磁流变式调谐液柱阻尼器振动控制理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先综述了结构振动控制技术和调谐液柱阻尼器研究现状,指出了TLCD半主动控制研究存在的问题。结合磁流变(MR)阻尼器具有结构简单、阻尼力连续逆顺可调范围大、响应快等优点,以及调谐液柱阻尼器(TLCD)具有构造简单、使用经济的优良特性,研制了具有半主动控制性能的磁流变式调谐液柱阻尼器(MR-TLCD)。依据Langrage方程,建立了MR-TLCD.结构—MR-TLCD系统和桥梁—MR-TLCD系统动力方程,仿真分析了MR-TLCD的减振性能,并通过单自由度结构—MR-TLCD系统的被动、半主动控制试验,进一步评估了MR-TLCD的振动控制效果。主要研究内容包括:
     (1)研制了适合试验和工程应用的旋转剪切式MR阻尼器,根据旋转剪切式MR阻尼器力学性能试验,提出了MR阻尼力中的库仑摩擦阻尼力峰值与输入电流的玻尔兹曼函数关系,并证明了基于玻尔兹曼函数的Bingham模型是合理的。进一步准确描述MR阻尼器力学特点,克服Bingham模型在零速度附近不能说明阻尼力与速度的关系,采用了增加惯性力项的改进滞回力学模型,并由智能粒子群算法辨识了该模型参数。
     (2)研制了MR-TLCD减振装置,经MR-TLCD受简谐荷载时的七种输入电流试验分析,建立了带有阻尼比修正系数的MR-TLCD动力方程。通过试验与理论分析的MR-TLCD动力放大系数对比,拟合了阻尼比修正系数与输入电流之间的函数关系。与半主动控制试验对比,说明了采用阻尼比修正系数的MR-TLCD动力模型是正确的。
     (3)依据Lagrange方程,基于MR-TLCD力学模型,建立了试验/工程应用的单/多自由度结构—MR-TLCD系统的动力方程。提出了结构—MR-TLCD系统减振时域及频域分析方法,仿真分析了结构—MR-TLCD系统受随机风荷载作用时的被动控制减振效果结果表明:结构峰值及均方根值减振效果,随MR-TLCD输入电流大小和质量比而变化,且结构加速度控制效果优于位移控制。
     (4)拓展MR-TLCD减振装置应用领域,分析了MR-TLCD抑制桥梁风振被动控制效果。简谐荷载和随机风荷载仿真分析得到:四种截面类型的MR-TLCD都存在一个最小平均动力放大系数比及相对应的最优电流值;扭转峰值和均方根的角加速度控制都优于角位移减振效果。
     (5)基于单自由度结构—MR-TLCD系统动力方程,从MR-TLCD耗能受力角度分析,详细阐述了MR阻尼力和TLCD恢复力耗能情况,提出了基于耗能力的简单双态和两级双态半主动控制算法。半主动控制数值仿真分析表明,这两种控制算法减振效果显著,且采用两级双态控制算法时,整个系统更趋于稳定。
     (6)试验验证了MR-TLCD半主动控制的减振效果。制作了单自由度结构—MR-TLCD系统的半主动控制试验装置。利用dSPACE实时控制系统,实现了简谐、三阶谐波激励荷载下的被动控制关/开和简单双态、两级双态、离复位三种半主动控制算法。对结构峰值和均方根响应及减振百分比分析,进一步评价了MR-TLCD减振性能。
Structural vibration control technology and the state of art of tuned liquid column damper (TLCD) were critically reviewed. The problems of classical semi-active TLCD were identified. Some excellent properties of MR dampers, such as simple construction, larger continuously adjustable damping force as well as fast response time, and characteristics of TLCD, such as economics, simple figuration, were combined to develop Magnetorheological tuned liquid column damper (MR-TLCD) that can accomplish semi-active control. Equations of motion of a building and a bridge structure incorporated with MR-TLCD were formulated by Lagrange equation. The control performances of MR-TLCD were simulated in the case of wind-induced response. Further, enhanced vibration control performances of MR-TLCD were demonstrated by experimental investigations of both passive and semi-active control scheme of the coupled SDOF—MR-TLCD. The main contents were summarized as follows:
     (1) Rotary Shear MR damper (RSMRD) was developed to meet the requirement of testing and engineering applications. The Boltzmann function formulation of relationship between the peak of coulomb friction damping force of MR damper and its input current was investigated based on mechanical properties test results of MR damper. It was proved that Bingham model based on Boltzmann function was reasonable. The mechanical characters of the MR damper were further described to solve the problem that Bingham model fails to capture the hysteretic curve of MR damping force and velocity around zero velocity, and the hysteretic model of RSMRD was calibrated with an improved hysteretic model with an additional inertial force item, where each parameter was identified by intelligent particle swarm optimization.
     (2) The control device MR-TLCD was developed. MR-TLCD excited by harmonic load was tested under seven input currents, and the dynamical equation of MR-TLCD with damping ratio correction factor was derived. The relationship of damping ratio correction factor and input current was fitted by dynamic magnification factors of theoretical and experimental analysis. By comparing semi-active control test analysis, it was further demonstrated that dynamical model of MR-TLCD with damping ratio correction factor was feasible.
     (3) The equations of motion of the combined structure-MR-TLCD system for the test cases or practical MR-TLCD were established by Lagrange equation. The analysis methods in time domain and frequency domain were proposed. The passive control performance of the coupled structure—MR-TLCD system subjected to random wind load was simulated. The results showed that the damping effect on peak and root mean square of SDOF structure varied with input current of MR-TLCD and mass ratio, and the control performance of acceleration response was better than that of displacement.
     (4) The passive control performance of the bridge with MR-TLCD was analyzed to expand the application of the control device MR-TLCD. The displacement and acceleration response of the system subjected to harmonic and random wind load was simulated. It is concluded that there are the minimum mean dynamic magnification factor ratio as well as the optimal input current for each of the four section styles of MR-TLCD. The acceleration control performance of bridge torsional peak and root mean square is superior to the displacement.
     (5) From the point of energy dissipation force of MR-TLCD based on the dynamical equation of the coupled SDOF—MR-TLCD, the energy situation of MR damping force and TLCD liquid restoring force was detailed. The Simple Bi-State (SBS) semi-active control algorithm and Two-Stage Bi-State (TSBS) semi-active control algorithm were developed based on energy dissipation. It was demonstrated that both the SBS algorithm and the TSBS algorithm based on MR-TLCD device had good obvious performance of vibration control by theoretical simulation analysis and experimental data of semi-active control. When the TSBS algorithm is adopted, the control system is easier to be stabilized.
     (6) The semi-active control device of the coupled SDOF—MR-TLCD was manufactured to verify the semi-active vibration control performance of MR-TLCD and compared with theoretical simulation. The real-time control system dSPACE was employed in the test set-up to realize the controller algorithms, which included passive off/on and semi-active control algorithms such as; SBS, TSBS and off-and-toward-equilibrium. Response value and damping percentage of the structure peak and root mean square were analyzed, and the control performance of MR-TLCD was further evaluated.
引文
[1]Yao J T P. Concept of Structural Control. Journal of the Structural Division, ASCE,1972,98(7):1567-1574
    [2]吕西林.复杂高层建筑结构抗震理论与应用.北京:科学出版社,2007,311-314
    [3]Housneret G W, Bergman L A, Caughey T K, et al. Structural control:past, present, and future. Journal of Engineering Mechanics, ASCE,1997, 123(9):897-971
    [4]欧进萍.结构振动控制—主动、半主动和智能控制.北京:科学出版社,2003,l-500
    [5]Soong T T, Spencer Jr B F. Supplemental energy dissipation:state-of-the-art and state-of-the-practice. Engineering Structures,2002,24:243-259
    [6]周福霖.工程结构减震控制.北京:地震出版社,1997,159-238
    [7]Kelly J M, Skinner R I, Heine A J. Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bulletin of the New Zealand National Society for Earthquake Engineering,1972,5,78-89
    [8]Skinner R I, Kelly J M, Heine A J. Hysteretic Dampers for earthquake resistant structures. Earthquake Engineering and Structural Dynamics,1975,3:287-296
    [9]Pall A S, Marsh C. Seismic response of friction damped braced frames. Journal of the structural Division,1982,108(6):1313-1323
    [10]吴斌,欧进萍.拟粘滞摩擦耗能器的性能试验与分析.世界地震工程,1995,15(1):1-12
    [11]Pall A S, Pall R. Friction-dampers used for seismic control of new and existing building in Canada. In:Proc. ATC 17-1 Seminar on Isolation, Energy Dissipation and Active control. San Francisco, CA,1993,2:675-686
    [12]Ou J P, Li H. The state-of-the-art and the state-of-the-practice of structural control and monitoring in the mainland of china. In:Proc.4th World Conference on Structural Control and Monitoring. University of California, San Diego,2006, 4WCSCM-455:1-16
    [13]Movaffaghi H, Friberg O. Optimal placement of dampers in structures using genetic algorithm. Engineering Computations,2006,23(6):597-606
    [14]Shen K L, Soong T T, Chang K C, et al. Seismic behavior of reinforced concrete frame with added viscoelastic dampers. Engineering Structures,1995, 17(5):372-380
    [15]周云,徐赵东,邓雪松.粘弹性阻尼器的性能试验研究.振动与冲击,2001,20(3):71-75
    [16]Palmeri A, Ricciardelli F, Muscolino G, et al. Effects of viscoelastic memory on the buffeting response of tall buildings. Wind and Structures,2004,7(2):89-106
    [17]Constantinou M C, Symans M D, Tsopelas P, et al. Fluid viscous dampers in applications of seismic energy dissipation and seismic isolation. In:Proc. ATC 17-1 Seminar on Isolation, Energy Dissipation and Active control. San Francisco, CA,1993,2:581-591
    [18]Makris N, Constantinou M C. Fractional-Derivative Maxwell Model for Viscous Dampers. Journal of Structural Engineering,1991,117(9):2708-2724
    [19]Douglas P, Metager J C. Structural control using hybrid spring-damper isolator with integral gapping function. In:Proc.79th Shock & Vibration Symposium. Orlando, FL,2008,1-15
    [20]Soong T T, Dargush G F. Passive Energy Dissipation Systems in Structural Engineering. New York:John Wiley & Sons, Ltd,1997,150-300
    [21]Warbuton G B, Ayorinde E O. Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics,1980,8:197-217
    [22]Crandall S H, Mark W D. Random Vibration in Mechanical Systems. New York and London:Academic Press,1963,55-102
    [23]Clark A J. Multiple passive tuned mass damper for reducing earthquake induced building motion. In:Proc.9th World conference on Earthquake Engineering. Japan,1988,5:779-784
    [24]Wikipedia. Taipei 101. http://en.wikipedia.org/wiki/Taipei_101.US,2009-4-6
    [25]Bauce H F. Oscillations of immiscible liquids in a rectangular container:A new damper for excited structures. Journal of Sound and Vibration,1984, 93(1):117-133
    [26]Welt F, Modi V J. Vibration damping through liquid sloshing:Part Ⅰ-A nonlinear analysis. In:Proc. Diagnostics, Vehicle Dynamics and Special Topics, ASME, Design Engineering Division,1989,18(5):149-156
    [27]Fujino Y Z, Sun L M, Pacheco B M. Tuned liquid damper for suppressing horizontal motion of structures. Journal of Engineering Mechanics, ASCE,1992, 118(10),2017-2030
    [28]Xu Y L, Samali B, Kwok K C S. Control of along-wind response of structures by mass and liquid dampers. Journal of Engineering Mechanics, ASCE,1992, 118(1):20-39
    [29]Spencer Jr B F, Nagarajaiah S. State of the art of structural control. Journal of Structural Engineering,2003,129(7):845-856
    [30]Spencer Jr B F, Sain M K. Controlling Buildings:A new Frontier in feedback. IEEE Control Systems Magazine on Emerging Technology,1997,17(6):19-35
    [31]Fujino Y. Vibration, control and monitoring of long-span bridges—recent research, developments and practice in Japan. Journal of Constructional Steel Research,2002,58:71-97
    [32]Cao H, Reinhorn A M, Soong T T. Design of an active mass damper for a tall TV tower in Nanjing, China. Engineering Structures,1998,20(3):134-143
    [33]OU J P, Li H. Recent advance on research and practical application of structural control and structural health monitoring in mainland China. In:Proc.4th China-Japan-US Symposium on Structural Control and Monitoring. Hangzhou, China.2006, A3:1-18
    [34]李惠,铃木祥之,吴波.AMD控制结构地震反应的试验研究.振动工程学报,1996,12(2):223-228
    [35]李宏男,金峤.遗传BP家庭神经网络主动AMD对偏心结构的减震控制.地震工程与工程振动,2003,23(2):134-142
    [36]Kareem A, Kijewski T, Tamura Y. Mitigation of motions of tall buildings with specific examples of recent applications. Wind and Structures,1999, 2(3):201-251.
    [37]Reinhorn A M, Soong T T, Lin R C, et al. Active Bracing System:A full scale implementation of active control. Technical Report NCEER-92-0020,1992-8-14
    [38]Roorda J. Experiments in Feedback Control of Structures. Leipholz H H E. Structural Control, North-Holland, Amsterdam,1980:629-661.
    [39]Chung L L, Lin R C, Soong T T, et al. Experimental study of active control for MDOF seismic structures. ASCE, Journal of Engineering Mechanics Diversion, 1989,115(8):1609-1627
    [40]Reinhorn A M, Soong T T, Riley M A, et al. Full-scale implementation of active control. Ⅱ:Installation and Performance. ASCE, Journal of Structural Engineering,1993,119(6):1935-1960
    [41]Soong T T, Reinhorn A M, Wang Y P, et al. Full-scale implementation of active control. I:design and simulation. ASCE, Journal of Structural Engineering,1991, 117(11):3516-3536
    [42]Soong T T. Active structural control:theory and practice. New York:John Wiley & Sons, Inc.1990,10-113
    [43]Data T K. A state-of-the-art review on active control of structures. Journal of Earthquake Technology,22nd ISET Annual Lecture,2003,40(1),430:1-17
    [44]Tanida K. Progress in the application of active vibration control technologies to long-span bridges in Japan. Progress in Structural Engineering Materials,2002, 4(4):363-371
    [45]Kamopp D, Crosby M J, Harwood R A. Vibration control using semi-active force generators. Journal of Engineering for Industry,197,96(2):619-627
    [46]Symans M D, Constantinou M C. Semi-active control systems for seismic protection of structures:a state-of-the-art review. Engineering Structures,1999, 21:469-487
    [47]Dyke S J. Acceleration feedback control strategies for active and semi-active control systems:modeling, algorithm development and experimental verification: [Degree of Doctor of Philosophy for University of Notre Dame]. Indiana: University of Notre Dame,1996,1-30
    [48]Nasu T, Kobori T, Takahashi M, et al. Active variable stiffness system with non-resonant control. Earthquake Engineering and Structural Dynamics,2001, 30:1597-1614
    [49]李敏霞,欧进萍,王刚,等.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动,2000,20(4):96-1000
    [50]Yang J N, Bobrow J, Jabbarri F, et al. Full-scale experimental verification of resetable semi-active stiffness dampers. Earthquake Engineering and Structural Dynamics,2007,36:1255-1273
    [51]Patten W N, Sun J H, Li G J, et al. Field test of an intelligent stiffener for bridge at the Ⅰ-35 Walnut Creek Bridge. Earthquake Engineering and Structural Dynamics,1999,28:109-126
    [52]Yang G Q. Large-scale magenetorheological fluid damper for vibration mitigation:modeling, testing and control. [Degree of Doctor of Philosophy for University of Notre Dame]. Indiana:University of Notre Dame,2001,1-60
    [53]刘季,孙作玉.结构可变阻尼半主动控制.地震工程与工程振动,1997,17(2):92-97
    [54]何亚东,何玉敖,黄金枝.建筑结构半主动控制振动台试验研究.建筑结构学报,2002,23(4):10-15
    [55]周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制.建筑结构学报,2002,23(2):2-11
    [56]Winslow W M, Cole W. Method and means for translating electrical impulses into mechanical force. United States Patent.2147850,1947-3-25
    [57]Carlson J D, Catanzarite D M, St Clair K A. Commericial magneto-rheological fluid devices. In:Proc.5thInternational Conference on ER Fluids, MR Fluids and Associated Technology, U. Sheffield, UK,1995,20-28
    [58]Dyke S J, Spencer Jr B F, Sain M K, et al. Modelling and control of magnetorheological dampers for seismic response reduction. Smart material and Structures,1996,5:565-575
    [59]Dyke, Spencer Jr B F, Sain M K, et al. An experimental study of MR dampers for seismic protection. Smart material and Structures,1998,5:693-703
    [60]Spencer Jr B F, Dyke S J, Sain M K. Magnetorheological dampers:A new approach to seismic protection of structures. In:Proc.35th Conference on Decision and Control. Kobe, Japan,676-681
    [61]Yi F, Dyke S J, Caicedo J M, et al. Experimental verification of multi-input seismic control strategies for smart dampers. ASCE, Journal of Engineering Mechanics,2001,127(11):1152-1163
    [62]Jung H J, Spencer Jr B F, Lee I W. Control of seismically excited cable-stayed bridge employing magnetorheological fluid dampers. ASCE, Journal of Structural Engineering,2003 129(7):873-883
    [63]Zhou L, Chang C C, Wang L X. Adaptive fuzzy control for nonlinear building-Magnetorhelolgical damper system. ASCE, Journal of Structural Engineering,2003 129(7):905-913
    [64]Du H P, Sze K Y, Lam J. Semi-active H control of vehicle suspension with magnetorheological dampers. Journal of Sound and Vibration,2005, 283:981-996
    [65]Sato E, Fujita T. Semi-active seismic isolation system using MR dampers for buildings. In:proc.4th World Conference on Structural Control and Monitoring. University of California, San Diego,2006,4WCSCM-224:1-8
    [66]欧进萍,关新春.磁流变耗能器及其性能.地震工程与工程振动.1998,18(3):74-81
    [67]陈政清.永磁调节装配式磁流变阻尼器.中国专利.ZL200510031108.8,2007-4-25
    [68]陈政清.斜拉索风雨振现场观测与振动控制.建筑科学与工程学报,2005, 22(4):5-10
    [69]王修勇,陈政清,倪一清,等.斜拉桥拉索磁流阻尼器减振技术研究.中国公路学报,2003,16(2):52-56
    [70]瞿伟廉,秦顺全.武汉天兴洲公铁两用斜拉桥主梁和桥塔纵向列车制动响应智能控制的理论与关键技术.见:第五届全国电磁流液及其应用学术会议论文集.大连,2008,14:1-11
    [71]周云,徐龙河,李忠献.磁流体阻尼器半主动控制结构的地震反应分析.土木工程学报,2001,34(5):10-14
    [72]李忠献,樊素英,史志利,等.应用MRF-04K阻尼器的大跨连续刚构侨地震反应的半主动控制.土木工程学报,2005,38(8):74-79
    [73]邬喆华,楼文娟,陈勇,等.MR阻尼器对斜拉索被动控制的研究.土木工程学报,2005,38(4):78-83
    [74]Jansen L M, Dyke S J. Semi-active control strategies for MR dampers:a comparative study. ASCE, Journal of Engineering Mechanics,2000, 126(8):795-803
    [75]李秀领,李宏男.磁流变阻尼器结构控制策略研究进展.防灾减灾工程学报,2004,24(3):335-342
    [76]Leitmann G. Semiactive control for vibration attenuation. Journal of Intelligent Material Systems and Structures,1994,5(6):841-846
    [77]Mcclamroch N H, Gavin H P. Closed loop structural control using electrorheological dampers. In:Proc. American Control Conference. Seattle, WA, USA,1995,6:4173-4177
    [78]Inaudi J A. Modulated homogeneous friction:a semi-active damping strategy. Earthquake Engineering and Structural Dynamics,1997,26(3):361-376
    [79]Symans M D, Constantinou M C. Development and experimental study of semi-active fluid damping devices for seismic protection of structures. Technical Report NCEER-95-0011,1995-8-3
    [80]Patten W N, Kuo C C, He Q, et al. Seismic structureal control via hydraulic semiactive vibration dampers. In:Proc.1st world conference on structural control. University of Southern California, Los Angeles, California,1994, FA2:83-92
    [81]Kamagata S, Kobori T. Autonomous adaptive control of active variable stiffness system for seismic ground motion. In:Proc.1st world conference on structural control. University of Southern California, Los Angeles, California,1994, TA4:33-42
    [82]杨润林,闫维明,周锡元,等.结构离复位控制的可行性研究.振动工程学报,2005,18(4):512-518
    [83]Sun L, Gogo Y. Application of fuzzy theory to variable dampers for bridge vibration control. In:Proc.1st world conference on structural control. University of Southern California, Los Angeles, California,1994, WP1:31-40
    [84]Chang C C, Zhou L. Neural network emulation of inverse dynamics for a magnetorheological damper. ASCE, Journal of Structural Engineering,2002, 128(2):231-239
    [85]Sakai F, Takaeda S, Tamaki T. Tuned liquid column damper-new type device for suppression of building vibration, In:Proc. International conference on High-rise Building. Nanjing, China.1989,923-931
    [86]Won Y J, Pirest J A, Haroun M A. Stochastic seismic performance evaluation of tuned liquid column dampers. Earthquake Engineering and Structural Dynamics, 1996,25:1259-1274
    [87]Won Y J, Pirest J A, Haroun M A. Performance assessment of tuned liquid column dampers under random seismic loading. International Journal of Non-lineaer Mechanics,1997,32(4):745-758
    [88]Han B K, Won Y J. Stochastic seismic performance of TLCD for the passive control of structures. KSCE, Journal of Civil Engineering,1998,2(3):273-280
    [89]Ghosh A, Basu B. Seismic vibration control of short period structures using the liquid column damper. Engineering Structures,2004,26:1905-1913
    [90]Ghosh A, Basu B. Effect of soil interaction on the performance of liquid column dampers for seismic applications. Earthquake Engineering and Structural Dynamics,2005,34:1375-1389
    [91]Ghosh A, Basu B. Alternative approach to optimal tuning parameter of liquid column damper for seismic applications. ASCE, Journal of structural engineering.2007,133(12):1848-1852
    [92]Ghosh A, Basu B. Seismic vibration control of structures using the Liquid column damper. ASCE, Journal of structural engineering,2008,134(1):146-153
    [93]Reiterer M, Ziegler F. Bi-axial seismic activation of civil engineering structures equipped with tuned liquid column dampers. Journal of Seismology and Earthquake Engineering,1995,7(1):45-60
    [94]Ziegler F, A vertically acting tuned liquid column damper. PAMM, Special Issue: GAMM Annual Meeting,2006,6(1):345-346
    [95]卢哲安,瞿伟廉,袁海庆.U型水箱对高层建筑结构地震反应振型控制的优 化设计.武汉工业大学学报,1993,15(4):81-85
    [96]阎石,李宏男,林皋.可调频调液柱型阻尼器振动控制参数研究.地震工程与工程振动,1998,18(4):96-102
    [97]霍林生,李宏男,孙丽.多维地震作用下非对称结构利用TLCD减震控制研究.地震工程与工程振动,2001,21(4):147-153
    [98]李宏男,霍林生.调液阻尼器对结构扭转耦联振动控制的优化设计.计算力学学报,2005,22(2):129-135
    [99]Balendra T, Wang C M, Cheong H F. Effectiveness of tuned liquid column dampers for vibration control towers. Engineering Structures,1995, 17(9):668-675
    [100]Balendra T, Wang C M, Rakesh G. Vibration control of tapered building using TLCD. Journal of Wind Engineering and Industrial Aerodynamics.1998, 77:245-257
    [101]Balendra T, Wang C M, Rakesh G. Vibration control of various types of building using TLCD. Journal of Wind Engineering and Industrial Aerodynamics.1999, 83:197-208
    [102]Balendra T, Wang C M, Rakesh G. Effectiveness of TLCD on various structural systems. Engineering Structures,1999,21:291-305
    [103]Gao H, Kwok K C S, Samali B. Optimization of tuned liquid column dampers. Engineering Structures,1997,19(6):476-486
    [104]Gao H, Kwok K C S, Samali B. Characteristics of multiple tuned liquid column dampers in suppressing structural vibration. Engineering Structures,1999, 21:316-331
    [105]Chang C C, Qu W L. Unified dynamic absorber design formulas for wind-induced vibration control of tall building. The Structural Design of Tall Buildings,1998,7:147-166
    [106]Chang C C. Mass dampers and their optimal designs for building vibration control. Engineering Structures,1999,21:454-463
    [107]瞿伟廉,李肇胤,李桂青.U型水箱对高层建筑和高耸结构风振控制的试验和研究.建筑结构学报,1993,14(5):37-44
    [108]盛克苏,瞿伟廉,秦惠纪.U型水箱对高层建筑和高耸结构风振反应的控制.武汉工业大学学报,1997,19(3):120-122
    [109]Yalla S K, Kareem A. Optimum absorber parameters for tuned liquid column dampers. ASCE, Journal of Structural Engineering,2000,126(8):906-915
    [110]Yalla S K, Karrem A. Beat phenomenon in combined structure-liquid damper systems. Engineering Structures,2001,23:622-630
    [111]Yalla S K, Kareem A, Abdelrazaq A. Risk-based decision analysis for building serviceability. In:Proc.8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability. Indiana, US,2000, PMC2000-237:1-6
    [112]Xue S D. Torsional vibration control of suspension bridge decks using tuned liquid column damper. [Degree of Doctor of Philosophy for the Hong Kong Polytechnic University]. Hong Kong:the Hong Kong Polytechnic University, 1999,1-50
    [113]Xue S D, Ko J M, Xu Y L. Tuned liquid column damper for suppressing pitching motion of structures. Engineering Structures,2000,23:1538-1551
    [114]薛素铎,高赞明,徐幼麟.抑制桥板扭转振动的调频液体阻尼器.振动工程学报,2000,13(4):596-603
    [115]Shum K M, Xu Y L. Multiple-tuned liquid column dampers for torsional vibration control of structures:experimental investigation. Earthquake Engineering and Structural Dynamics,2002,31:977-991
    [116]Xu Y L, Shum K M. Multiple-tuned liquid column dampers for torsional vibration control of structures:theoretical investigation. Earthquake Engineering and Structural Dynamics,2003,32:309-328
    [117]Shum K M, Xu Y L. Multiple tuned liquid column dampers for reducing coupled lateral and torsional vibration of structures. Engineering Structures,2004, 26:745-758
    [118]Shum K M, Xu Y L. Wind-induced vibration control of long span cable-stayed bridges using multiple pressurized tuned liquid column dampers. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:166-192
    [119]Wu J S, Hsieh M. Study on the dynamic characteristic of a U-type tuned liquid damper. Ocean Engineering,2002,29:689-709
    [120]Wu J C, Shih M H, Lin Y Y, et al. Design guidelines for tuned liquid column damper for structures responding to wind. Engineering Structures,2005, 27:1893-1905
    [121]Wu J C, Wang Y P, Lee C L, et al. Wind-induced interaction of a non-uniform tuned liquid column damper and a structure in pitching motion. Engineering Structures,2008,30:3555-3565
    [122]Reiterer M, Hochrainer M J. Damping of Pedestrian-induced bridge vibrations by tuned liquid column dampers. PAMM, Special Issue:GAMM Annual Meeting, 2004,4:109-110
    [123]Reiterer M, Ziegler F. Control of pedestrian-induced vibration of long-span bridges. Structural Control and Health Monitoring,2006,13:1003-1027
    [124]Min K W, Kim H S, Lee S H, et al. Performance evaluation of tuned liquid column dampers for response control of a 76-story benchmark building. Engineering Structures,2005,27:1101-1112
    [125]Lee H H, Wong S H, Lee R S. Response mitigation on the offshore floating platform system with tuned liquid column damper. Ocean Engineering,2006, 33:1118-1142
    [126]庄书贤,改良式调谐液柱阻尼器对大型浮式结构物之动力减振研究.[国立中山大学硕士论文].台北:国立中山大学,2002,1-100
    [127]陈泰铭,大型浮式海域平台受波浪作用之动力行为减振研究.[国立中山大学硕士论文].台北:国立中山大学,2004,1-80
    [128]何晓宇,李宏男.波浪荷载作用下导管架海洋平台利用TLCD的振动控制.振动工程学报,2008,21(1):71-78
    [129]Colwell S, Basu B. Tuned liquid column dampers in offshore wind turbines for structural control. Engineering Structures,2009,31:358-368
    [130]Hitchcock P A, Kwok K C S, Watkins R D, et al. Characteristics of liquid column vibration absorbers (LCVA)—Ⅰ. Engineering Structures,1997, 19(2):126-134
    [131]Hitchcock P A, Kwok K C S, Watkins R D, et al. Characteristics of liquid column vibration absorbers (LCVA)—Ⅱ. Engineering Structures,1997, 19(2):135-144
    [132]Hitchcock P A, Glanville M J, Kwok K C S, et al. Damping properties and wind-induced response of a steel frame tower fitted with liquid column vibration absorbs. Journal wind Engineering and Industrial Aerodynamics,1999, 83:183-196
    [133]Chang C C, Hsu C T. Control performance of liquid column vibration absorbers. Engineering Structures,1998,20(7):580-586
    [134]Taflanidis A A, Angelides D C, Manos G C. Optimal design and performance of liquid column mass dampers for rotational vibration control of structures under white noise excitation. Engineering Structures,2005,27:524-534
    [135]Samali B, Kwok K C S. Mack A, et al. Vibration control of the wind-excited 76-story benchmark building by liquid column vibration absorbers. ASCE, Journal of Engineering Mechanics,2004,130(4):478-485
    [136]Haroun M A, Pires J A, Won A Y J. Suppression of environmentally-induced vibrations in tall buildings by hybrid liquid column dampers. The Structural Design of Tall buildings,1996,5:45-54
    [137]Kim H J. Hybrid control of smart structures using a novel wavelet-based algorithm. Computer-Aided Civil and Infrastructure Engineering,2005,20:7-22
    [138]Balendra T, Wang C M, Yan N. Control of wind-excited towers by active tuned liquid column damper. Engineering Structures,2001,23:1054-1067
    [139]Chen Y H, Ko C H. Active tuned liquid column damper with propellers. Earthquake Engineering and Structural Dynamics,2003,32:1627-1638
    [140]丁英展.被动式、主动式及半主动式谐调液柱阻尼器之理论与应用.[国立台湾大学博士论文].台北:国立台湾大学,2007,93-144
    [141]Yalla S K, Kareem A, Kantor J C. Semi-active tuned liquid column dampers for vibration control of structures. Engineering Structures,2001,23:1469-1479
    [142]Yalla S K, Kareem A. Semiactive tuned liquid column dampers:experimental study. ASCE, Journal of Structural Engineering,2003,129(7):960-971
    [143]Shum K M, Xu Y L, Guo W H. Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers. Wind and structures,2006,9(4):271-296
    [144]李宏男,霍林生,刘洋.采用神经网络半主动TLCD对海洋固定式平台的振动控制.防灾减灾工程学报,2003,23(2):22-27
    [145]金峤,周晶,李昕.半主动TLCD对固定式海洋平台的离散神经网络滑模控制.世界地震工程,2005,21(3):28-34
    [146]李宏男,金峤.基于Takagi-Sugeno模型的半主动TLCD对偏心结构的减震控制.计算力学学报,2003,20(5):523-529
    [147]杨润林,刘锡荟,周锡元.调谐液柱阻尼器系统的半主动模糊控制.土木工程学报,2003,36(6):36-41
    [148]杨润林,闫维明,周锡元,等.半主动U型液力阻尼器的结构振动控制.应用力学学报,2003,20(4):108-111
    [149]Irvin P A, Breukelman B. Recent application of damping systems for wind response. In:Tall Buildings and Urban Habitat-Cities in the Third Millennium. Melbourne, Australia,2001,645-655
    [150]Ying Z G, Ni Y Q, Ko J M. Semi-active optimal control of linearized systems with multi-degree of freedom and application. Journal of Sound and Vibration, 2005,279:373-388
    [151]Wang J Y, Ni Y Q, Ko J M, et al. Magneto-rheological tuned liquid column dampers MR-TLCDs) for vibration mitigation of tall buildings:modeling and analysis of open-loop control. Computers and Structures,2005,83:2023-2034
    [152]Ni Y Q, Ying Z G, Wang J Y, et al. Stochastic optimal control of wind-excited tall buildings using semi-active MR-TLCDs. Probabilistic Engineering Mechanics,2004,19:169-277
    [153]Colwell S, Basu B. Experimental and Theoretical Investigations of Equivalent Viscous Damping of Structures with TLCD for Different Fluids. Journal of Structural Engineering, ASCE,2008,134:154-163
    [154]Stanway R, Sproston J L, Stevens N G. Non-linear modeling of an electro-rheological vinration damper. Journal of Electrostatics,1987,20: 167-184
    [155]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证.地震工程与工程振动,2002,22(4):144-150
    [156]Gamota D R, Filisko F E. Dynamic mechanical studies of electrorheological materials:moderate frequencies. Journal of Rheology,1991,35:399-425
    [157]禹见达.磁流变阻尼器对斜拉桥拉索振动控制的理论与试验研究.[湖南大学博士论文].长沙:湖南大学,2007,25-40
    [158]Wen Y K. Method for random vibratiob of hysteretic systems. Journal of the Engineering Mechanics Division, ASCE,1976,102(EM2):249-263
    [159]Kwok N M, Ha Q P, Nguyen T H, et al. A novel hysteretic model for magetorheological fluid dampers and parameter identification using particle swarm optimization. Sensors and Actuators A,2006,132:441-451
    [160]Tse T, Chang C C. Shear-mode rotary magnetorheological damper for small-scale structural control experiments. Journal of structural engineering, ASCE.2004,130(6):904-911
    [161]Lord Company. MRF-132DG Magneto-rheological Fluid. Lord Technical Data, 2008-8-7
    [162]Kennedy J, Eberhart R C. Particle swarm optimization. In:Proc. IEEE int'l conf. on neural networks. Piscataway, NJ,1995,Vol. Ⅳ:1942-1948
    [163]Shi Y, Eberhart R. A Modified Particle Swarm Optimizer. In:IEEE World Congress on Computational Intelligence. Anchorage, Alaska,1998:69-73
    [164]倪振华.振动力学.西安:西安交通大学出版社,1990,121-132
    [165]张相庭.结构风工程.北京:中国建筑工业出版社,2006,99-118
    [166]Simiu E, Scanlan R H. Wind effects on structures:Fundamentals and Applications to Design. New York:John Wiley & Sons, Inc,1996,55-65
    [167]陈政清.桥梁风工程.北京:人民交通出版社,2005,116-119
    [168]Deodatis G. Simulation of ergodic multivariate stochastic processes.Journal of Engineering Mechanics, ASCE.1996,122(8):778-787
    [169]林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004,42-59
    [170]董平.结构工程中的被动消能系统.北京:科学出版社,2005,171-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700