结构振动疲劳寿命分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天、风能利用、公路铁路以及海洋运输等领域的很多结构都是在振动载荷环境下工作的,然而由于振动疲劳本身存在的复杂性,目前在试验和理论方面对振动疲劳的研究还很不成熟。因此,对振动疲劳寿命进行系统深入的研究具有重要的理论意义和工程实用价值。
     本文采用试验和理论相结合的研究方法。振动疲劳试验提供了验证数据,以全寿命区疲劳S-N曲线作为寿命分析依据,从振动疲劳寿命估算方法和振动疲劳寿命的影响因素两方面,对结构振动疲劳寿命分析方法进行了比较系统的研究。
     采用锤击法对LY12CZ铝合金悬臂梁结构的U形槽和圆形槽缺口试验件进行了模态分析试验;采用基础振动的加载方式对U形槽缺口试验件悬臂梁结构进行了三种不同疲劳载荷谱下的振动疲劳试验,对圆形槽缺口试验件悬臂梁结构进行了两种不同疲劳载荷谱下的振动疲劳试验。研究了频率对金属材料疲劳寿命曲线的影响,提出了金属材料疲劳S-N曲线模型。疲劳S-N曲线模型在全寿命区域内很好的描述了循环应力和疲劳寿命之间的关系。统计分析了大量的试验结果,对疲劳S-N曲线模型以及频率的影响进行了验证,为结构振动疲劳寿命估算提供了重要的依据。
     提出了随机过程的雨流幅值分布模型和时域振动疲劳寿命估算的样本法。提出的改进三角级数法解决了频域内非均匀采样随机过程的时域模拟问题,并基于改进三角级数法提出了时域振动疲劳寿命估算的样本法;提出了限带白噪声、单峰谱、双峰谱、斜谱和一般宽带随机过程的雨流幅值分布模型,给出了模型的参数和随机过程谱参数之间的半经验计算公式,并据此发展了频域振动疲劳寿命估算方法。结合振动疲劳试验结果对常用的频域疲劳寿命估算方法进行了评述和比较。经试验验证,得出本文提出的振动疲劳寿命预测方法能给出令人满意的寿命预测结果,且偏于安全。
     研究了阻尼、应力集中和平均应力对结构振动疲劳寿命的影响。建立了模态阻尼比与结构振动疲劳寿命之间的关系;定义了均方应力集中系数,引入疲劳缺口系数计算缺口件的振动疲劳寿命;提出了随机过程雨流均值分布模型,基于雨流幅值和雨流均值相互独立的假设,解决了平均应力影响下结构的振动疲劳寿命估算问题,给出了总体疲劳载荷和振动疲劳载荷共同作用下结构疲劳寿命估算过程。通过模态分析试验和振动疲劳试验的验证,表明本文的方法能很好的预测阻尼和应力集中影响下结构的振动疲劳寿命。
Many components usually undergo vibration loading, which are used in aircrafts, wind energy utilizations and automobiles. However, vibration fatigue is more complicated than general cycle fatigue. Up to now, little experimental work has been done for vibration fatigue, and many theoretical problems have not been solved completely. Thus the systematical study on the vibration fatigue life has not only the important significance, but also a practical value.
     A combined theoretical and experimental study method for vibration fatigue life prediction was used. The vibration fatigue life research was consisted of the research on fatigue life prediction methods and the effect factors in fatigue life. The fatigue S-N curve was used as computation basis of fatigue life prediction. The vibration fatigue test was provided the datas for experimental verification.
     Modal analysis test and vibration fatigue test were conducted on cantilever structure of LY12CZ aluminum alloy. Two types of notch specimens were used, one was U grooved and the other was circular grooved. Hammering method was used in modal analysis test. Three different fatigue loadings were used on vibration fatigue test of U grooved specimens, and two different fatigue loadings were used on vibration fatigue test of circular groove specimens.
     The all life model of fatigue S-N curve for metal materials was presented. The effect of frequency on fatigue life curve of metal materials has been analyzed. The all life model of fatigue S-N curve describes the relationship between cycle stress and fatigue life very well. The statistics and analysis of test results show that the S-N curve model and frequency effects are in good agreement with the experimental ones.
     The models of rainflow amplitude distribution for random process and the sample method for vibration fatigue life prediction in time domain were presented. An improved trigonometric series method for time domain simulation of random process was proposed to solve the time domain simulation of random process on non-uniform sampling in frequency domain. The sample method was proposed and used for vibration fatigue life prediction in time domain, which based on the improved trigonometric series method. The models of rainflow amplitude distribution for limited band white noise, unimodal resonance spectrum, bimodal stress spectrum and general broadband random process were proposed, and the experiential formulas of model parameters were given in this paper. New methods of vibration fatigue life prediction in frequency domain were developed. Several common frequency domain methods of vibration fatigue life prediction and our methods of vibration fatigue life prediction were examined with the test data. It is demonstrated that the proposed life prediction methods give better satisfactory results for all experimental samples.
     The effect of damping, stress concentration and mean stress on structure vibration fatigue life has been analyzed. The relationship formula between modal damping ratio and structure vibration fatigue life has been given. The stress concentration factor of root mean square has been defined in this paper. And the prediction method for vibration fatigue life of notch sample based on fatigue notch factor has been proposed. The model of rainflow mean distribution for random process was proposed. The prediction method for vibration fatigue life taken into account effect of mean stress was presented, and this method based on the assumption of mutually independent between rainflow amplitude and rainflow mean. The effect of damping and stress concentration on vibration fatigue life are examined with the results of modal analysis test and vibration fatigue test. The analyzed results show good agreement with experimental results.
引文
[1] GJB 67.8-85.军用飞机强度和刚度规范(振动).
    [2]姚起杭,姚军.结构振动疲劳问题的特点与分析方法.机械科学与技术, 2000, 19(s): 56~58.
    [3]姚起杭,姚军.工程结构的振动疲劳研究.飞机工程, 2005, 3:5~8.
    [4]姚起杭,姚军.工程结构的振动疲劳问题.应用力学学报,2006, 23(1): 12~15.
    [5]胡志强,法庆衍,洪宝林,张越,徐殷.随机振动实验应用技术.北京:中国计量出版社, 1996.
    [6] C.格林.振动手册.北京:《强度与环境》编辑部, 1982.
    [7]钟万勰.一个高效结构随机响应算法系列—虚拟激励法.自然科学进展—国家重点实验室通讯, 1996, 6(4): 394~401.
    [8]王良曦,潘高田,薛孟君.非平稳随机过程功率谱密度初探.工程数学学报, 2003, 20(4): 134~136.
    [9]丁志中,易茂祥.关于非平稳随机过程谱密度函数的讨论.合肥工业大学学报自然科学版, 1996, 19(1): 45~49.
    [10] H. Jensen, W. D. Iwan. Response of systems with uncertain parameters to stochastic excitation. Journal of Engineering Mechanics Division, ASCE, 1992, 118(5): 1012~1025.
    [11] P. D. Spanos, R. G. Ghanem. Stochastic finite element expansion for random media. Journal of Engineering Mechanics Division, ASCE, 1989, 115(5): 1035~1053.
    [12]李杰.复合随机振动分析的扩阶系统方法.力学学报, 1996, 28(1): 66~74.
    [13]张森文等.精细积分时域平均法和扩阶系统.力学学报, 2000, 32(2): 191~197
    [14]李杰,廖松涛.线性随机结构在随机激励下动力响应分析.力学学报, 2002, 34(3): 416~424.
    [15]林家浩.随机地震响应的确定性算法.地震工程与工程振动, 1985, 5(1): 89~94.
    [16]林家浩,易平.线性随机结构的平稳随机响应.计算力学学报, 2001, 18(4): 402~408.
    [17]赵雷,陈虬.随机有限元动力分析方法的研究进展.力学进展, 1999, 29(1): 9~18.
    [18]姚卫星.结构疲劳寿命分析.北京:国防工业出版社, 2004.
    [19]吴富强,姚卫星.一个新的材料疲劳寿命曲线模型.中国机械工程, 2008, 19(13): 1634-1637.
    [20] S. D. Downing, D.F. Socie. Simple rainflow counting algorithms. International Journal ofFatigue, 1982, 4(1): 31~40.
    [21] R .J. Anthes. Modified rainflow counting keeping the load sequence. International Journal of Fatigue, 1997, 19(7): 529~535.
    [22] M. P. Repetto. Cycle counting methods for bi-modal stationary Gaussian processes. Probabilistic Engineering Mechanics, 2005, 20: 229~238.
    [23] M. Grigoriu. A spectral representation based modal for Monte Carlo simulation. Probabilistic Engineering Mechanics, 2000, 15: 365~370.
    [24]侯传亮,张永林.工程平稳随机过程的数值模拟研究.武汉工业学院学报, 2003, 22(3): 27~29.
    [25]刘献栋,邓志党,高峰.基于逆变换的路面不平度仿真研究.中国公路学报, 2005, 18(1): 122~126.
    [26]陈春俊,李华超.频域采样三角级数法模拟轨道不平顺信号.铁道学报, 2006, 28(3): 38~42.
    [27]刘寅华,李芾,黄运华.轨道不平顺数值模拟方法.交通运输工程学报, 2006, 6(1): 29~33.
    [28]安刚,龚鑫茂.随机振动环境下结构的疲劳失效分析.机械科学与技术, 2000, 19(s): 40~42.
    [29]徐菲,肖寿庭.结构声疲劳寿命估算的功率谱密度法.机械强度, 1996, 18(4): 38~42.
    [30] P. H. Wirsching. Fatigue under wide band random stress. Journal of the Structural Division, 1980, 1593~1606.
    [31] G. Chaudhury. Spectral fatigue of broad-band stress spectrum with one or more peaks. OTC5333, 1986, 387~396.
    [32] L. D. Lutes, S. Sarkani. Stochastic analysis of structural and mechanical vibrations. New Jersey: Prentice-Hall, 1997.
    [33] Andrew Halfpenny.基于功率谱密度信号的疲劳寿命分析.中国机械工程,1998,9(11): 16~19.
    [34]伍义生.随机载荷下疲劳损伤计算.机械科学与技术. 1996, 11: 879~882.
    [35]李超.基于功率谱密度的疲劳寿命估算.机械设计与研究, 2005, 21(2): 6~8.
    [36]王琳,倪樵,张强,刘攀.随机激励下高压管道的疲劳寿命分析.华中科技大学学报(自然科学版), 2003, 31(12): 100~102.
    [37]吴启鹤,叶笃毅.一种估算结构件随机疲劳寿命的新方法.工程力学, 1995, 12(2): 87~94.
    [38]骆红云,陈志刚,张卫波,梁淑卿.窄带随机应力下机械构件寿命预测法.吉林工学院学报, 2000, 21(4): 32~34.
    [39] R. Tovo. Cycle distribution and fatigue damage under broad-band random loading. InternationalJournal of Fatigue, 2002, 24: 1137~1147.
    [40] Bishop N W M. The use of frequency domain parameters to predict structural fatigue, [Ph.D. Dissertation]. Coventry: University of Warwick, 1988.
    [41] D. P. Kihl, S. Sarkani, J. E. Beach. Stochastic fatigue damage accumulation under broadband loadings. International Journal of Fatigue, 1995, 17(5): 321~329.
    [42] D. Benasciutti, R. Tovo. Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes. Probabilistic Engineering Mechanics, 2005, 1: 1~13.
    [43] D. Benasciutti, R. Tovo. Spectral method for lifetime prediction under wide-band stationary random processes. International Journal of Fatigue, 2005, 27: 867~877.
    [44] M. Nagode, M. Fajdiga. A general multi-modal probability density function suitable for the rainflow ranges of stationary random processes. International Journal of Fatigue, 1998, 20(3): 211~223.
    [45] M. Nagode, M. Fajdiga. On a new method for prediction of the scatter of loading spectra. International Journal of Fatigue, 1998, 20(4): 271~277.
    [46] M. Nagode, M. Fajdiga. An improved algorithm for parameter estimation suitable for mixed Weibull distributions. International Journal Fatigue, 2000, 22(1): 75~80.
    [47] R. Tovo. A damage-based evaluation of probability density distribution for rain-flow ranges from random processes. International Journal of Fatigue, 2000, 22: 425~429.
    [48]吕澎民.宽带随机载荷谱下结构疲劳寿命估算.长安大学学报. 2004, 24(1): 76~78.
    [49]阳光武,肖守讷,金鼑昌.基于分段S-N曲线的频域疲劳损伤估计.机械强度, 2005, 27(4): 544~548.
    [50] Pengmin Lu, Banghua Zhao, Junmao Yan. Efficient algorithm for fatigue life calculations under broad band loading based on peak approximation. Journal Engineering Mechanics, 1998, 5: 233~236.
    [51] C. L. Chow, D. L. Li. An analytical solution for fast fatigue assessment under wide-band random loading. International Journal of Fatigue, 1991, 13(5): 395~404.
    [52] J. C. P. Kam. Recent development in the fast corrosion fatigue analysis of offshore structures under random wave loading. International Journal of Fatigue, 1990, 12(6): 458~468.
    [53]吕澎民,赵邦华,严隽耄.宽带随机谱下一种实用的等效应力计算模型.甘肃工业大学学报. 1996, 22(5): 76~82.
    [54]屠海明,邓洪渊.桅杆结构风振疲劳分析.四川建筑科学研究, 2001, 27(2): 6~8.
    [55] S. Sakai, H. Okamura. On the distribution of rainflow range for Gaussian random processes with bimodal PSD. JSME International Journal, Series A, 1995, 38(4): 440~445.
    [56] T.-T. Fu, D. Cebon. Prediction fatigue lives for bi-modal stress spectral densities. International Journal of Fatigue, 2000, 22: 11~21.
    [57] C. Braccesi, F. Cianetti, G. Lori, D. Pioli. Fatigue behaviour analysis of mechanical components subject to random bimodal stress process: frequency domain approach. International Journal of Fatigue, 2005, 27: 335~345.
    [58] T. Lagoda, E. Macha, R. Pawliczek. The influence of the mean stress on fatigue life of 10HNAP steel under random loading. International Journal of Fatigue, 2001, 23: 283~291.
    [59] S. Kwofie. An exponential stress functions for predicting fatigue strength and life due to mean stresses. International Journal of Fatigue, 2001, 23: 829~836.
    [60]冯振宇,诸德培,林富甲.随机载荷下的疲劳寿命估算.机械科学与技术, 1996, 15(6): 879~882.
    [61] Rice. S. O. Mathematical analysis of random noise. Bell System Technical Journal, 1944, 23: 282~332.
    [62] M. Frendhal, I. Rychlik. Rainflow analysis: Markov method. International Journal of Fatigue, 1993, 15: 265~273.
    [63] J. S. Bendat, A.G. Piersol. Measurement and analysis of random data. New York: John Wiley, 1966.
    [64] L. D. Lutes, C. E. Larsen. Improved spectral method for variable amplitude fatigue prediction. Journal of Structure Engineering, ASCE, 1990, 116(4): 1149~1164.
    [65] C. E. Larsen, L. D. Lutes. Predicting the fatigue life of offshore structures by the single-moment spectral method. Probabilistic Engineering Mechanics, 1991, 6(2): 96~108.
    [66] G. Jiao, T. Moan. Probabilistic analysis of fatigue due to Gaussian load processes. Probabilistic Engineering Mechanics, 1990, 5(2): 76~83.
    [67] D. Benasciutti, R. Tovo. Fatigue life assessment in non-Gaussian random loadings. International Journal of Fatigue, 2006, 28: 733–746.
    [68] T. Dirlik. Application of computers in fatigue analysis, [Ph.D. Dissertation]. Coventry: University of Warwick, 1985.
    [69] N. W. M. Bishop, Z. Hu, R. Wang, D. Quarton. Methods for rapid evaluation of fatigue damage on the Howden HWP330 wind turbine. British Wind Energy Conference, York, 1993.
    [70] W. Zhao, M. J. Baker. On the probability density function of rainflow stress range for stationary Gaussian processes. International Journal of Fatigue, 1992, 14(2): 121~135.
    [71] T. J. George, J. Seidt, M. -H. Herman Shen, T. Nicholas, C. J. Cross. Development of a novel vibration-based fatigue testing methodology. International Journal of Fatigue, 2004, 26:477~486.
    [72]吴三灵.实用振动试验技术.北京:兵器工业出版社, 1993.
    [73]肖寿庭,杜修德. LY12CZ铝合金悬臂梁动态疲劳S-N曲线的试验测定.机械强度, 1995, 17(1): 22~24.
    [74] S. Ariduru. Fatigue life calculation by rainflow cycle counting method. MS Thesis, Middle East Technical University, 2004.
    [75]潘丽华,杨瑞成.随机扫描振动中结构疲劳寿命的预测.兰州理工大学学报, 2007, 33(2): 25~28.
    [76]薛红前,陶华,王弘.超声振动载荷下LY12合金超高周疲劳性能研究.西北工业大学学报, 2004, 22(1): 108~111.
    [77]薛红前,陶华.超声疲劳试验方法在铸铝疲劳试验中的应用.机械强度, 2004, 26(2): 203~206.
    [78] Emin Bayraktar, Isreal Marines Garcias, Claude Bathias. Failure mechanisms of automotive metallic alloys in very high cycle fatigue range. International Journal of Fatigue, 2006, 28: 1590~1602.
    [79] C. Berger, B.Pyttel, T.Trossmann. Very high cycle fatigue test with smooth and notched specimens and screws made of light metal alloys. International Journal of Fatigue, 2006, 28: 1640~1646.
    [80] S. E. Stanzl-Tschegg, H. Mayer. Fatigue and fatigue crack growth of aluminium alloys at very high numbers of cycles. International Journal of Fatigue, 2001, 23: S231~S237.
    [81] H. Mayer. Fatigue crack growth and threshold measurements at very high frequencies. International Materials Reviews 1999, 44(1): 1~36.
    [82] H. Mayer. Ultrasonic torsion and tension–compression fatigue testing-Measuring principles and investigations on 2024-T351 aluminium alloy. International Journal of Fatigue, 2006, 28: 1446~1455.
    [83] S. E. Stanzl-Tschegg, H. Mayer, A. Stich. Variable amplitude loading in the very high-cycle fatigue regime. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25: 887~896.
    [84] H. Mayer, C.Ede, J.E.Allison. Influence of cyclic loads below endurance limit or threshold stress intensity on fatigue damage in cast aluminium alloy 319-T7.International Journal of fatigue, 2005, 27: 129~141.
    [85] H. Mayer, M. Papakyriacou, R. Pippan, S. Stanzl-Tschegg. Influence of loading frequency on the high cycle fatigue properties of AlZnMgCu1.5 aluminium alloy. Materials Science andEngineering, 2001, A314: 48~54.
    [86] M. Papakyriacou_Influence of atmospheric moisture on slow fatigue crack growth at ultrasonic frequency in aluminium and magnesium alloy. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25: 795~804.
    [87] C.Bathias. There is no infinite fatigue life in metallic materials. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22: 559~565.
    [88] Q. Y. Qang, C.Bathias, N. Kawagoishi, Q. Chen. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. International Journal of fatigue, 2002, 24: 1269~1274.
    [89] E. Bayraktar, I. M. Garcias, C. Bathias. Failure mechanisms of automotive metallic alloys in very high cycle fatigue range. International Journal of fatigue, 2006, 28: 1590~1602.
    [90] I. Marines, X. Bin, C. Bathias. An understanding of very high cycle fatigue of metals. International Journal of fatigue, 2003, 25: 1101~1107.
    [91] B.Zettl, H. Mayer, C. Ede, S. Stanzl-Tschegg. Very high cycle fatigue of normalized carbon steels. International Journal of fatigue, 2006, 28: 1583~1589.
    [92] J. M. Zhang, S. X. Li, Z. G. Yang, G. Y. Li, W. J. Hui, Y. Q. Weng. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime. International Journal of fatigue, 2007, 29: 765~771.
    [93] M.Nakajima, K. Tokaji, H. Itoga, H.-N. Ko.Morphology of step-wise S–N curves depending on work-hardened layer and humidity in a high-strength steel. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26: 1113~1118.
    [94] K. Shiozawa, L. Lu. Very high-cycle fatigue behaviour of shot-peened high-carbon-chromium bearing steel. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25: 813~822.
    [95] Y. Ochi, T. Matsumura, K. Masaki, S. Yoshida. High-cycle rotating bending fatigue property in very long-life regime of high-strength steels. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25: 823~830.
    [96] C.Bathias, L. Drouillac, P. Le Francois. How and why the fatigue S–N curve does not approach a horizontal asymptote. International Journal of fatigue, 2001, 23: S143-S151.
    [97] C. Berger, B. Kaiser. Results of very high cycle fatigue tests on helical compression springs. International Journal of fatigue, 2006, 28: 1658~1663.
    [98] C. Berger, B. Pyttel, T. Trossmann. Very high cycle fatigue tests with smooth and notched specimens and screws made of light metal alloys. International Journal of fatigue, 2006, 28: 1640~1646.
    [99] H. Mayer. Fatigue crack growth and threshold measurements at very high frequencies.International Materials Reviews, 1999, 44(1): 1~33.
    [100] H. Mayer, C. Ede, J. E. Allison. Influence of cyclic loads below endurance limit or threshold stress intensity on fatigue damage in cast aluminium alloy 319~T7.International Journal of fatigue, 2005, 27: 129~141.
    [101] H. Mayer, M. Papakyriacou, R. Pippan, S. Stanzl-Tschegg. Influence of loading frequency on the high cycle fatigue properties of AlZnMgCu1.5 aluminium alloy. Materials Science and Engineering, 2001, A314: 48~54.
    [102] H. Mayer. Ultrasonic torsion and tension–compression fatigue testing_Measuring principles and investigations on 2024-T351 aluminium alloy. International Journal of fatigue, 2006, 28: 1446~1455.
    [103] I. Marines, G. Dominguez, G. Baudry, J.-F. Vittori, S. Rathery, J.–P. Doucet, C. Bathias. Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz. International Journal of Fatigue, 2003, 25: 1037~1046.
    [104] J. V. Carstensen, H. Mayer, P. Brondsted. Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25: 837~844.
    [105] K. J. Miller, W. J. Odonnell. The fatigue limit and its elimination. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22: 545~557.
    [106] K.Shiozawa, L. Lu, S. Ishihara. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue and Fracture of Engineering Materials and Structures, 2001, 24: 781~790.
    [107] M. Papakyriacou, H. Mayer, U. Fuchs, S. E. Stanzl-Tschegg, R. P. Wei. Influence of atmospheric moisture on slow fatigue crack growth at ultrasonic frequency in aluminium and magnesium alloy. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25: 795~804.
    [108] Q. Y. Wang, J. Y. Berard, A. Dubarre, G. Baudry, S. Rathery, C. Bathias. Gigacycle fatigue of ferrous alloy. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22: 667~672.
    [109] T. Abe, Y. Furuya, S. Matsuoka. Gigacycle fatigue properties of 1800 MPa class spring steels. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27: 159~167.
    [110] T. Billaudeau, Y. Nadot. Support for an environmental effect on fatigue mechanisms in the long life regime. International Journal of Fatigue, 2004, 26: 839~847.
    [111] T. Sakai, Y. Sato, N. Oguma. Characteristic S-N properties of high carbon chromium bearing steel under akial loading in long-life fatigue. Fatigue and Fracture of Engineering Materials andStructures, 2002, 25: 765~773.
    [112] Y. Furuya, S. Matsuoka, T. Abe, K. Yamaguchi. Gigacycle fatigue properties for high-strength low-alloy steel at 100Hz, 600Hz, and 20kHz. Scripta Materialia, 2002, 46: 157~162.
    [113] Y. Murakami, N. N. Yokoyama, J. Nagata. Mechanism of fatigue failure in ultralong life regime. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25: 735~746.
    [114] Y. Murakami, M. Takada, T. Toriyama. Super-long life tension–compression fatigue properties of quenched and tempered 0.46% carbon steel. International Journal of Fatigue, 1998, 16(9): 661~667.
    [115] Z. G. Yang, J. M. Zhang, S. X. Li. On the critical inclusion size of high strength steels under ultra-high cycle fatigue. Materials Science and Engineering, 2006, A427: 167~174.
    [116] Z. G. Yang, S. X. Li, J. M. Zhang. The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime. Acta Materialia, 2004, 52: 5235~5241.
    [117] C. R. Sohar, A. Betzwar-Kotas, C. Gierl, B. Weiss, H. Danninger. Gigacycle fatigue behavior of a high chromium alloyed cold work tool steel. International Journal of Fatigue, 2008, 30: 1137~1149.
    [118] J. Kohout, S. Vechet. A new function for fatigue curves characterization and its multiple merits. International Journal of Fatigue, 2001, 23: 175~183.
    [119] A. K. Lynn, D. L. Duquesnay. Computer simulation of variable amplitude fatigue crack initiation behaviour using a new strain-based cumulative damage model. International Journal of Fatigue, 2002, 24: 977~986.
    [120] E. Bayraktar, C. Bathias, X. Hongquian, T. Hao. On the giga cycle fatigue behaviour of two-phase TiAl alloy. International Journal of Fatigue, 2004, 26: 1263~1275.
    [121] H. Q. Xue, E. Bayraktar, C. Bathias. Damage mechanism of a nodular cast iron under the very high cycle fatigue regime. Journal of Materials Processing Technology, 2008, 202: 216~223.
    [122] Gonzalo M. Dominguez Almaraz. Prediction of very high cycle fatigue failure for high strength steels based on the inclusion geometrical properties. Mechanics of Materials, 2008, 40: 636~640.
    [123] I. M. Garcia, J. P. Doucet, C. Bathias. Development of a new device to perform torsional ultrasonic fatigue testing. International Journal of Fatigue, 2007, 29: 2904~2101.
    [124] N. Miura, Y. Takahashi. High-cycle fatigue behavior of type 316 stainless steel at 288°including mean stress effect. International Journal of Fatigue, 2006, 28: 1618~1625.
    [125] Q. Chen, N. Kawagoishi, Q. Y. Wang, N. Yan, T. Ono, G. Hashiguchi. Small crack behaviorand fracture of nickel-based superalloy under ultrasonic fatigue. International Journal of Fatigue,2005, 27: 1227~1232.
    [126] H. Q. Xue, H. Tao, F. Montembault, Q. Y. Qang, C. Bathias. Development of a three-point bending fatigue testing methodology at 20 kHz frequency. International Journal of Fatigue, 2007, 29: 2085~2093.
    [127]许道奎,刘路,徐永波,韩恩厚.挤压态镁合金ZK60的超高周疲劳行为.金属学报, 2007, 43(2): 144~148.
    [128]李伟,李强,鲁连涛,谢基龙. GCr15钢超高周的疲劳行为. 2008, 32(4): 24~32.
    [129]邵红红,陈光.合金钢超声工具头超声疲劳寿命研究.农业机械学报, 2004, 35(6): 185~188.
    [130]倪金刚.超声振动载荷下合金的疲劳寿命性能研究.航空学报, 1994, 15(11): 1386~1389
    [131]鲁连涛,盐泽和章,西野精一.研磨加工层对高碳铬轴承钢超长寿命疲劳行为的影响.机械工程学报, 2007, 43(2): 115~121.
    [132]薛红前,陶华, C. Bathias. TiAl合金高周弯曲疲劳研究.机械强度, 2008, 30(1): 112~116.
    [133]鲁连涛,盐泽和章.高速工具钢的超长寿命S-N曲线特征和内部裂纹萌生行为.机械工程学报, 2006, 42(12): 89~94.
    [134]周承恩,洪友士. GCr15钢超高周疲劳行为的实验研究.机械强度, 2004, 26(S): 157~160.
    [135]王弘. 40Cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理探讨, [博士学位论文].成都:西南交通大学, 2004.
    [136] J. B. Terrell. Effect of Cyclic Frequency on the Fatigue Life of ASME SA-106-B Piping Steel in PWR Environments. Journal of Materials Engineering, 1998, 10: 193~203.
    [137] R. J. Morrissey, D.L. McDowell, T. Nicholas. Frequency and stress ratio effects in high cycle fatigue of Ti–6Al–4V. International journal of fatigue, 1999, 21: 679~685.
    [138] X. Zhu, J.W. Jones, J.E. Allison. Effect of Frequency, Environment, and Temperature on Fatigue Behavior of E319 Cast-Aluminum Alloy Small-Crack Propagation. Metallurgical and Materials Transactions A, 2008, 39A: 2666-2680.
    [139] S.A. Michel, R. Kieselbach, M. Figliolino. Environmental and frequency effects on fatigue crack growth rate and paths in aluminium alloy. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28: 205~219.
    [140] B. Weiss, K.L. Maurer. Elektronenmikroskopische untersuchungen an ultraschall wechselbeanspruchten kupferproben. Metall, 1968, 9: 915~925.
    [141]郑修麟.工程材料的力学行为.西安:西北工业大学出版社, 2004.
    [142] C. Kanchanomai, Y. Miyashita, Y. Mutoh, S. L. Mannan. Influence of frequency on low cycle fatigue behavior of Pb-free solder 96.5Sn-3.5Ag. Materials Science and Engineering, 2003,A345: 90~98.
    [143] X. Q. Shi, H. L. J. Pang, W. Zhou, Z. P. Wang. Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy. International Journal of Fatigue, 2000, 22: 217~228.
    [144] J. T. Klamo, A. Leonard, A. Roshko. The effects of damping on the amplitude and frequency response of a freely vibrating cylinder in cross-flow. Journal of Fluids and Structures, 2006, 22: 845~856.
    [145] D. E.纽兰著.随机振动与谱分析概论.北京:机械工业出版社, 1978.
    [146]欧进萍,王光远.结构随机振动.北京:高等教育出版社, 1998.
    [147] [日]星谷胜.随机振动分析.北京:地震出版社, 1977.
    [148] M. Grigoriu. Simulation of stationary processes via a sampling theorem. Journal of Sound and Vibration, 1993, 166(2): 301~313.
    [149] J. Figwer. A new method of random time-series simulation. Simulation Practice and Theory, 1997, 5: 217~234.
    [150] B. Hu, W. Schiehlen. On the simulation of stochastic processes by spectral representation. Probabilistic Engineering Mechanics, 1997, 12(2): 105~113.
    [151] D. C. Powell, J. R. Connell. Review of wind simulation methods for horizontal-axis wind turbine analysis. Richland, WA (USA): Pacific Northwest Lab, 1986.
    [152] Zhang Yonglin, Zhang Jiafan. Numerical simulation of stochastic road process using white noise filtration. Mechanical Systems and Signal Processing, 2006, 20: 363~372.
    [153]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟.西南交通大学学报, 1999, 34(2): 138~142.
    [154]姜丽丽.基于傅里叶反变换的路面随机激励时域建模与仿真, [硕士学位论文].长春:吉林大学, 2006.
    [155] D. Kujawski, F. Ellyin. A unified approach to mean stress effect on fatigue threshold conditions. International Journal of Fatigue, 1995, 17(2): 101~106.
    [156] D. P. Kihl, S. Sarkani. Mean stress effects in fatigue of welded steel joints. Probabilistic Engineering Mechanics, 1999, 14: 97~104.
    [157] L. Susmel, R. Tovo, P. Lazzarin. The mean stress effect on the high-cycle fatigue strength from a multiaxial fatigue point of view. International Journal of Fatigue, 2005, 27: 928~943.
    [158] P. Kuhn, H. F. Hardrath. An engineering method for estimating notch-size effect in fatigue tests on steel. 1952, NACA TN2805.
    [159]楼梦麟,雍国柱,李建元.阻尼特性对组合结构地震反应的影响.建筑科学与工程学报, 2007, 24(2): 24~28.
    [160] M. Colakoglu, K. L. Jerina. Material damping in 6161-T651 aluminium to assess fatigue damage. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26: 79~84.
    [161] A. N. Damir, A. Elkhatib, G. Nassef. Prediction of fatigue life using modal analysis for grey and ductile cast iron. International Journal of Fatigue, 2007, 29: 499~507.
    [162] L. T. Rose. DMAP alters to apply modal damping and obtain dynamic loading output for superelements. MSC World Users’Conference, 1993.
    [163] Xiangyu Wang. Random fatigue of structural with uncertain parameters and non-Gaussian stress response, [Ph.D. Dissertation]. Delaware: University of Delaware, 2004.
    [164]王志瑾,姚卫星.飞机结构设计.北京:国防工业出版社, 2007.
    [165] K. N. Smith, P. Watson, T. H. Topper. A stress-strain function for the fatigue of metals. Journal of Materials, 1970, 5(4): 767~778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700