100万千瓦超超临界火电机组仿真系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会对能源尤其是电能需求的持续增长,超超临界技术得以不断发展,100万千瓦火电机组的建设得到空前繁荣。而微型计算机技术、自动控制技术、数据通讯技术和CRT显示技术的高速发展,使得集散控制系统(Distributed Control System, DCS)在电力工业领域中得到了广泛应用,应设计调试、检测诊断和人员培训等方面的要求,仿真系统也随之不断进步和发展。为建立大型发电厂先进完善的自动化和信息化平台,充分发挥仿真系统的优势,DCS全范围仿真系统越来越多的受到关注。
     本项目研发是针对上海自动化仪表股份有限公司SUPMAX800集散控制系统进行的。研究目的是利用虚拟DCS技术,对SUPMAX800控制系统进行虚拟化,从而得到具有高逼真性和开放性的系统仿真软件;同时,选择某电厂100万千瓦超超临界机组作为仿真对象,并结合机理建模思想、模块化设计思想建立仿真模型;最后,结合工程实际,设计合理的控制方案,实现自主DCS系统对100万千瓦机组的控制。
     本人主要参与了该项目控制方案的设计及实现、逻辑画面组态以及模型与控制系统的通讯工作等,在后期还参与了各子系统的PID调试及系统的启动和联调。并在SUPMAX800现有功能模块的基础上,结合以往实际工程,完成了包括锅炉汽机本体、风烟系统、给水系统、高加低加等子控制系统的逻辑组态及其画面的绘制。
     本论文总体结构由以下部分构成:第一部分简要介绍了国内外电站仿真技术、超超临界技术及其仿真技术的发展,同时也对集散控制系统、仿真模式以及虚拟DCS仿真技术进行了介绍。第二部分是论文研究的主体部分,首先对SUPMAX800系统及其系统组态工具等进行了说明,在此基础上简单说明了仿真模型及其运行平台仿真系统软件;同时对包括汽机、锅炉、电气本体在内的全范围动态实时仿真模型以及各子系统的控制方案等进行了详细说明。最后主要围绕仿真系统调试展开,介绍了系统的启动和联调、系统实现的功能、技术特点等。
     随着高性能仿真系统的普及,电厂都倾向于定制一套和自己电厂设备1:1的仿真系统,火电仿真系统在我国电力行业将发挥巨大的作用,有着广阔的发展前景。
With the enormous requirements for energy resource. especially for electric power energy in society, ultra-supercritical technology is developing continuously,1000MW ultra super-critical unit has been widely applied. Distributed Control System has been widely applied in the field of electric power industry with the rapid development of microcomputer technology, automation control technology, data communication technology and CRT technology. Simulation system is also developed rapidly to meet the demands of the design, debugging, detection, diagnosis and staff training. For the sake of establishing advanced automatic and informational platform for huge power plant and exerting advantage of simulation system sufficiently, full-scope simulation system of DCS is attracting more and more attention.
     This project is researched and developed based on SUPMAX800 distributed control system of Shanghai Automation Instrumentation Co..Ltd. The research aim is to turn the SUPMAX800 control system into its virtual mode and get virtual DPU simulation software with high fidelity and openness by using virtual DCS technology. And a simulation model is obtained by using modulization modeling idea and mechanism modeling idea based on choosing a 1000MW ultra super-critical unit of a power plant as a simulated object. Finally, a proper control scheme combining practical projects is designed, to control the 1000MW ultra super-critical unit based on distributed control system.
     The writer has mostly participated in the design and realization of the control method, logic and picture configuration, communication between model and control system, the startup commissioning of simulation system. The logic and picture configuration of turbine system, boiler system, air and flue system, feed-water system and HP heaters and LP heaters system are achieved by using SUPMAX800 based on practical engineering.
     Several parts are represented in this paper. In the first part, power plant simulation technology at home and abroad,ultra-supercritical technology and its simulation technology have been introduced, and a description for distributed control system, simulation mode and virtual DCS simulation technology have also been made. The second part is the main parts in this paper. Firstly, SUPMAX800 and its configuration software have been pointed out, furthermore, simulation model and its operation platform also have been introduced. And then, the full-scope simulation system including turbine master system, boiler master system and electrical system and the control scheme of all each subsystem have been introduced in detail. At last, the main task is to introduce the startup commissioning of simulation system, including systematic testing, realized functions of system, technical features and so on.
     With the popularity of the high performance simulation system, more and more power plants inclined to customize a simulation system just same as itself. And the simulation system will play a big role in the field of electric power industry, there is a wide development prospect even more.
引文
[1]谌琳.基于MATLAB的1000MW超超临界锅炉建模与仿真[D].华北电力大学硕士学位论文.2008,12
    [2]王渡.扬州第二发电厂600MW发电机组锅炉系统建模与仿真[D].东南大学硕士学位论文.2006,3
    [3]王建平.1006t/h亚临界锅炉仿真[D].重庆大学硕士学位论文.2005
    [4]李荣,关蕾.世界超超临界技术发展与启示.中国电力企业管理[J].2009,4:40-41
    [5]冯伟忠.欧洲超超临界机组发展的特点和启示[J].华东电力.2008,36(2):1-6
    [6]李续军.超超临界火力发电技术的发展及国产化建设[J].电力建设.2007,28(4):60-66
    [7]毛健雄.中国火电技术的发展方向和世界超超临界技术的最新发展.600/1000MW超超临界机组技术交流2009年会.2009,11
    [8]姜成洋.超大容量超超临界燃煤发电机组的现状及发展趋势[J].锅炉制造.2006,7(3):46-49
    [9]唐飞,董斌,赵敏.超超临界机组在我国的发展及应用[J].电力建设.2010,31(1):80-82
    [10]吕崇德.大型火电机组系统仿真与建模[M].清华大学出版社.2002,9
    [11]Reed.J, Tunley.C. The application of advanced visualisation and simulation techniques in control room design and operator training [nuclear power plants[J]. Human Factors and Power Plants.1997:13-18
    [12]吕崇德,范永胜,蔡瑞忠.我国电站仿真技术进展与建模理论研究[J].中国工程科学.1999,1(1):99-103
    [13]李志伟.DCS仿真技术在火电机组中的应用[J].黑龙江电力.2008,30(3):169-173
    [14]Alippi.C, Cori.A. Monitoring and real-time simulation of power plants:a neural-based environment[J]. Instrumentation and Measurement Technology Conference.1996, (2):847-858
    [15]Pike.A.W, Dixon.R. Application of modern simulation tools to power plant modelling and analysis:two industrial case studies[J].Tools for Simulation and Modelling.2000, (1): 1-22
    [16]吴永存.超超临界百万机组仿真机开发及应用研究[J].自动化博览.2009,26(3):64-63
    [17]蔡宝玲,等.基于引进仿真支撑软件APROS的电站仿真培训系统[J].热力发电.2004,33(11):7-13
    [18]王翘东.工业过程仿真系统的DCS仿真交互平台设计研究[D].哈尔滨工程大学硕士学位论文.2006,3
    [19]王文治.基于虚拟DCS的激励式仿真系统设计与开发[D].华北电力大学硕士学位论文.2006,12
    [20]华伟.600MW超临界机组仿真机设计与开发[D].华北电力大学硕士学位论文.2007,5
    [21]SupMAX800集散控制系统使用手册.上海自动化仪表股份有限公司DCS公司.
    [22]vPower仿真系统技术白皮书.北京诺思维信科技有限公司.
    [23]FLOWM工具使用手册.北京诺思维信科技有限公司.
    [24]董伟鹤.火电锅炉风机节能及氮氧化物减排研究[D].中国科技大学硕士学位论文.2009
    [25]Geddes.D.J, Bailie.A.P.H. A real-time simulation of a 200 MW thermal power plant for optimising combustion control[J]. UKACC International Conference.1998, (1): 859-864
    [26]丁立新.电厂锅炉原理[M].中国电力出版社.2008,(7)
    [27]郑体宽.热力发电厂[M].中国电力出版社.2008,12
    [28]叶江明.电厂锅炉原理及设备[M].中国电力出版社.2010,(1)
    [29]李志伟,等.600MW超临界机组仿真机的建模与控制组态[J].电站系统工程.2008,24(5):59-60
    [30]Adam.E.J, Marchetti.J.L. Dynamic simulation of large boilers with natural recirculation[J].Computers and Chemical Engineering.1999, (23):1031-1040
    [31]王娜娜,边小君,曹云娟.600MW级超临界与亚临界锅炉技术比较[J].浙江电力.2003,(6):21-24
    [32]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(一)[J].中国电机工程学报.1998,1(4):246-253
    [33]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(二)[J].中国电机工程学报.1998,18(5):350-356
    [34]李运泽,杨献勇.超临界直流锅炉长期动态特性的建模与仿真[J].热能动力工程.2003,18(103):23-26
    [35]张彪,沈炯,李益国.超临界直流炉蒸汽发生器的建模与仿真分析[J].计算机仿真.2009,26(4):279-283
    [36]范永胜等.一种高精度的锅炉单相区段集总参数动态修正模型[J].中国电机工程学报.2000,20
    [37]王勇.火电厂亚临界锅炉实时动态模型的建立与仿真[J].重庆大学硕士学位论文.2005,5
    [38]章臣樾.锅炉动态特性及其数学模型[M].水利电力出版社.1987
    [39]蔡丹.300MW直流锅炉动态特性仿真与建模方法研究[D].东南大学硕士学位论文.2007,1
    [40]王炜哲.基于图形组态的电站风烟系统动态仿真模型研究[D].上海交通大学硕士 学位论文.2003,8
    [41]綦明明,冷杰,俞辉.超临界直流锅炉内置汽水分离器数学模型及仿真[J].东北电力技术.2009,30(12):1-5
    [42]魏丽冬.基于图形组态的超临界机组汽水系统数学建模与仿真[D].河海大学硕士学位论文.2006.3
    [43]王涛.1000MW机组蒸汽发生器简化模型分析及建立.600/1000MW超超临界机组技术交流2009年会.2009,11
    [44]王建国.电厂热工过程自动控制[M].中国电力出版社.2009,(8)
    [45]彭听.超超临界1000MW机组控制方案浅谈[J].湖北电力.2010,34(1):31-33
    [46]王中胜,夏明,赵松烈,贺贤峰.北仑1000MW超超临界机组协调控制策略分析及优化[J].电力建设.2010,31(1):87-94
    [47]李长青,毕艳洲,段新会.超临界机组给水控制研究[J].华北电力.2009,31(7):20-23
    [48]西安热工研究院.超临界、超超临界燃煤发电技术[M].中国电力出版社.2008,(11)
    [49]广东电网公司电力科学研究院.热工自动化[M].中国电力出版社,2011,1
    [50]孙奎明,时海刚.热工自动化[M].中国电力出版社.2009,1
    [51]郭智武.SYMPHONY控制系统的虚拟DCS仿真应用研究[D].东南大学硕士学位论文.2007,1
    [52]吴朋.大型超临界机组先进控制策略研究[D].重庆大学硕士学位论文.2006,4
    [53]史忠兴.先进控制算法在电厂DCS系统中的应用研究[D].上海大学硕士学位论文.2008,2
    [54]吴克锋.600MW超临在界机组模拟量控制系统工程实践与优化[D].华北电力大学硕士学位论文.2009,5
    [55]周达,徐国壤.300 MW机组启停过程中全程使用汽动给水泵的设计与优化[J].广东电力.2009,22(8):62-67
    [56]倪维斗,许向东,李政等.热动力系统建模与控制的若干问题[J].1996,4
    [57]倪维斗.热动力系统建模与控制的若干问题[M].北京:科学出版社.1996,56-60
    [58]Zindler.H, Walter.H. Dynamic Simulation of a 800MW Hard Coal One-Through Supercritical Power Plant to Fulfill the Great Britain Grid Code[J]. Proceedings of The 6th IASME/WSEAS International Conference.2008:184-192
    [59]Engl.G, Kroner.A. Dynamic simulation of a supercritical once-through heat recovery steam generator during load changes and start-up procedures[J]. Applied Energy. 2009, (86):1274-1282
    [60]Kutzner.R, Bennauer.M. Modeling and Simulation of Power Plant Units[J]. AT-Automatisierung Stechnik.2010, (58):533-540
    [61]Cammi.A, Casella.F. An object-oriented approach to simulation of IRIS dynamic response[J]. Progress in Nuclear Energy.2011, (53):48-58
    [62]Borghetti.A, Nucci.C.A. Lego modelling of the power station electrical auxiliaries for a real-time training simulator[J]. Electrotechnical Conference.1996, (3):1634-1637
    [63]崔凯.1000MW超超临界直流锅炉启动调试试验研究[J].电站系统工程.2009,25(1):48-50
    [64]张长乐.东汽1000MW超超临界汽轮机组的启动调试[J].山东电力技术.2008, (6):35-38
    [65]吕崇德.火电厂机组的实时仿真[J].动力工程.1984,6
    [66]李志刚.大型电站汽水系统的仿真模型与流网辨识算法的研究[D].清华大学硕士学位论文.1999
    [67]王广军.热力系统动力学及其应用[M].科学出版社.1997,10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700