yuan X, Tomita Y. A homogenization method for analysis of heterogeneous cosserat materials[J]. Key engineering Materials,2000,177-180,53-58.
    [60]Bouyge F, Jasiuk I, Ostoja-Starzewski M. A micromechanically based couple-stress model of an elastic two-phase composite[J]. International Journal of Solids and Structures,2001,38(10-13), 1721-1735.
    [61]胡更开,刘晓宁,荀飞.非均匀微极介质的有效性质分析[J].力学进展,2004,34(2),195-214.
    [62]Bigoni D, Drugan W J. Analytical derivation of cosserat moduli via homogenization of heterogeneous elastic materials[J]. Journal of Applied Mechanics-Transactions of the ASME,2007, 74(4),741-753.
    [63]Yuan X, Tomita Y, Andou T. A micromechanical approach of nonlocal modeling for media with periodic microstructures[J]. Mechanics Research Communications,2008,35(1-2),126-133.
    [64]Askar A, Cakmak A S. A structural model of a micropolar continuum[J]. International Journal of Engineering Science,1968,6(10),583-589.
    [65]Bazant Z P, Christensen M. Analogy between micropolar continuum and grid frameworks under initial stress[J]. International Journal of Solids and Structures,1972,8(3),327-346.
    [66]Chen J Y, Huang Y, Ortiz M. Fracture analysis of cellular materials:A strain gradient model[J]. Journal of the Mechanics and Physics of Solids,1998,46(5),789-828.
    [67]Kumar R S, McDowell D L. Generalized continuum modeling of 2-d periodic cellular solids[J]. International Journal of Solids and Structures,2004,41(26),7399-7422.
    [68]Diebels S, Steeb H. Stress and couple stress in foams[J]. Computational Materials Science,2003, 28(3-4),714-722.
    [69]Ebinger T, Steeb H, Diebels S. Modeling macroscopic extended continua with the aid of numerical homogenization schemes[J]. Computational Materials Science,2005,32(3-4),337-347.
    [70]甘益翔,陈常青,沈亚鹏,等.二维泡沫金属微极本构关系的细观力学研究,固体力学会议论文集[C].大连,2002.
    [71]Warren W E, Byskov E. Three-fold symmetry restrictions on two-dimensional micropolar materials[J]. European Journal of Mechanics a-Solids,2002,21(5),779-792.
    [72]Mora R J, Waas A M. Evaluation of the micropolar elasticity constants for honeycombs [J]. Acta Mechanica,2007,192(1-4),1-16.
    [73]Jones R M. Mechanics of composite materials, second edition[M]. Philadelphia:Taylor & Francis, 1999.
    [74]周履,范赋群.复合材料力学[M].北京:高等教育出版社,1991.
    [75]Kalamkarov A L, Andrianov I V, Danishevskyy V V. Asymptotic homogenization of composite materials and structures[J]. Applied Mechanics Reviews,2009,62(3),1-20.
    [76]Maxwell J C. On reciprocal figures, frames, and diagrams of force, scientific papers[M]. Cambridge University Press,1890.
    [77]Michell A, Melbourne M. The limits of economy of material in frame-structures [J]. Philosophical Magazine,1904,8(47),589-597.
    [78]程耿东.工程结构优化设计基础[M].北京:水利电力出版社,1984.
    [79]钱令希,钟万勰,程耿东,等.工程结构优化的序列二次规划[J].固体力学学报,1983,4(4),469-480.
    [80]Svanberg K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering,1987,24(2),359-373.
    [81]Vanderbei R J, Shanno D F. An interior-point algorithm for nonconvex nonlinear programming[J]. Computational Optimization and Applications,1999,13(1-3),231-252.
    [82]Cheng G, Liu Y. A new computation scheme for sensitivity analysis[J]. Engineering Optimization, 1987,12(3),219-234.
    [83]Haftka R T, Adelman H M. Recent developments in structural sensitivity analysis[J]. Structural and Multidisciplinary Optimization,1989,1(3),137-151.
    [84]Tortorelli D A, Michaleris P. Design sensitivity analysis:Overview and review[J]. Inverse Problems in Engineering,1994,1(1),71-105.
    [85]Lund E. Finite element based design sensitivity analysis and optimization[D]. Aalborg:Aalborg University,1994.
    [86]陈飙松.热传导与结构耦合系统的灵敏度分析及优化设计[D].大连:大连理工大学,2001.
    [87]Rozvany G, Bendsee M, Kirsch U. Layout optimization of structures [J]. Applied Mechanics Reviews,1995,48(2),41-119.
    [88]Bends(?)e M P. Optimization of structural topology, shape and material[M]. Berlin:Springer,1995.
    [89]Cheng G, Olhoff N. An investigation concerning optimal design of solid elastic plates[J]. International Journal of Solids and Structures,1981,17(3),305-323.
    [90]Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering,1988,71(2), 197-224.
    [91]Bends(?)e M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989,1(4),193-202.
    [92]Rozvany G, Zhou M, Birker T. Generalized shape optimization without homogenization[J]. Structural Optimization,1992,4(3-4),250-252.
    [93]Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures,1993,49(5),885-896.
    [94]Eschenauer H A, Kobelev V V, Schumacher A. Bubble method for topology and shape optimization of structures [J]. Structural Optimization,1994,8(1),42-51.
    [95]Allaire G, Jouve F, Toader A M. A level-set method for shape optimization[J]. Comptes Rendus Mathematique,2002,334(12),1125-1130.
    [96]Wang M Y, Wang X, Guo D. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering,2003,192(1-2),227-246.
    [97]Diaz A, Sigmund O. Checkerboard patterns in layout optimization[J]. Structural Optimization,1995, 10(1),40-45.
    [98]Bendsoe M P, Sigmund O. Topology optimization:Theory, methods and applications[M]. Berlin: Springer-Verlag,2003.
    [99]Sigmund O, Petersson J. Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural Optimization,1998, 16(1),68-75.
    [100]Haber R B, Jog C S, Bendsoe M P. A new approach to variable-topology shape design using a constraint on perimeter[J]. Structural Optimization,1996,11(1),1-12.
    [101]Petersson J, Sigmund O. Slope constrained topology optimization[J]. International Journal for Numerical Methods in Engineering,1998,41(8),1417-1434.
    [102]Sigmund O. Design of material structures using topology optimization[D]. Lyngby:Technical University of Denmark,1994.
    [103]Bruns T E, Tortorelli D A. Topology optimization of non-linear elastic structures and compliant mechanisms [J]. Computer Methods in Applied Mechanics and Engineering,2001,190(26-27), 3443.3459.
    [104]Bourdin B. Filters in topology optimization[J]. International Journal for Numerical Methods in Engineering,2001,50(9),2143-2158.
    [105]Guo X, Gu Y X. A new density-stiffness interpolation scheme for topology optimization of continuum structures[J]. Engineering Computations,2004,21(1),9-22.
    [106]Guest J K, Prevost J H, Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions [J]. International Journal for Numerical Methods in Engineering,2004,61(2),238-254.
    [107]Sigmund O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization,2007,33(4-5),401-424.
    [108]Xu S, Cai Y, Cheng G. Volume preserving nonlinear density filter based on heaviside functions[J]. Structural and Multidisciplinary Optimization,2010,41(4),495-505.
    [109]Cheng G, Guo X. Epsilon-relaxed approach in structural topology optimization[J]. Structural Optimization,1997,13(4),258-266.
    [110]Duysinx P, Bendsoe M P. Topology optimization of continuum structures with local stress constraints[J]. International Journal for Numerical Methods in Engineering,1998,43(8), 1453-1478.
    [111]Neves M M, Rodrigues H, Guedes J M. Generalized topology design of structures with a buckling load criterion[J]. Structural Optimization,1995,10(2),71-78.
    [112]Ma Z D, Kikuchi N, Cheng H C. Topological design for vibrating structures[J]. Computer Methods in Applied Mechanics and Engineering,1995,121(1-4),259-280.
    [113]Sigmund O. Design of multiphysics actuators using topology optimization-part I:One-material structures [J]. Computer Methods in Applied Mechanics and Engineering,2001,190(49-50), 6577-6604.
    [114]Sigmund O, Jensen J S. Systematic design of phononic band-gap materials and structures by topology optimization[J]. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,2003,361(1806),1001-1019.
    [115]Gea H C, Luo J. Topology optimization of structures with geometrical nonlinearities[J]. Computers and Structures,2001,79(20-21, No.5),1977-1985.
    [116]Jung D, Gea H C. Topology optimization of nonlinear structures[J]. Finite Elements in Analysis and Design,2004,40(11),1417-1427.
    [117]Guest J K, Prevost J H. Design of maximum permeability material structures[J]. Computer Methods in Applied Mechanics and Engineering,2007,196(4-6),1006-1017.
    [118]徐胜利.基于拓扑优化的结构刚度和渗流多功能材料设计[D].大连:大连理工大学,2010.
    [119]Sigmund O. Materials with prescribed constitutive parameters:An inverse homogenization problem[J]. International Journal of Solids and Structures,1994,31(17),2313-2329.
    [120]Gibiansky L V, Sigmund O. Multiphase composites with extremal bulk modulus[J]. Journal of the Mechanics and Physics of Solids,2000,48(3),461-498.
    [121]Eschenauer H A, Olhoff N. Topology optimization of continuum structures:A review[J]. Applied Mechanics Reviews,2001,54(4),331-389.
    [122]Bendsoe M P, Olhoff N, Sigmund O. Proc. IUTAM Symp.Topological design optimization of structures, machines and materials-status and perspectives[C]. Copenhagen:Springer,2006.
    [123]Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis:Cad, finite elements, nurbs, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering,2005, 194(39_41),4135-4195.
    [124]http://www.mscsoftware.com.
    [125]http://www.ansys.com.
    [126]http://www.altair.com.
    [127]http://www.fe-design.de/en/home.html.
    [128]http://www.quint.co.jp/eng/index.html.
    [129]Diaz A R, Kikuchi N. Solutions to shape and topology eigenvalue optimization problems using a homogenization method[J]. International Journal for Numerical Methods in Engineering,1992, 35(7),1487-1502.
    [130]Krog L A, Olhoff N. Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives[J]. Computers and Structures,1999,72(4), 535-563.
    [131]Allaire G, Aubry S, Jouve F. Eigenfrequency optimization in optimal design[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(28),3565-3579.
    [132]Jensen J S, Pedersen N L. On maximal eigenfrequency separation in two-material structures:The 1d and 2d scalar cases[J]. Journal of Sound and Vibration,2006,289(4-5),967-986.
    [133]Min S, Nishiwaki S, Kikuchi N. Unified topology design of static and vibrating structures using multiobjective optimization [J]. Computers & Structures,2000,75(1),93-116.
    [134]彭细荣,隋允康.用ICM法拓扑优化静位移及频率约束下连续体结构[J].计算力学学报,2006,23(04),391-396.
    [135]Du J B, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps[J]. Structural and Multidisciplinary Optimization,2007,34(2),91-110.
    [136]Pedersen N L. Maximization of eigenvalues using topology optimization [J]. Structural and Multidisciplinary Optimization,2000,20(1),2-11.
    [137]Cheng G, Wang B. Constraint continuity analysis approach to structural topology optimization with frequency objective/constraints, Proceeding of 7th World Congress of Structural and Multidisciplinary Optimization[C]. Seoul, Korea,2007.
    [138]朱继宏,张卫红,邱克鹏.结构动力学拓扑优化局部模态现象分析[J].航空学报,2005,26(4).
    [139]De Gournay F. Velocity extension for the level-set method and multiple eigenvalues in shape optimization[J]. Siam Journal on Control and Optimization,2006,45(1),343-367.
    [140]Seyranian A P, Lund E, Olhoff N. Multiple eigenvalues in structural optimization problems[J]. Structural Optimization,1994,8(4),207-227.
    [141]Jog C S. Topology design of stpuctures subjected to periodic loading[J]. Journal of Sound and Vibration,2002,253(3),687-709.
    [142]Larsen A A, Laksafoss B, Jensen J S, et al. Topological material layout in plates for vibration suppression and wave propagation control[J]. Structural and Multidisciplinary Optimization,2009, 37(6),585-594.
    [143]Olhoff N, Du J. Topological design for minimum dynamic compliance of continuum structures subjected to forced vibration[J]. Structural and Multidisciplinary Optimization, submitted,2010.
    [144]Tcherniak D. Topology optimization of resonating structures using simp method[J]. International Journal for Numerical Methods in Engineering,2002,54(11),1605-1622.
    [145]Calvel S, Mongeau M. Black-box structural optimization of a mechanical component[J]. Computers & Industrial Engineering,2007,53(3),514-530.
    [146]Jensen J S. Topology optimization of dynamics problems with pade approximants[J]. International Journal for Numerical Methods in Engineering,2007,72(13),1605-1630.
    [147]Min S, Kikuchi N, Park Y C, et al. Optimal topology design of structures under dynamic loads[J]. Structural Optimization,1999,17(2-3),208-218.
    [148]Dahl J, Jensen J S, Sigmund O. Topology optimization for transient wave propagation problems in one dimension design of filters and pulse modulators[J]. Structural and Multidisciplinary Optimization,2008,36(6),585-595.
    [149]Kang B S, Park G J, Arora J S. A review of optimization of structures subjected to transient loads[J]. Structural and Multidisciplinary Optimization,2006,31(2),81-95.
    [150]Luo J, Gea H C. Optimal stiffener design for interior sound reduction using a topology optimization based approach[J]. Journal of Vibration and Acoustics-Transactions of the ASME,2003,125(3), 267-273.
    [151]Yoon G H, Jensen J S, Sigmund O. Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation[J]. International Journal for Numerical Methods in Engineering,2007,70(9),1049-1075.
    [152]陈钢.内腔声-结构耦合系统的数值模拟与优化设计[D].大连:大连理工大学,2008.
    [153]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [154]杨德庆,柳拥军,金咸定.薄板减振降噪的拓扑优化设计方法[J].船舶力学,2003,7(5),91-96.
    [155]Duhring M B, Jensen J S, Sigmund O. Acoustic design by topology optimization[J]. Journal of Sound and Vibration,2008,317(3-5),557-575.
    [156]Du J, Olhoff N. Minimization of sound radiation from vibrating bi-material structures using topology optimization[J]. Structural and Multidisciplinary Optimization,2007,33(4-5),305-321.
    [157]Denli H, Sun J Q. Structural-acoustic optimization of composite sandwich structures:A review[J]. Shock and Vibration Digest,2007,39(3),189-200.
    [158]Hyun S, Torquato S. Designing composite microstructures with targeted properties [J]. Journal of Materials Research,2001,16(1),280-285.
    [159]Sigmund O, Torquato S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of the Mechanics and Physics of Solids,1997,45(6), 1037-1067.
    [160]Neves M M, Rodrigues H, Guedes J M. Optimal design of periodic linear elastic microstructures [J]. Computers & Structures,2000,76(1-3),421-429.
    [161]Silva E C N, Fonseca J S O, Kikuchi N. Optimal design of piezoelectric microstructures [J]. Computational Mechanics,1997,19(5),397-410.
    [162]Lipperman F, Fuchs M B, Ryvkin M. Stress localization and strength optimization of frame material with periodic microstructure[J]. Computer Methods in Applied Mechanics and Engineering,2008, 197(45-48),4016-4026.
    [163]Steeves C A, Lucato S, He M, et al. Concepts for structurally robust materials that combine low thermal expansion with high stiffness[J]. Journal of the Mechanics and Physics of Solids,2007, 55(9),1803-1822.
    [164]Guest J K, Prevost J H. Optimizing multifunctional materials:Design of microstructures for maximized stiffness and fluid permeability [J]. International Journal of Solids and Structures,2006, 43(22-23),7028-7047.
    [165]Rodrigues H, Guedes J M, Bendsoe M P. Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization,2002,24(1),1-10.
    [166]Coelho P G, Fernandes P R, Guedes J M, et al. A hierarchical model for concurrent material and topology optimisation of three-dimensional structures[J]. Structural and Multidisciplinary Optimization,2008,35(2),107-115.
    [167]Coelho P G, Fernandes P R, Rodrigues H C, et al. Numerical modeling of bone tissue adaptation-a hierarchical approach for bone apparent density and trabecular structure[J]. Journal of Biomechanics,2009,42(7),830-837.
    [168]Liu L, Yan J, Cheng G D. Optimum structure with homogeneous optimum truss-like material[J]. Computers & Structures,2008,86(13-14),1417-1425.
    [169]阎军,程耿东,刘岭.基于均匀材料微结构模型的热弹性结构与材料并发优化[J].计算力学学报,2009,26(1),1-7.
    [170]苏文政.基于偶应力理论的多孔固体材料与结构的分析与设计[D].大连:大连理工大学,2009.
    [171]Liu S T, Su W Z. Topology optimization of couple-stress material structures [J]. Structural and Multidisciplinary Optimization,2010,40(1-6),319-327.
    [172]Zhang W H, Sun S P. Scale-related topology optimization of cellular materials and structures [J]. International Jornal for numerical methods in engineering,2006,68(9),993-1011.
    [173]Chellappa S, Diaz A R, Bendsoe M P. Layout optimization of structures with finite-sized features using multiresolution analysis[J]. Structural and Multidisciplinary Optimization,2004,26(1-2), 77-91.
    [174]Wang B, Cheng G. Design of cellular structures for optimum efficiency of heat dissipation[J]. Structural and Multidisciplinary Optimization,2005,30(6),447-458.
    [175]Venkataraman S, Haftka R T. Optimization of composite panels-a review, In:Proceedings of the 14th annual technical conference of the American society of composites[C]. Dayton, OH,1999.
    [176]Cheng G. Sensitivity analysis and a mixed approach to the optimization of symmetric layered composite plates[J]. Engineering Optimization,1986,9(4),233-247.
    [177]Miki M, Sugiyama Y. Optimum design of laminated composite plates using lamination parameters[J]. AIAA Journal,1993,31(5),921-922.
    [178]Foldager J, Hansen J S, Olhoff N. A general approach forcing convexity of ply angle optimization in composite laminates[J]. Structural Optimization,1998,16(2-3),201-211.
    [179]Diaconu C G, Sato M, Sekine H. Layup optimization of symmetrically laminated thick plates for fundamental frequencies using lamination parameters [J]. Structural and Multidisciplinary Optimization,2002,24(4),302-311.
    [180]Pedersen P. On optimal orientation of orthotropic materials [J]. Structural Optimization,1989,1(2), 101-106.
    [181]Pedersen P. On thickness and orientational design with orthotropic materials[J]. Structural Optimization,1991,3(2),69-78.
    [182]Cheng G, Pedersen P. On sufficiency conditions for optimal design based on extremum principles of mechanics[J]. Journal of the Mechanics and Physics of Solids,1997,45(1),135-150.
    [183]Luo J H, Gea H C. Optimal bead orientation of 3d shell/plate structures[J]. Finite Elements in Analysis and Design,1998,31(1),55-71.
    [184]Stegmann J. Analysis and optimization of laminated composite shell structures[D]. Aalborg: Aalborg University,2004.
    [185]Stegmann J, Lund E. Discrete material optimization of general composite shell structures[J]. International Journal for Numerical Methods in Engineering,2005,62(14),2009-2027.
    [186]Thomsen J, Olhoff N. Optimization of fiber orientation and concentration in composites [J]. Control and Cybernetics,1990,19(3-4),327-341.
    [187]Thomsen J. Optimization of composite disks[J]. Structural Optimization,1991,3(2),89-98.
    [188]Ghiasi H, Pasini D, Lessard L. Optimum stacking sequence design of composite materials. Part I. Constant stiffness design[J]. Composite Structures,2009,90(1),1-11.
    [189]Denli H, Sun J Q. Minimization of acoustic radiation from composite sandwich structures, Proceedings of the 7th international conference on sandwich structures, O.T. Thomsen, E. Bozhevolnaya, and A. Lyckegaard (Eds.)[C]. Aalborg:Aalborg University,2005.
    [190]Yamamoto T, Maruyama S, Nishiwaki S, et al. Thickness optimization of a multilayered structure on the coupling surface between a structure and an acoustic cavity [J]. Journal of Sound and Vibration,2008,318(1-2),109-130.
    [191]Hyun S, Torquato S. Optimal and manufacturable two-dimensional, kagome-like cellular solids[J]. Journal of Materials Research,2002,17(1),137-144.
    [192]Wicks N, Guest S D. Single member actuation in large repetitive truss structures[J]. International Journal of Solids and Structures,2004,41(3-4),965-978.
    [193]Hutchinson R G, Fleck N A. The structural performance of the periodic truss [J]. Journal of the Mechanics and Physics of Solids,2006,54(4),756-782.
    [194]Fleck N A, Qiu X M. The damage tolerance of elastic-brittle, two-dimensional isotropic lattices[J]. Journal of the Mechanics and Physics of Solids,2007,55(3),562-588.
    [195]Zhang Y H, Qu X M, Fang D N. Mechanical properties of two novel planar lattice structures[J]. International Journal of Solids and Structures,2008,45(13),3751-3768.
    [196]Degischer H P, Kriszt B著.左孝青,周芸译.多孔泡沫金属[M].北京:化学工业出版社,2004.
    [197]Sadasivam R, Manglik R M, Jog M A. Fully developed forced convection through trapezoidal and hexagonal ducts[J]. International Journal of Heat and Mass Transfer,1999,42(23),4321-4331.
    [198]Gu S, Lu T J, Evans A G. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity[J]. International Journal of Heat and Mass Transfer,2001, 44(11),2163-2175.
    [199]Hohe J, Becker W. Optimized structural sandwich panels with minimum delamination hazards[J]. Structural and Multidisciplinary Optimization,2002,23(6),448-459.
    [200]Allen H G. Analysis and design of structural sandwich panels[M]. Oxford:Pergamon Press,1969.
    [201]Silva M J, Hayes W C, Gibson L J. The effects of nonperiodic microstructure on the elastic properties of 2-dimensional cellular solids[J]. International Journal of Mechanical Sciences,1995, 37(11),1161-1177.
    [202]Kim H S, Al-Hassani S T S. A morphological elastic model of general hexagonal columnar structures[J]. International Journal of Mechanical Sciences,2001,43(4),1027-1060.
    [203]Ohno N, Okumura D, Niikawa T. Long-wave buckling of elastic square honeycombs subject to in-plane biaxial compression[J]. International Journal of Mechanical Sciences,2004,46(11), 1697-1713.
    [204]Berglund K. Structural models of micropolar media.Mechanics of micropolar media (cism lecture notes). O. Brulin and r. K. T. Hsieh, eds.[M]. Singapore:World Scientific,1982.
    [205]Wang A-J, Kumar R S, McDowell D L. Mechanical behavior of extruded prismatic cellular metals[J]. Special Issue on "Mechanics and Design of Heterogeneous Materials". Journal of Mechanics of Advanced Materials and Structures,2005,12(3),185-200.
    [206]Cook R D, Malkus D S, Plesha M E. Concepts and applications of finite element analysis[M]. New York:Wiley,1989.
    [207]Adachi T, Tomita Y, Tanaka M. Computational simulation of deformation behavior of 2d-lattice continuum[J]. International Journal of Mechanical Sciences,1998,40(9),857-866.
    [208]Dot user's manual, version 4.20[M]. Colorado:Vanderplaats Research & Development Inc.,1995.
    [209]Rozvany G I N, Querin O M, Gaspar Z, et al. Extended optimality in topology design[J]. Structural and Multidisciplinary Optimization,2002,24(3),257-261.
    [210]Rozvany G I N. A critical review of established methods of structural topology optimization [J]. Structural and Multidisciplinary Optimization,2009,37(3),217-237.
    [211]Rozvany G I N. Traditional vs. Extended optimality in topology optimization[J]. Structural and Multidisciplinary Optimization,2009,37(3),319-323.
    [212]Cheng G, Kang Z, Wang G. Dynamic optimization of a turbine foundation[J]. Structural Optimization,1997,13(4),244-249.
    [213]Petyt M. Introduction to finite element vibration analysis[M]. Cambridge University Press, Cambridge,1998.
    [214]胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990.
    [215]Lund E, Stegmann J. On structural optimization of composite shell structures using a discrete constitutive parametrization[J]. Wind Energy,2005,8(1),109-124.
    [216]Lax M, Feshbach H. On the radiation problem at high frequencies [J]. Journal of Acoustical Society of America,1947,19(4),682-690.
    [217]Herrin D W, Martinus F, Wu T W, et al. A new look at the high frequency boundary element and rayleigh integral approximations, Noise & Vibration Conference and Exhibition[C]. Warrendale, PA:Society of Automotive Engineers,2003.
    [218]Christensen S T, Sorokin S V, Olhoff N. On analysis and optimization in structural acoustics-part I: Problem formulation and solution techniques [J]. Structural Optimization,1998,16(2-3),83-95.
    [219]Christensen S T, Sorokin S V, Olhoff N. On analysis and optimization in structural acoustics-part II:Exemplifications for axisymmetric structures [J]. Structural Optimization,1998,16(2-3),96-107.
    [220]Taylor J E. Prediction of structural layout for maximum stiffness[J]. Journal of Optimization Theory and Applications,1975,15(1),145-155.
    [221]Mroz Z, Rozvany G I N. Optimal design of structures with variable support conditions [J]. Journal of Optimization Theory and Applications,1975,15,85-101.
    [222]Prager W. Optimal layout of cantilever trusses[J]. Journal of Optimization Theory and Applications, 1977,23(1),111-117.
    [223]Olhoff N, Taylor J E. Designing continuous columns for minimum total cost of material and interior supports[J]. Journal of Structural Mechanics,1978,6(4),367-382.
    [224]Olhoff N, Taylor J E. Optimal structural remodeling[J]. Journal of Optimization Theory and Applications,1979,27(4),571-582.
    [225]Lund E. Buckling topology optimization of laminated multi-material composite shell structures[J]. Composite Structures,2009,91(2),158-167.
    [226]Reddy J N. Mechanics of laminated composite plates and shells theory and analysis, second edition[M]. Boca Raton:CRC Press,2004.
    [227]Hvejsel C G, Lund E. Interpolation schemes in discrete material optimization, Proceeding of 8th World Congress of Structural and Multidisciplinary Optimization[C]. Lisbon, Portugal,2009.
    [228]Cheng G. On non-smoothness in optimal design of solid elastic plates[J]. International Journal of Solids and Structures,1981,17(8),795-810.
    [229]Cheng G, Olhoff N. Regularized formulation for optimal-design of axisymmetric plates[J]. International Journal of Solids and Structures,1982,18(2),153-169.
    [230]Rozvany G I N, Olhoff N, Cheng G D, et al. On the solid plate paradox in structural optimization[J]. Journal of Structural Mechanics,1982,10(1),1-32.
    [231]Wang C M, Rozvany G I N, Olhoff N. Optimal plastic design of axisymmetric solid plates with a maximum thickness constraint[J]. Computers & Structures,1984,18(4),653-665.
    [232]Rozvany G I N, Adidam S R. Rectangular grillages of least weight[J]. Journal of the Engineering Mechanics Division,1972, ASCE 98,1337-1352.
    [233]Prager W. Optimal arrangement of the beams of a rectagular grillage[J]. In:Problemi Attuali di Meccanica e Applicata, pp.239-249. Accademia delle Scienze, Torino,1977.
    [234]Bathe K J. Finite element procedures[M]. Prentice-Hall, NJ:Englewood Cliffs,1996.
    [235]刘书田,程耿东,顾元宪,等.基于均匀化理论的多孔板弯曲问题新解法[J].固体力学学报,1999,20(3),195-200.
    [236]Ma Z D, Kikuchi N, Pierre C, et al. Multidomain topology optimization for structural and material designs[J]. Journal of Applied Mechanics-Transactions of the ASME,2006,73(4),565-573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700