风浪流作用下船舶操纵运动的仿真计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶,与其它交通运输工具一样,其安全性是最重要、最令人关注的性能之一。随着造船与航运业的发展,船舶向多样化、大型化和高速化的方向发展,出现了集装箱船、LPG、VLCC以及滚装船等,这些船舶的操纵性都有其各自的特点和难度。另外,船舶数量增多,航速提高,吨位增加,航道中航行密度加大,海损事故概率上升,每年失事的船舶约占世界船队的0.4%,其中与操纵有关的事故占40%左右。近几十年来,由于船舶驾驶人员操作不当及船舶操纵性差而导致的船舶海难事故时有发生,船舶的安全操纵已经成为世界上一个突出的课题。因此,国际海事组织(IMO)和各国政府都致力于制定“船舶操纵性标准”,许多国家还要求新建造的船舶和进入该国水域的船舶提交操纵性计算书和试验报告。另外,随着内河航运事业的发展,内河船舶和分节顶推船队的规模越来越大,特别是编队庞大的顶推船队,可以视为浅吃水的肥大船型,为保证航行安全,特别是顺利通过大桥,对其操纵性也有特殊的要求。
     船舶操纵性(Ship Maneuverability)的研究内容包括船舶的运动性能以及船舶所处的自然环境和地形环境(如风、浪、流以及浅水与狭窄航道)对其运动性能的影响。而预报船舶操纵性,以确定其是否满足操纵性要求,是船舶操纵性研究的首要任务。过去,人们注意的往往是静水中的操纵性,如航向稳定性,回转性能等。但是船舶在实际航行中,则要遇到风、浪和流的影响,而且许多海难事故常常发生在恶劣的海况下,往往伴有狂风和暴雨。研究船舶在风、浪和流中的操纵性,不但能够在设计初始阶段,对船舶的操纵性能进行优化设计,而且有助于了解船舶碰撞与倾覆事故的产生机理,指导驾驶人员提高驾驶技术,预防海难发生,因而既有理论上的意义,又有很大的实用价值。因此,本文的研究目的是:考虑风浪流等环境因素的影响,建立一个实用而又完善的船舶操纵运动计算仿真系统。
     本文将OpenGL虚拟现实仿真技术运用到船舶操纵与控制领域中,利用MMG数学模型,建立了风浪流作用下船舶操纵运动的三维动态仿真系统,
    
    武汉理工大学硕士学位论文
    取得了良好的效果。
     在系统开发过程中,首先采用MMG分离式数学模型及相关的系列化试
    验结果,建立单桨单舵海洋运输船舶在静水中的船舶操纵运动方程,并编制
    计算程序,经与试验结果比较,证实了计算结果的正确性;为了解MMG数
    学模型中模型参数变化对操纵性指数的影响程度,作者在上述已有程序基础
    上,对有关模型参数进行偏移修正,探讨了相应参数变化后的操纵性指数,
    对船舶操纵性指数对模型参数的灵敏度进行了详细的分析与探讨,所得结论
    与工程实际相吻合,具有实际应用价值,并为进一步提高船舶操纵性预报的
    精度打下了基础;然后,在已有的船舶静水操纵运动模型基础上,考虑双桨
    双舵的影响,建立了内河双桨双舵船舶的操纵运动模型;最后,综合考虑风
    浪流作用力的影响,进行了船舶的操纵运动仿真计算。
     另外,船舶操纵仿真在工程中有着广泛的应用背景,本文最后对船舶操
    纵仿真在船舶避碰、船舶过桥仿真和港口航道设计等工程领域中的应用进行
    了讨论。
Ship, like other transportation vehicles, its security is the most important performance that is concerned mostly by people. With the development of shipbuilding and shipping, ship tends to move to the direction of diversification, bigger displacement and higher speed. At the same time, the container ship, LPG, VLCC and roll-roll ship appear, which have their own maneuvering character and difficulty. On the other hand, as ship's number, speed, displacement is increasing and shipping density improving, the probability of shipping accident is rising. As a result, the number of wrecking ship accounts for 0.4 percent of the whole world ship fleet, and 40 percent of the accident are correlated with the maneuverability. In the past dozens of years, shipping accidents happened frequently because of the inappropriate operation of the ship driver and bad ship maneuverability, and the ship maneuvering security is becoming a prominent issue in the world. Therefore, the International Maritime Organization (IMO) and many countries' governments are endeavoring to stipulate for the "Standard of the Ship Maneuverability". In addition, many countries' government also demand the calculation book and trial report of the ship maneuverability for the new-built ship and those ship which entering their countries' water area. On the other hand, with the development of the inland river shipping, the scale of the inland river ship and fleet become more and more huge, especially for those huge fleet which can be look on as corpulent ship with shallow draught. To ensure the security of the navigation, the special maneuverability is needed for them to passing through the bridge safely.
    The research field of the ship maneuverability includes the ship's movement performance and the natural and water environment (such as wind, wave, current, shallow and narrow waterways)'s influence on the ship's performance. However, estimating the ship's maneuverability and judging that if the ship has met the standard, is the foremost task in the research on ship maneuverability. In the past time, people are often concerned about the maneuverability in the still water, for
    
    
    
    example, the course-keeping stability, turning ability and so on. But in the real navigation, ship will suffer from the influence of wind, wave and current. Furthermore, most of the maritime accidents are often happened in the atrocious weather condition, supported by the hurricane and storm. The research on the ship maneuverability in the wind, wave and current, can not only be used to optimize the maneuverability design in the ship design stage, help to understand the mechanics of ship collision and capsizal, but also guide the handling operator to improve the handling skill, guard against the sea accident. Therefore, the study is significant both theoretically and practically. As a result, the studying aim of this paper is to establish a practical and complete system for the prediction of ship maneuvering motion, taking into account of the influence of the environmental factors, such as the wind, wave and current, establish a practical and complete system for the prediction of ship maneuvering motion.
    In this paper, the OpenGL virtual reality simulation technique is introduced into the field of ship maneuver and control, and using the MMG mathematical model, the three dimensional dynamic simulation system of the ship motion is established and good results are achieved.
    In the process of the system development, firstly, the maneuvering motion equations for ship in the still water are established, based on the MMG module mathematical model and serial experimental result. After compiling the program, the calculation results are compared with the experimental data, the coherence between them validate the mathematical model. And then, to understand the sensitivity of the parameter in the MMG mathematical model to the maneuvering index, based on the above program, the author alter certain model parameters, then discuss the change of the maneuvering index, the sensitivity of the ma
引文
[1] 卓永强,杨盐生.超大型船舶在单航道内航行的可行性评价.武汉造船,2000(增刊):4~7
    [2] Inoue S., Hirano M., Kijima K. et al. A practical calculation method of ship maneuvering motion. International Shipbuilding Progress, Vol.28,No.325,1981.3~18
    [3] Hirano M., Takashina J.A calculation of ship turning motion taking coupling effect due to heel into consideration. Trans. West-Japan Society of Naval Architects, No.59, 1980. 71~81
    [4] Kijima K., Katsuno T., Nakiri Y. et al. On the maneuvering performance of a ship with the parameter of loading condition. Journal of the Society of Naval Architects of Japan, No.168, 1990. 141~148
    [5] Kijima K., Nakiri Y., Furukawa Y.et al. On a study for influence of loading condition on a prediction of ship maneuverability. Trans. West-Japan Society of Naval Architects, No.89, 1995.155~166
    [6] Kijima K., Furukawa Y., Eshima M., Yamamoto K. Influence of roll motion on ship maneuverability. Trans. West-Japan Society of Naval Architects, No.93, 1997.35~46
    [7] Biancardi C.G. Practical calculation method of ship maneuvering characteristics at the design stage. International Shipbuilding Progress, Vol.37,No.411,1990.221~245.
    [8] Biancardi C.G. An alternative methodology for calculating ship maneuvering coefficients at the design stage.International Shipbuilding Progress, Vol.44,No.440,1997.273~297
    [9] 周昭明,盛子寅,冯悟时.多用途货船的操纵性预报.船舶工程,1983,(6):21~36
    [10] 夏尚钰,陈厚甫.超大型船及其在浅水中航行的一些问题.船舶力学情报,1984。(4):1~7
    [11] 范尚雍,程智斌,吕韶康.高速双桨双舵船的船-桨-舵之间的水动力干扰.中国造船,1989,(2):25~32
    [12] 范尚雍,朱军,程智斌.驱逐舰操纵性预报.中国造船,1990,(1):1~6
    [13] 张潞怡,董国祥.船舶操纵运动的一种实用预报方法.船舶,1996,(2):9~13
    [14] 吴秀恒,张乐文,王仁康.船舶操纵性与耐波性.北京:人民交通出版社,1988.109~116
    
    
    [15] E.Yoneta, S.Januma, K.Karasuno Analysis of vessels' wind forces through the utilization of a physical-mathematical model. Journal of Japan Institute of Navigation, No.83.1990. 185~192
    [16] E.Yoneta, S.Januma, K.Karasuno Analysis of vessel s' wind forces through the utilization of a physical-mathematical model—Ⅱ. Journal of Japan Institute of Navigation, No.86, 1992. 169~177
    [17] T.Yamano, Y.Saito An estimation method of wind forces acting on ships. Journal of the Kansai Society of Naval Architects of Japan, No.228, 1997
    [18] T.Fujiwara, M.Ueno, T.Nimura Estimation of Wind Forces and Moments acting on ships. Journal of the Society of Naval Architects of Japan, No. 183, 1999.77~90
    [19] M.Kubo, S.Mizui, K.Uemura Basic research on the evaluation of wind pressures in raindrops. Journal of Japan Institute of Navigation, No.94, 1996.9~16
    [20] S.Inoue, Y.Ishibashi. The effects of wind on the ship maneuverability(Ⅰ). Trans. West-Japan Society of Naval Architects, No.44, 1972.111~128
    [21] A.Tanaka, Y.Yamagami, Y.Yamashita et al. The ship maneuverability in strong wind. Journal of the Kansai Society of Naval Architects of Japan, No.176, 1980. 1~10
    [22] Martin L.L. Ship maneuvering and control in wind. Society of Naval Architects and Marine Engineers, Vol.88, 1980. 257~281
    [23] 夏尚钰,竺瑞庭.均匀风作用下船舶的回转性能研究.第三届船舶操纵性会议论文集.武汉:武汉造船工程学会,1983.17~30
    [24] M.Hirano,J.Takashina Ship Maneuverability in wind. Journal of the Society of Naval Architects of Japan,No.155,1984. 122~131
    [25] 马向能,沈安定,何春荣.大型集装箱船受风工况下操纵性计算预报.船舶力学,2001,5(4):17~28
    [26] Y.Yoshimura, J.Nagashima. Estimation of maneuvering behavior of ship in uniform wind, Journal of the Society of Naval Architects of Japan, No.158, 1985. 125~136
    [27] 王志东,杨松林,赵洪江.定常风作用下的船舶操纵运动模糊控制的初步研究.华东船舶工业学院学报.1996,10(4):20~23
    [28] 王志东,杨松林,赵洪江.风、流作用下船舶操纵运动的模糊控制方法.华东船舶工业学院学报.1999,13(2):19~22
    [29] Y.Tomonaga, K.Hatakenaka. Measurements of the drifting force and moment on floating type offshore structures in waves. Trans. West-Japan Society of Naval Architects, No.59, 1980.33~42
    
    
    [30] Hirano M., Takashina J., Takaishi Y., Saruta T. Ship turning trajectory in regular waves. Trans. West-Japan Society of Naval Architects, No.60, 1980. 17~31
    [31] 李美菁,吴秀恒.船舶在风浪流及浅水域中多工况操纵运动模拟计算.中国造船.1989,(2):36~49
    [32] Kijima K., Furukjawa K.Y. Ship maneuvering performance in waves. 3rd International Stability Workshop. 1997
    [33] 赵希渭.波浪中船舶操纵性计算研究动态.舰船力学情报.1984,(4):7~19
    [34] 黄国梁,刘天威,严乃长,楼连根.船舶在规则波中回转运动的研究.上海交通大学学报,1996,30(10):152~158
    [35] 黄国梁,楼连根,卢军.船舶在波浪中操纵运动仿真.中国航海,1998,(2):8~15
    [36] 沈安定,马向能,孙芦忠,罗荣彪.波浪中船舶操纵性预报.船舶力学,2000,4(4):15~26
    [37] 刘滋源,缪国平,刘应中.有限水深对二阶定常波浪力的影响.上海交通大学学报,1996,30(10):147~15l
    [38] 王京齐,毕毅。风浪流联合作用下的船舶低速操纵性计算。武汉造船,1998,(5):1~4
    [39] 严似松,黄根余.拖航系统在风浪中操纵运动的模拟计算.船舶力学,2001,5(1):13~24
    [40] 范佘明,周兴邦,余滋红等.船舶在波浪中操纵运动的模型试验研究。船舶工程,2000,(5):18~21
    [41] 范余明,盛子寅,陶尧森等.船舶在波浪中的操纵运动预报.中国造船,2001,42(2):26~33
    [42] 何江华.计算机仿真导论.北京:科学出版社,2001.1~2
    [43] 杨克俭.基于分布式虚拟现实技术的船舶航行协同仿真系统研究.交通与计算机,2000,18(5):29~32
    [44] 张丽珂,吕新军.在Visual C++环境下利用OpenGL函数库和串行通信开发船舶运动演示系统.应用科技,2001,28(4):29~31
    [45] 曾芬芳,陈晓军,林剑柠等.基于水动力模型的船舶航态的模拟仿真.系统仿真学报,2001,13(3):376~380
    [46] 范佘明.关于船舶在波浪中操纵运动计算方法的一个评注.船舶力学,2000,4(1):10~16
    
    
    [47] Zui Tao, Weikang Zhang. Study on "from Periodic Motion to Surf-Riding" of a Ship Running in Following Seas. Proceedings of IWSH'2001, Wuhan, China, 2001.88~93
    [48] 贾欣乐,杨盐生.船舶运动数学模型—机理建模与辨识建模.大连:大连海事大学出版社,1999.360~371
    [49] 乐美龙,朱文蔚.船舶操纵仿真系统研究.武汉造船,2000(增刊):8~12
    [50] 施智标.论船舶避碰专家系统.上海海运学院学报.1996,17(3):39~44
    [51] Kijima K., Varyani K. Wind effect on course stability of two towed vessels. Journal of the Society of Naval Architects of Japan, No. 158, 1985.137~148
    [52] Kijima K., Furukawa Y., Kishimoto T. On the towing system for disabled ships. Journal of the Society of Naval Architects of Japan, No. 184, 1998.191~199
    [53] Xiaotu Zhang, Lewen Zhang, Zuyuan Liu. Maneuvering Prediction and Simulation of Immersed Tunnel Cube. Proceedings of IWSH'99, Wuhan, China, 1999.109~114
    [54] 董国祥.船舶多工况操纵运动仿真及其在初步设计中的应用.武汉造船,2000(增刊):13~18
    [55] Hua J. A Theoretical study of the capsize of the ferry "HERALD OF THE FREE ENTERPRISE", International Shipbuilding Progress, Vol.43,No.435,1996.209~235
    [56] Y.Yushimura, Y.Tanabe,I.Ohsugi,I.Amemiya, H.Tatano On the prediction of the sailing performance for a large sail training ship. Journal of Japan Institute of Navigation, No.84, 1991. 19~27
    [57] I.Amemiya, N.Shiota, H.Fukui, H.Tatano, Y.Yoshimura On the aerodynamic characteristics of the sail training ship NIPPON MARU—Aerodynamic characteristics and flow visualization on each mast. Journal of Japan Institute of Navigation, No.87, 1993. 189~195
    [58] S.Takaoka, Y.Murayama, M.Kubo, Ship handling performance of sail equaipped motor vessel—Simulator study of sail assist. Journal of Japan Institute of Navigation, No.98, 1998.265~276
    [59] S.Takaoka, Y.Murayama, M.Kubo, On Anchoring using sail of sail equipped motor vessel. Journal of Japan Institute of Navigation, No.99, 1998.215~226
    [60] A.Fukuchi, A.Hori, T.Fukutani, S.Tanaka, Effects on the course keeping ability and easiness of handling of the various types of canvas. Journal of Japan Institute of Navigation, No. 102, 2000.97~105
    [61] 杨秀霞,顾文锦.某型导弹全弹道飞行的动画生成.计算机仿真,2000,17 (5):25~27
    
    
    [62] 李一兵,陈云刚,吴卫东等.OpenGL技术在交通事故再现中的应用.公路交通科技,2001,18(4):112~115
    [63] 费广正,乔林.Visual C++ 6.0高级编程技术(OpenGL篇).北京:中国铁道出版社,2000年.219~253
    [64] Misiag W.A., Kose K. The sensitivity analysis of the predicted maneuvering performance of full bodied ships in the case of MMG mathematical model. Trans. West-Japan Society of Naval Architects, No.87, 1994. 125~133
    [65] 黄小斌,杨盐生.船舶操纵运动数学模型预报精度的研究.大连海事大学学报,1997,23(2):26~30
    [66] 田超,刘祖源,张晓军.智能避碰专家系统中的船舶操纵仿真研究.武汉理工大学学报(交通科学与工程版),2003,27(1):100~102
    [67] Kuniji Kose, Chunsheng Yang, et al. A collision avoidance expert system for integrated navigation system. Journal of Navigation, 1991, 44(1): 194~204
    [68] 朱晓琳.船舶避碰的自适应模糊专家系统研究:[博士学位论文].武汉:华中科技大学,2001:47~62
    [69] 陈明栋,杨胜发,文岑等.苏通长江大桥建桥后航线规划研究.重庆建筑大学学报,2001,23(5):45~55
    [70] 杨胜发,文岑,陈明栋等.长江南京三桥建桥后船舶航行过程数值模拟.四川大学学报(工程科学版),2002,34(2)39~43
    [71] 方祥麟,杨盐生,谷伟等.大型重载集装箱船倒航出港的可行性研究.大连海事大学学报,1995,21(4):1~4
    [72] 袁章新,张惠荣.模拟器在港口航道设计中用.交通部上海船舶运输科学研究所学报,1995,18 (2):34~39
    [73] 张庆河,韩涛,李炎保等.一种船舶操纵离线模拟系统及其应用.天津大学学报,2002,35(2):281~284
    [74] 程细得,刘祖源.船舶智能避碰专家系统研究.武汉理工大学学报(交通科学与工程版),2003,27(1):94~96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700