泡沫铝子弹撞击下多孔金属夹芯板的塑性动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超轻多孔金属作为理想吸能材料,因其轻质、具有较高的吸能特性等优点,近年来被逐步应用于航空航天飞行器、高速轨道车辆、汽车、舰船等领域和重要建筑物的吸能缓冲、减震装置上。其主要使用形式之一是由高空隙率多孔金属为芯层构成夹芯结构。典型的夹芯结构由上下两层复合材料或金属面板和多孔芯层(格栅、金属泡沫和点阵材料等)组成。面板提供给结构较高的抗弯曲和拉伸强度,而多孔芯层材料所特有的细观结构可以在几乎恒应力条件下产生大的塑性变形,从而在变形过程中耗散大量的能量。此类结构主要应用于结构—功能性(如能量吸收、隔热隔音、电磁屏蔽等)要求的场合。这种结构在强动载荷作用下的良好性能引起了学术界和工程界的极大关注,已成为当前学术界研究的焦点。但是,该领域的研究仍处于起步阶段,许多工作还很不完善。因此,有必要对撞击载荷下多孔金属夹芯板的动力响应作进一步系统深入的研究。
     本文应用泡沫金属子弹撞击加载的方式研究了固支夹芯方板和等质量实体方板的动力响应。从实验研究、理论分析和数值模拟方面开展了系统的工作。取得如下重要成果:
     实验研究发现,泡沫铝子弹撞击下,夹芯板的变形主要集中在子弹作用的中心区域。前面板主要表现为子弹作用区域的压入变形,其失效模式分为压入失效和侵彻失效。芯层的变形在中心区域可分为压缩失效和剪切失效,在与中心区域较近的周边区域有较小的压缩,而在接近固支边的区域则几乎没有压缩变形。后面板的变形为非弹性大变形,中心点挠度最大,部分试件在中心点周围伴有花瓣形的变形,周边挠度最小,整体变形为穹形。通过与准静态加载实验结果的比较发现,动态加载下板的主要塑性变形发生在泡沫子弹撞击区域,而且变形是连续的。而准静态压缩下在压头的周边和固支边,板的倾角不同,这些位置存在明显的静态塑性铰。
     参数研究(包括冲量、面板厚度、芯层厚度及芯层密度对结构变形/失效的影响)表明,与等质量的实体板相比,多孔金属夹芯板具有优越的抗撞击性能,同时在本文研究的两种不同芯层等质量的夹芯板中蜂窝铝夹芯板又优于泡沫铝夹芯板。可见,在结构设计中适当采用蜂窝夹芯结构可以达到较好的抗撞击效果。结果还表明,结构响应对子弹冲量和芯层密度比较敏感,后面板中心点的永久变形与泡沫子弹冲量或芯层密度近似成线性关系。
     基于Fleck等关于爆炸载荷下固支夹芯梁和固支夹芯圆板的动力响应的理论分析,以及关于中心撞击加载下固支夹芯梁的动力响应分析,本文将泡沫子弹撞击下多孔金属夹芯板的变形过程分为三个阶段,分别是前面板获得冲量阶段、芯层压缩阶段和夹芯结构的整体动力响应阶段。建立了泡沫金属子弹撞击下多孔金属夹芯方板的刚塑性分析模型,得到了响应时间和后面板的最大挠度,分析结果与实验结果基本一致。在此基础上研究了子弹加载半径、芯层密度及芯层厚度对固支夹芯板最终挠度的影响。结果表明,增加芯层密度能够提高结构的抗撞击能力;芯层厚度与板的半边长的比值(C/L)大约为0.12时,结构后面板的最终挠度最小,表现出较好的承载能力。
     应用有限元程序LS-DYNA.V970在HP-J6750工作站上模拟了泡沫铝子弹撞击下多孔金属夹芯板的动力响应的全过程。数值结果与实验数据的对比充分验证了本文建立的有限元模型的可靠性。通过泡沫子弹加载和压力加载的对比表明,多孔金属夹芯板与等质量的实体板表现出的不同抗撞击性能主要由结构本身的性质决定。夹芯板变形过程中,前面板和多孔芯层吸收了大部分能量。研究表明,增加相同质量的前提下,增加芯层厚度比增加面板厚度能获得更好的抗撞击效果。冲量一定的条件下,蜂窝铝夹芯板的抗撞击能力优于等质量的泡沫铝夹芯板。
Ultra-light cellular metal as an ideal material of absorbing energy has many advantages such as light quality, highly efficient energy absorption, and so on. They have been gradually applied to many fields, for example, aerospace aircrafts, high-speed rail vehicles, automotives, ships, etc. And cellular metallic materials are also used to energy-absorbing buffer and damping device of the buildings. One of the main using of cellular metallic materials is the sandwich structure with core of high-porosity porous metal. A typical sandwich structure is composed of two layers of thin composite material plate or metal plate and thick metallic foam core which includes grid, metal foam and lattice truss core. Face-sheets provide high bending resistance and tensile strength to structures. At the same time, cellular materials can have a larger plastic deformation under almost constant stress conditions. And then in the process of deformation a lot of energy is dissipated. These structures are mainly applied to occasions at which the structure-functional property is required, for instance, energy absorption, sound absorption, electromagnetic shielding, etc. A great deal of concern is taken on good properties of these structures to strong dynamic loading in the academic and in engineering field. As has become research focus of academia. But investigation on dynamic response of the sandwich structure is in its infancy. Much work is still imperfect. Therefore, it is necessary to further investigate dynamic response of the metallic sandwich plate to impact loading.
     Dynamic responses of clamped cellular sandwich plates and solid plates of the same weight are studied in the paper. Experimental investigation, theoretical analysis and numerical simulation are applied to finish work systematically. Some significant conclusions are drawn.
     Experimental results show that deformations of sandwich plates are mainly concentrated in the central region to projectile impacting. Deformation mode of the front face is mainly indenting in the region of impacting. Failure mode includes indenting and penetration failure. Failure mode of core includes compression and shearing in central region. Near this region less compression is observed. No deformation is found close to the clamped edges. Deformation mode of the back face is non-elastic large deformation. Maximum deflection is observed on central point of the plate and minimum is on the edges. Deformation of the flower pattern is observed around central point of the back face. Mode of the overall deformation is arched shape. It is found that main plastic deformation is concentrated in the region of projectile impacting subject to dynamic loading and is continuous. However, static plastic hinge lies in surrounding of indenter and in clamped edges due to different angle of plate to quasi-static loading, obviously.
     Parameters studied include impulse of projectiles, thickness of face-sheet, thickness of core and density of core. It is found that the cellular metallic plate can sustain larger impacting impulses than a solid plate of the same mass. And a sandwich plate with aluminum honeycomb core has a superior shock resistance relative to the sandwich plate with aluminum foam core. Thereby, the best performance of the structures can be provided by applying the sandwich plate with aluminum foam core in structures. Experimental results reveal that the response of the structure is sensitive to impulse of the projectile and density of core. Permanent deflection of the central point of the back face is proportion to impulse or density.
     An analytical model is developed to investigate dynamic responses of clamped sandwich plates and solid plates of the same weight subject to impulse loading over a central loading patch. Reliability of the model is supported by the experimental results. The analytical formulae are employed to determine optimal geometries of the sandwich plates that maximize the shock resistance of the plates for a given mass. It is found that increasing density of core can provide the better performance. Results also reveal that deflection of the back face of the sandwich plate is the smallest when the ratio of thickness of core to half side length of the plate is or so 0.12.
     Dynamic responses of foam projectile impacting cellular metallic sandwich plates are simulated using finite element code LS-DYNA.V970 on the HP-J6750 workstation. Numerical results are in good agreement with the experimental measurements. Comparison between direct loading by the foam projectiles and pressure loading shows that difference of shock resistance performed by sandwich plates and solid plates of the same mass is mainly determined by the property of the structure itself. In the deformation process of the sandwich plate energy absorbed by the front face and core are more than energy by the back face. It is also found that capacity of shock resistance provided by increasing thickness of core is better than by increasing thickness of face-sheet of the same weight. The sandwich plate with aluminum honeycomb core has a superior shock resistance relative to the sandwich plate with aluminum foam core of the same mass to a certain impulse.
引文
[1]Gibson L J,Ashby M F.Cellular Solids:structures and properties[J].Second Edition.Cambridge University Press,Cambridge,1997:13-19,7,152-203.
    [2]Evan A G,Hutchinson J W,Ashby N F.Multi-functionality of cellular metal systems[J].Progress in Materials Science,1999,43:171-221.
    [3]Zenkert D.An introduction to sandwich construction[R].Sheffiled UK:Engineering Materials Advisory Service,1995.
    [4]谌河水.泡沫铝芯体夹层板的动态力学性能研究[D].宁波,宁波大学,2007.
    [5]Degischer H P,Kriszt B.Handbook of cellular metals[M].Wiley-VCH,2002.
    [6]Warren W E,Kraynik A M.Linear elastic behavior of a low-density Kelvin foam with open cells[J].ASME Journal of Applied Mechanics,1997,64:787-794.
    [7]桂良进,范子杰,王青春等.泡沫填充圆管的轴向压缩能量吸收特性[J].清华大学学报,2003,43(11):1526-1529.
    [8]桂良进,范子杰,王青春.泡沫填充圆管的动态轴向压缩吸能特性[J].清华大学学报,2004,44(5):709-712.
    [9]于英华,杨春红.泡沫铝夹芯结构的研究现状及发展方向[J].机械工程师,2006,3:43-45.
    [10]蒂吉斯切H P,克雷兹特B.多孔泡沫金属[M].左孝青,周芸译.北京:化学工业出版社,2005.
    [11]钟祥璋,祝培生,朱芳英.泡沫铝吸声板的材料特性及应用[J].新型建筑材料,2002.8:51-53.
    [12]梁晓军,朱勇刚,陈锋等.泡沫铝芯三明治板的粉末冶金制备及其板/芯界面研究[J].材料科学与工程学报,2005,23(1):77-80.
    [13]梁晓军,朱勇刚,陈锋等.泡沫铝三明治结构的制备[J].江苏冶金,2004,32(1):7-11.
    [14]冯仁杰,于九明.蜂窝夹芯复合板及其在汽车工业中的应用[J].汽车工艺与材料, 2003, (8): 30-32.
    [15] Seeliger W. Entwicklung und programmierung eines materialmodells fur elastoplastische metallschaume[D]. Bremen, University of Bremen MIT- Verlag, 2000
    [16] Sosnick B. US Patent 2434775[P], 1984.
    [17] Warren W E, Kraynik A M. Linear elastic behavior of a low-density Kelvin foam with open cells[J]. ASME Journal of Applied Mechanics, 1997, 64: 787-794.
    [18] Papka S D, Kyriakides S. In-plane crushing of a polycarbonate honeycomb[J]. International Journal of Solids Structure, 1998, 35: 239-267.
    [19] Papka S D, Kyriakides S. Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb [J]. Acta Materialia, 1998, 46: 2765-2776.
    [20] Triantafyllidis N, Schraad M W. Onset of failure in aluminum honeycombs under general in-plane loading[J]. Journal of the Mechanics and Physics of Solids, 1998, 46: 1089-1124.
    [21] Chen C, Lu T J, Fleck N A. Effect of imperfections on the yielding of two dimensional foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47: 2235-2272.
    [22] Gu S, Lu T J, Evans A G. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity [J]. International Journal of Heat and Mass Transfer, 2001, 44: 2163-2175.
    [23] Warren W E, Kraynik A M. The nonlinear elastic behavior of open-cell foams[J]. ASME Journal of Applied Mechanics, 1991, 58: 376-381.
    [24] Zhu, H X , Mills N J, Knott J F. Analysis of the high strain compression of open-cell foams[J]. Journal of the Mechanics and Physics of Solids, 1997, 45: 1875-1904.
    [25] Gong L, Kyriakides S, Jang W Y. Compressive response of open-cell foams. Part I: Morphology and elastic properties[J]. International Journal of Solids and Structure, 2005,42: 1355-1379.
    [26] Gong L, Kyriakides S, Jang W Y. Compressive response of open cell foams. Part II: Initiation and evolution of crushing[J]. International Journal of Solids and Structures, 2005,42: 1381-1399.
    [27] Warren W E, Kraynik A M. Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials[J]. Mechanics of Materials, 1987, 6: 27-37.
    [28] Grenestedt J L. Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids[J]. Journal of the Mechanics and Physics of Solids, 1998, 46: 29-50.
    [29] Simone A E, Gibson L J. The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams[J]. Acta Materialia, 1998, 46: 3929-3935.
    [30] Silva M J, Hayes W C, Gibson L J. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids[J]. International Journal of Mechanical Sciences, 1995, 11: 1161-1177.
    [31] Silva M J, Gibson L J. The effect of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids[J]. International Journal of Mechanical Sciences, 1997, 39: 549-563.
    [32] Lu T J, Chen C. Thermal transport and fire retardance properties of cellular aluminium alloys[J]. Acta Materialia, 1999,47: 1469-1485.
    [33] Shulmeister V, Van der Burg, M W D, etc. A numerical study of large deformations of low-density elastomeric open-cell foams[J]. Mechanics of Materials, 1998, 30: 125-140.
    [34] Roberts A P, Garboczi E J. Elastic moduli of model random three-dimensional closed-cell cellular solids[J]. Acta Materialia, 2001, 49: 189-197.
    [35] Roberts A P, Garboczi E J. Elastic properties of model random three-dimensional open-cell solids[J]. Journal of the Mechanics and Physics of Solids, 2002, 50: 33-55.
    [36] Zhu H X, Hobdell J R, Windle A H. Effects of cell irregularity on the elastic properties of open-cell foams[J]. Acta Materialia, 2000, 48: 4893-4900.
    [37] Zhu H X, Windle A H. Effects of cell irregularity on the high strain compression of open-cell foams[J]. Acta Materialia, 2002, 50: 1041-1052.
    [38] Li K ,Gao X L, Subhashb G. Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams[J]. Journal of the Mechanics and Physics of Solids,2006,54:783-806.
    [39]袁应龙,卢子兴.利用随机模型计算低密度开孔泡沫材料的弹性模量[J].航空学报,2004,25(2):130-132.
    [40]卢子兴,郭宇.金属泡沫材料力学行为的研究概述[J].北京航空航天大学学报,2003,29(11):978-983.
    [41]Gan Y,Chen X C,Shen Y P.Three-dimensional modeling of the mechanical property of linearly elastic open cell foams[J].International Journal of Solids and Structures,2005,42:6628-6642.
    [42]Han Fusheng,Zhu Zhengang.The mechanical behavior of foamed aluminum[J].Journal of Material Science,1999,34(2):291-299.
    [43]韩福生,朱震刚,刘长松.泡沫Al压缩形变及能量吸收特征[J].物理学报,1998,47(3):520-528.
    [44]郑明军,何德坪,陈锋.多孔铝合金的压缩应力-应变特征及能量吸收性能[J].中国有色金属学报,2001,11(2):81-85.
    [45]刘培生,付超,李铁藩.高孔率金属材料的抗拉强度[J].稀有金属材料与工程,2000,29(2):94-100.
    [46]王曦,虞吉林.泡沫铝的单向力学行为[J].实验力学,2001,16(4):438-443.
    [47]曹晓卿,杨桂通.泡沫铝的单向压缩行为及其吸能性[J].有色金属学报,2006,4(58):9-13.
    [48]Parkash O,Sang H,Embury J D.Structure and properties of Al-SiC foam[J].Material Science and Engineering A,1995,199(2):195-203.
    [49]Beals J T,Thompson M S.Density gradient effects on aluminium foam compression behaviour[J].Journal of Material Science,1997,32(13):3595-3600.
    [50]Gradinger R,Rammerstorfer F G.On the influence of meso-inhomogeneities on the crush worthiness of metal foams[J].Acta Materialia,1999,47(1):143-148.
    [51]曾斐,潘艺,胡时胜.泡沫铝缓冲吸能评估及其特性[J].爆炸与冲击,2002,22(4):358-362.
    [52]胡时胜,王悟,潘艺等.泡沫材料的应变率效应[J].爆炸与冲击,2003,23(1): 13-18.
    [53]王志华,曹晓卿,马宏伟等.泡沫铝合金动态力学性能实验研究[J].爆炸与冲击,2006,26(1):46-52.
    [54]Wang zhihua,Ma hongwei,Zhao longmao,et al.Studies on the dynamic compressive properties of open-celled aluminum alloy foams[J].Scripta Materialia,2006,54:83-87.
    [55]Wang zhihua,Ma hongwei,Zhao longmao,et al.Investigation on the dynamic properties of open-celled aluminum alloy foams[J].Key Engineering Materials,2006:900-905.
    [56]Ruan D,Lu G,Wang B,et al.In-plane dynamic crushing of honeycombs—a finite element study[J].International Journal of Impact Engineering,2003,28:161-182.
    [57]Tan P J,Reid S R,Harrigan J J,et al.Dynamic compressive strength properties of aluminium foams.Part Ⅱ—'shock' theory and comparison with experimental data and numerical models[J].Journal of the Mechanics and Physics of Solids,2005,53:2206-2230.
    [58]Zheng Z J,Yu J L,Li J R.Dynamic crushing of 2D cellular structures:a finite element study[J].International Journal of Impact Engineering,2005,32:650-664.
    [59]Li K,Gao X L,Wang J.Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness[J].International Journal of Solids and Structures,2007,44:5003-5026.
    [60]Wang A J,Hopkins H G.On the plastic deformation of built-in circular plates under impulsive load[J].Journal of Mechanics and Physics of Solids,1954,3:22-37.
    [61]Symonds P S.Large plastic deformations of beams under blast type loading[J].Second US National Congress of Applied Mechanics,1954.
    [62]Symonds P S,Mentel T J.Impulsive loading of plastic beams with axial restrains[J].Journal of Mechanics and Physics of Solids,1958,6:186-202.
    [63]Cox A D,Morland L M.Dynamic plastic deformation of simply-supported square plates[J].Journal of the Mechanics and Physics of Solids,1959,7:229-241.
    [64]Jones N.Impulsive loading of a simply supported circular rigid plate[J].Journal of Applied Mechanics,1968,27,59.
    [65]Jones N.Finite deflections of a rigid-viscoplastic strain-hardening annular plate loaded impulsively[J].Journal of Applied Mechanics,1968,35:349-356.
    [66]Martin J B.Impulsive loading theorems for rigid-plastic continua[J].Proc.Am.Soc.civ.Engrs,1964,90:27-42.
    [67]Komarov K L,Nemirovskii Yu V.Dynamic behavior of rigid-plasitc rectangular plates,UDC 624.072.22[J].Translated from Prikladnaya Mekhanika,1985,21(7):69-76.
    [68]Jones N,Uran T,Tekin S A.The dynamic plastic behaviour of fully clamped rectangular plates[J].International Journal of Solids and Structures,1970,6:1499-1512.
    [69]Jones N.A theoretical study of the dynamic plastic behavior of beams and with finite-deflections[J].International Journal of solids and Structures,1971,7:1007-1029.
    [70]Baker W E.Approximate techniques for plastic deformation of structures under impulsive loading[J].Shock Vibration Digest,1975,7(7):107-117.
    [71]Yu T X,Chen F L.The large deflection dynamic plastic response of rectangular plates[J].International Journal of Impact Engineering,1992,12(4):603-616.
    [72]陈发良,余同希.计入膜力塑性耗散效应的矩形板塑性动力响应[J].爆炸与冲击,2005,25(3):200-206.
    [73]Yu T X,Stronge W J.Large deflection of a rigid-plastic beam on foundation from impact[J].International Journal of Impact Engineering,1990,9:115-126.
    [74]Yu T X,Chen F L.Analysis of the large deflection dynamic response of simply-supported circular plates by the membrane factor method[J].Acta Mechanica Sinca,1990,6(4):333-342.
    [75]陈发良,余同希.正多边形板的塑性动力响应—小挠度分析和大挠度分析[J].爆炸与冲击,1991,11(2):106-116.
    [76]Menkes,Opat.Tearing and shear failures in explosively loaded clamped beams[J].Experimental Mechanics,1973,13:480-486.
    [77]Nurick G N,Pearce H T,Martin J B.The deformation of thin plates subjected to impulsive loading[J]. In Inelastic Behavior of Plates and Shells(Edited by L.Bevilacqua). Springer, New York, 1986.
    [78] Nurick G N, Martin J B. Deformation of thin plates subjected to impulsive loading-A review. Part I: Theoretical considerations[J]. International Journal of Impact Engineering, 1989, 8(2): 159-169.
    [79] Nurick G N, Martin J B. Deformation of thin plates subjected to impulsive loading-A review. Part II: Experimental studies[J]. International Journal of Impact Engineering, 1989, 8(2): 171-186.
    [80] Teeling-Smith, Nurick G N. The deformation and tearing of thin circular plates subjected to impulsive loads [J]. International Journal of Impact Engineering, 1991, 11: 77-91.
    [81] Jones N, Baeder R A. An experimental study of the dynamic plastic behavior of rectangular plates[C]. Symposium Plastic Analysis of Structures, Ministry of Education, Polytechnic Institue of Jassy, Civil Engineering Faculty, Romania, 1992, 1: 476-497.
    [82] Shen, Jones N. Dynamic response and failure of fully clamped circular plates under impulsive loading[J]. International Journal of Impact Engineering, 1993, 13: 259-278.
    [83] Nurick G N, Shave G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental study [J]. International Journal of Impact Engineering, 1996, 8(1): 99-116.
    [84] Nurick, Gelman, Marshall. Tearing of blast loaded plates with clamped boundary conditions [J]. International Journal of Impact Engineering, 1996, 18, 7-8: 803-827.
    [85] Alwar R S, Adimurthy N K. Non-linear dynamic response of sandwich panels under pulse and shock type excitations [J]. Journal of Sound and Vibration, 1975, 39(1): 43-54.
    [86] Mei C, Wentz K R. Large-amplitude random response of angle-ply laminated composite plates[J]. AIAA(American Institute of Aeronautics and Astronautics) Journal, 1982,20: 1450-1458.
    [87] Reddy J N. Geometrically nonlinear transient analysis of laminated composite plates[J]. AIAA(American Institute of Aeronautics and Astronautics) Journal, 1983, 21(4): 621-629.
    [88] Reddy J N. Dynamic (transient) analysis of layered anisotropic composite material plates[J]. International Journal for Numerical Methods in Engineering, 1983, 19(2): 237-255.
    [89] Kant T, Ravichandran R V, Pandya B N, etc. Finite element transient dynamic analysis of isotropic and fibre reinforced composite plates using a high-order theory[J]. Composite Structures, 1988, 9(4): 319-342.
    [90] Tracy M, Chang F K. Identifying impact load in composite plates based on distributed piezoelectric sensor measurements [J]. Smart Structures and Materials, Proc of SPIE (Vol 2779).
    [91] Wallach J C, Gibson L J. Mechanical Behavior of a three-dimensional truss material[J]. International Journal of solids and Structures, 2001, 38: 7181-7196.
    [92] Kesler O and Gibson L J. Size effects in metallic foam core sandwich beams[J]. Materials science and Engineering A, 2002, 326(2): 955-977.
    [93] Chen C, Fleck N A. Size effect in the constrained deformation of metallic[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(5): 955-977.
    [94] Yu J L, Wang X, Wei Z G, etc. Deformation and Failure Mechanism of Dynamically Loaded Sandwich Beams with Aluminum-Foam Core[J]. International Journal of Impact Engineering, 2003, 28: 331-347.
    [95] Xue Z, Hutchinson J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences, 2003, 45: 687-705.
    [96] Xue Z, Hutchinson J W. A comparative study of blast-resistant metal sandwich plates[J]. International Journal of Impact Engineering, 2004, 30: 1283-1305.
    [97] Fleck N A, Deshpande V S. The resistance of clamped sandwich beams to shock loading[J]. ASME, Journal of Applied Mechanics, 2004, 71(3): 386-401.
    [98] Qiu X, Deshpande V S, Fleck N A. Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading[J]. Journal of Applied Mechanics, 2004, 90: 637-645.
    [99]Zhu Feng,Zhao Longmao,Lu Guoxing,etc.Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations[J].International Journal of Impact Engineering,2008,35:937-951.
    [100]Zhu Feng,Wang Zhihua,Lu Guoxing.Analytical investigation and optimal design of sandwich panels subjected to shock loading[J].Materials and Design,2009,30:91-100.
    [101]Ashby MF,Evans AG,Fleck NA,etc.Metal Foams:A Design Guide[M].Vol.1.Oxford:Butterworth-Heinemann,2000.
    [102]Tan P J,Harrigan J J,Reid S R.Inertia effects in the uniaxial dynamic compression of a closed-cell aluminium alloy foam[J].Materials Science and Technology,2002,18:480-488.
    [103]Radford D D,Deshpande V S,Fleck N A.The use of metal foam projectiles to simulate shock loading on a structure[J].International Journal of Impact Engineering,2005,31:1152-1171.
    [104]Radford D D,McShane G J,Deshpande V S,etc.The response of clamped sandwich plates with metallic foam cores to simulated blast loading[J].International Journal of solids and structures,2006,43:2243-2259.
    [105]McShane G J,Radford D D,Deshpande V S,etc.The response of clamped sandwich plates with lattice cores subjected to shock loading[J].European Journal of Mechanics A/Solids,2006,25:215-229.
    [106]Rubino V,Deshpande V S,Fleck N A.The dynamic response of clamped rectangular Y-frame and corrugated core sandwich plates[J].European Journal of Mechanics A/Solids,available on line.
    [107]陈秀娣.超薄铝蜂窝夹层结构板的弯曲刚度试验[J].航天工艺,1995,4:26-29.
    [108]梁森,陈花玲,陈天宁等.蜂窝夹芯结构面内等效弹性参数的分析研究[J].航空材料学报,2004,24(3):26-31.
    [109]PAPKA S Da,KYRIAKIDES Sa.Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb[J].Acta Materialia,1998,46(5):2765-2776.
    [110]程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击后的压缩[J].北京航空航天大学学报,1998,24(5):551-554.
    [111]程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击损伤研究[J].复合材料学报,1998,15(3):124-128.
    [112]程小全,寇长河,郦正能.复合材料夹芯板低速冲击后弯曲及横向静压特性[J].复合材料学报,2000,17(2):114-118.
    [113]麻文焱,倪晗,姚文戈.铝蜂窝地板力学性能试验研究[J].试验技术与试验机,2002,42(3):29-30.
    [114]丘育红,刘炳立.碳/环氧网格面板-铝蜂窝夹层结构板弯曲刚度试验研究[J].航天返回与遥感,2004,25(3):44-48.
    [115]谌勇,张志谊,华宏星.三维格架芯层夹芯板爆炸载荷时的响应分析[J].振动与冲击,2007,26(10):23-26.
    [116]张跃东,陈斌.爆炸荷载作用下夹层板的动力响应仿真分析[J].采矿技术,2005,5(3):90-92.
    [117]张明华,谌河水,赵恒义.泡沫铝芯体夹层板压缩力学性能的试验研究[J].轻金属,2008,2:55-58.
    [118]张明华,谌河水,赵恒义.泡沫铝夹芯板动态抗侵彻性能的实验研究[J].力学季刊,2008,29(2):241-247.
    [119]李美峰.多孔金属夹层板在高速冲击下的动态力学性能研究[D].西安交通大学,2007.
    [120]赵桂平,卢天健.多孔金属夹层板在冲击载荷作用下的动态响应[J].力学学报,2008,40(2):194-206.
    [121]Hexcel Co..HexWeb~(R) Honeycomb energy absorption system design data,2005.
    [122]Teeling Smith R G,Nurick G N.The deformation and tearing of thin circular plates subjected to impulsive loads[J].International Journal of Impact Engineering,1991,11(1):77-91.
    [123]Olson MD,Nurick GN,Fagnan JR et al.Deformation and rupture of blast loaded square plates-predictions and experiments[J].International Journal of Impact Engineering,1993,13(2):279-291.
    [124]Radford D D,Fleck N A,Deshpande V S.The response of clamped sandwich beams subjected to shock loading[J].International Journal of Impact Engineering,2006,32:968-987.
    [125]Fleck N.A.and Deshpande V.S.The resistance of clamped sandwich beans to shock loading[J].Journal of Applied Mechanics,ASME,2004,71:1-16.
    [126]Qiu X,Deshpande V S,Fleck N A.impulse loading of clamped monolithic and sandwich beams over a central patch[J].Journal of the Mechanics and Physics of Solids,2004,53(5):1015-1046.
    [127]Jones N.A theoretical study of the dynamic plastic behaviour of beams and plates with finite-deflections[J].International Journal of Solids and Structures,1971,7:1007-1029.
    [128]Jones N.Structural impact[M].Cambridge university press,1989,Cambridge,U.K.
    [129]马丁.塑性力学:基础及一般结果[M].北京理工大学出版社,1990.
    [130]Zhu Feng.Impulsive loading of sandwich panels with cellular cores[D].Thesis,Swinburne University of Technology,2008,5.
    [131]Hutchinson J W,Xue Z.Metal sandwich plates optimized for pressure impulses[J].International Journal of Mechanical Sciences,2005,47:545-69.
    [132]Xue Z,Hutchinson J W.A comparative study of impulse-resistant metal sandwich plates[J].International Journal of Impact Engineering,2004,30:1283-1305.
    [133]LS-DYNA970 THEORY MANUAL.LIVERMORE SOFTWARE TECHNOLOGY CORPORATION,April 2003,Version970:276-277.
    [134]赵隆茂.结构动力响应分析中接触—碰撞界面算法研究的进展[J].太原理工大学学报,2001,32(5):459-462.
    [135]Haug E.Contact-impact problems for crash[C].Process of Second International Symposium of plasticity,Nagoya,Japan,1981.
    [136]Hughes T J.A finite element method for a class of contact-impact problems[J].Computer Methods in Applied Mechanics and Engineering,1976(8):249-276.
    [137]Hallquist J O.A procedure for the solution of finite deformation contact-impact problems by the finite element method[J].University of California,Lawrence Livermore national laboratory, Rept. UCRL-52066, 1976.
    [138] Wilkins M L. Calculations of elastic plastic flow[J]. Meth. Comp. Phys, 1964(3): 211-263.
    [139] Burton D E. Physics and numerical of the TENSOR code. Lawrence Livermore national laboratory, Internal Document UCID-19428, 1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700