糖尿病肾病肾小管上皮细胞转分化中整合素连接激酶对MMP-9/TIMP-1比值的调控及大黄酸对其作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:
     糖尿病肾病(diabetic nephropathy, DN)已成为目前终末期肾病(End-stage renal disease, ESRD)的主要基础病之一,其主要病理改变为肾间质细胞外基质聚积最终导致肾间质纤维化。既往研究表明,肾小管上皮细胞-肌成纤维细胞转分化(tubular epithelial myofibroblast transdifferentiation, TEMT)在其过程中发挥了重要作用。
     整合素连接激酶(integrin-linked kinase, ILK)是一种与整合素细胞内区域相结合的丝氨酸/苏氨酸蛋白激酶,在调节细胞粘附、迁移、基质积聚等过程中起重要作用,与肾脏疾病的发生发展密切相关。研究表明ILK是TGF-β1/Smad信号传导途径的重要下游效应分子,也是该信号传导途径诱导TEMT的关键步骤,参与ECM聚积过程。
     基质金属蛋白酶-9(matrix metalloproteinases-9,MMP-9)可降解包括IV型胶原在内的多种ECM成分。金属蛋白酶组织抑制齐(?)-1(tissue inhibitor of metalloproteinase-1, TIMP-1)作为MMP--9的抑制物可与其特异性结合,保持动态平衡。发生TEMT时,MMP-9表达增多,引起MMP-9/TIMP-1失衡。高表达的MMP-9可特异性过度降解小管基底膜的Ⅳ型胶原,破坏基底膜。转分化的肾小管上皮细胞随后穿过断裂的基底膜,到达肾间质成为MyoF,促进间质纤维化的进一步发展。MMP-9/TIMP-1失衡可能是TEMT过程中的促进因素。
     大黄酸(rhein)作为大黄的主要有效成分,已被证实对肾脏有保护作用。本课题组通过前期研究发现,大黄酸可以抑制糖尿病肾病TEMT的发生,但其作用是否与调节ILK表达及影响MMP-9/TIMP-1比值,抑制TEMT及纤维化的进展有关?尚不清楚。
     本研究拟从糖尿病肾病患者、糖尿病肾病大鼠、与体外高糖环境下人肾小管上皮细胞培养三个研究层面入手,观察在DN小管间质病变中,肾小管上皮细胞转分化与ILK、MMP-9/TIMP-1表达的改变,同时采用ILK小分子干扰RNA技术(siRNA)特异性抑制ILK的表达,进而探讨ILK对MMP-9/TIMP-1的调控机制及其在TEMT中的作用;同时用大黄酸干预处理,观察大黄酸对DN的治疗作用及其对上述过程的影响,旨在从TEMT的角度探讨DN发病的具体机制及中药大黄防治DN的可能新靶点。
     方法:
     1.收集糖尿病肾病患者肾穿刺活检标本,使用HE染色、PASM染色及Masson染色方法,了解其肾脏损伤程度;免疫组织化学方法检测肾组织中E-cadherin、α-SMA的表达水平,并与正常肾组织比较,以观察人糖尿病肾病发病过程中是否存在TEMT。
     2.饲养8周龄健康雄性Wistar大鼠,随机分为正常组(12只),糖尿病组(12只)、大黄酸组(12只)及缬沙坦组(12只)。分别于第8、16周末,每组各处死6只大鼠,肾脏原位灌洗后,取肾组织,固定于蜡块中并切片。HE染色检测肾小管间质损伤程度,Masson染色方法观察肾间质胶原相对面积,免疫组织化学方法检测E-cadherin、α-SMA、TGF-β1、ILK、MMP-9、TIMP-1及AP-1的表达水平。
     3.培养人近端肾小管上皮细胞(HK-2),并分为:正常对照组、高糖组、高糖+抑制ILK表达组、高糖+无序siRNA组、高糖+大黄酸低浓度干预组、高糖+大黄酸中浓度干预组、高糖+大黄酸高浓度干预组、高渗对照组。各组细胞培养48小时后,分别提取细胞总RNA、总蛋白,使用Real-time RT PCR法、Western blot法及细胞免疫组织化学染色法评定各组细胞E-cadherin、α-SMA、TGF-β1、 ILK、MMP-9、TIMP-1的相对表达量。
     结果:
     1.与正常肾组织相比,糖尿病肾病患者肾组织中可观察到肾小管间质损伤及胶原沉积,其肾小管上皮细胞胞膜及胞浆中E-Cadherin表达下降,α-SMA表达上升,评分值有显著差异(P<0.05)。
     2.与正常组相比,糖尿病肾病大鼠肾间质胶原相对面积增加,肾小管上皮细胞E-cadherin表达减少、α-SMA表达增加(P<0.05)。与糖尿病组相比,大黄酸组及缬沙坦组大鼠肾间质胶原相对面积减少,E-cadherin表达增加、α-SMA表达减少(P<0.05),大黄酸组与缬沙坦组之间无明显差异(P>0.05)。
     与正常组相比,糖尿病肾病大鼠肾小管上皮细胞MMP-9、 TIMP-1表达随病情发展出现变化,MMP-9/TIMP-1比值紊乱。与糖尿病组相比,大黄酸组及缬沙坦组大鼠肾小管上皮细胞MMP-9/TIMP-1比值更接近于正常组(P<0.05),大黄酸组与缬沙坦组之间无明显差异(P>0.05)。
     与正常组相比,糖尿病肾病大鼠肾小管上皮细胞TGF-β1、ILK、 AP-1的表达随病情发生均呈进行性升高(P<0.05)。与糖尿病组相比,大黄酸组及缬沙坦组TGF-β1、ILK、AP-1的表达均降低(P<0.05),大黄酸组与缬沙坦组之间无明显差异(P>0.05)。糖尿病三组大鼠肾小管上皮细胞中AP-1表达与MMP-9/TIMP-1比值呈负相关。
     3.与正常组相比,高糖环境下培养的HK-2细胞、TGF-β1刺激的HK-2细胞均出现E-cadherin mRNA与蛋白表达减少,α-SMA、ILK mRNA与蛋白表达增加(P<0.05)。使用ILK-siRNA特异性抑制ILK表达后,HK-2细胞出现E-cadherin mRNA与蛋白表达上调,α-SMA、ILK mRNA与蛋白表达减少(P<0.05)。在高糖培养的HK-2细胞中加入大黄酸后,HK-2细胞出现与加入ILK-siRNA类似的改变,二者无明显差异(P>0.05)。
     与正常组相比,高糖环境下培养的HK-2细胞出现MMP-9/TIMP-1比值紊乱。使用ILK-siRNA特异性抑制ILK表达后,HK-2细胞的MMP-9/TIMP-1比值回归到接近正常(P<0.05),高糖+大黄酸组亦出现类似改变,二者无明显差异(P>0.05)。
     结论:
     1.在人糖尿病肾病病变发展过程中,可能存在肾小管上皮细胞转分化现象。
     2.高糖环境下HK-2细胞与糖尿病肾病大鼠肾小管上皮细胞E-cadherin表达减少,α-SMA表达增加,表明在糖尿病肾病(DN)肾小管间质病变进程中,存在肾小管上皮细胞转分化(TEMT)。
     3.在DN病理状态下,肾小管上皮细胞的ILK表达增高;ILK参与、介导了DN的TEMT过程,特异性抑制ILK可阻抑TEMT过程,调节紊乱的MMP-9/TIMP-1比值,且对TEMT有部分逆转作用。
     4.大黄酸可下调DN大鼠肾小管上皮细胞及高糖环境下HK-2细胞ILK的表达,改善MMP-9/TIMP-1比值的失衡,并阻抑TEMT的进展;大黄酸对DN中ILK高表达的抑制及其对MMP-9/TIMP-1比值的调节可能是大黄酸肾脏保护作用的机制之一。
Background and Objectives:
     With the rising incidence of diabetes, diabetic nephropathy (DN), the main pathological change of which is renal interstitial fibrosis, is one of the main primary diseases to result in the end-stage renal disease (ESRD). Tubular epithelial myofibroblast transdifferentiation (TEMT), along with extracellular matrix accumulating, play important roles in renal interstitial fibrosis.
     Integrin-linked kinase (ILK) is a serine/threonine protein kinase, combinated with the intracellular region of integrin, regulates cell adhesion, migration, extracellular matrix accumulation, and is closely related with the pathogenesis of kidney diseases. Studies have shown that ILK, which participates in ECM accumulation, is an important downstream effector molecule of TGF-β1/Smad signaling pathway, and the committed step of TGF-β1/Smad induced TEMT.
     Matrix metalloproteinases-9(MMP-9) can specifically degrade the main ingredient-collagen IV in tubular epithelial basement membrane. Tissue inhibitor of metalloproteinase-1(TIMP-1) can specifically combine with MMP-9and keep their activity in a state of homeostasis. Recently scholars have been focused on the ratio of MMP-9/TIMP-1and considered it as a potential index for evaluating MMP-9effect in the process of renal fibrosis. In the condition of TEMT, the normal MMP-9/TIMP-1ratio is disturbed. Excessive MMP-9degradates type IV collagen in tubular basement membrane, trough which the transdifferentiated tubular epithelial cells pass and reach the renal interstitium, promotes further development of interstitial fibrosis.
     Rhein is a precursor component isolated from rhubarb anthraquinone derivatives, and a main renoprotective ingredient of rhubarb. Cumulative evidence suggests that some Chinese herbal medicines, including rhubarb, have a beneficial role in slowing the progression of CKD. Our previous studies suggested that rhein inhibited the pathogenesis of TEMT, however, whether this effect was related with regulation of ILK and MMP-9/TIMP-1ratio, is still unclear.
     This research studied from three aspects:chronic kidney disease patients, diabetic nephropathy rats and high glucose environment cultured human proximal tubular epithelial cells; meanwhile inhibited ILK expression with small interfering RNA (siRNA), and intervened the above process with rhein. The aims of this research were:observe TEMT in DN tubulointerstitial lesions, and the changes of ILK expression and MMP-9/TIMP-1ratio; explore the regulating effects of ILK on MMP-9/TIMP-1ratio in TEMT; investigate the therapeutic effect of rhein on DN and its impact on the above-mentioned process, elucidate the specific pathogenesis and the possible new target of DN prevention.
     Methods:
     1. Renal biopsy specimens of diabetic nephropathy patients (n=6) were collected. HE, PASM, Masson staining were used to observe renal pathological changes. Immunohistochemistry was used to detect E-cadherin, a-SMA expression in renal biopsy specimens and compared with the control group (n=6); the aim was to observe whether there is TEMT process in diabetic nephropathy patients.
     2. Healthy male Wistar rats of8weeks old were randomly divided into normal group (n=12), diabetic nephropathy group (n=12), rhein intervention group (n=12) and valsartan intervention group (n=12). Six rats of each group were killed at the end of the8th and16th week. The renal interstitial injuries and the relative area of renal interstitial collagen were measured by HE and Masson staining. The protein expression of E-cadherin, a-SMA, TGF-β1, ILK, MMP-9, TIMP-1and AP-1in renal tubular epithelial cells were measured by immunohistochemistry.
     Human proximal tubular epithelial cells (HK-2) were cultured and divided into the following groups:normal group; high glucose group; ILK-siRNA group; negative siRNA group; high glucose+low concentration rhein group; high glucose+medium concentration rhein group; high glucose+high concentration rhein group; and hypertonic group. After cultured for48hours, total cell RNA and total cell protein were extracted. The mRNA and protein expression of E-cadherin, a-SMA, TGF-β1, ILK, MMP-9, TDVIP-1was detected by Real-time RT PCR, Western blot and cytoimmunohistochemistry.
     Results:
     1. HE, Masson and PASM staining showed that there were tubular and interstitial lesions in the kidneys of DN patients. Comparing to the patients of the control group, the E-cadherin expression in the cell membrane and cytoplasm decreased, and a-SMA expression increased in the renal tubular cells of diabetic nephropathy patients, with significant difference (P<0.05).
     2. Comparing to the normal group, the relative area of renal interstitial collagen of diabetic nephropathy rats increased. The expression of E-cadherin in renal tubular epithelial cells decreased and the expression of a-SMA significantly increased at the level of P<0.05. Compared with diabetic nephropathy group, rhein and valsartan intervention groups showed increases in the relative area of renal collagen. The expression of E-cadherin increased, while the expression of α-SMA significantly decreased. There is no significant difference between rhein intervention group and valsartan intervention group at the P>0.05level.
     Comparing to the normal group, the expressions of MMP-9and TIMP-1in renal tubular epithelial cells of diabetic nephopathy rats changed while the ratio of MMP-9/TIMP-1was disturbed. Compared with diabetic nephropathy group, rhein and valsartan intervention groups showed significant decrease in MMP-9/TIMP-1ratio. There is no significant difference between rhein intervention group and valsartan intervention group at the P>0.05level.
     Comparing to the normal group, the expressions of TGF-β1, ILK, AP-1in renal tubular epithelial cells of diabetic nephopathy rats increased significantly with the disease progression (P<0.05). Compared with diabetic nephropathy group, rhein and valsartan intervention groups showed significant decrease in expression of TGF-β1, ILK, AP-1(P<0.05). There is no significant differnce between rhein intervention group and valsartan intervention group at the P>0.05level.
     3. The mRNA and protein expression of cultured HK-2cells were evaluated by Real-time RT PCR, Western blot and cytoimmunohistpchemistry respectively. The results indicated: Comparing to the normal group, the expression of E-cadherin decreased; the a-SMA and ILK expression significantly increased in the high glucose group (P<0.05). Inhibition of ILK by ILK-siRNA resulted in the increased expression of E-cadherin, decreased expression of a-SMA and ILK at the P<0.05level. In the rhein intervention groups, the HK-2cells showed a similar change with the ILK-siRNA group and there was no significant difference between these groups (P>0.05).
     Comparing to the normal group, the MMP-9/TIMP-1ratio was disturbed in the high glucose group (P<0.05). Inhibition of ILK by ILK-siRNA resulted in a normal return of MMP-9/TIMP-1ratio. Similar change was observed in the rhein intervention groups and there was no significant difference between them (P>0.05).
     Conclusions:
     1. TEMT may exist in the process of human diabetic nephropathy.
     2. E-cadherin expression decreased and a-SMA expression increased in high glucose environment cultured HK-2cells and the tubular epithelial cells of DN rats, indicating that TEMT exists in the process of tubulointerstitial lesions.
     3. In the pathological state of DN, ILK expression of renal tubular cells increased; ILK participated and mediated the process of TEMT; ILK inhibition could counteract with TEMT, and regulate the disturbed ratio of MMP-9/TIMP-1, thus inhibit TEMT.
     4. Rhein could down-regulate ILK expression in HK-2cells under high glucose environment and in renal tubular epithelial cells of DN rats, improve the status of MMP-9/TIMP-1ratio imbalance, and attenuate the progress of TEMT. The inhibition effect of rhein towards the ILK overexpression in DN and its regulating role to MMP-9/TIMP-1ratio may be one of its renoprotective mechanisms.
引文
[1]Yoon, K. H.,Lee, J. H.,Kim, J. W., etc. Epidemic obesity and type 2 diabetes in Asia[J]. Lancet, Nov 11,2006,368 (9548):1681-8.
    [2]Nakai, S.,Masakane, I.,Akiba, T., etc. Overview of regular dialysis treatment in Japan as of 31 December 2006[J]. Ther Apher Dial, Dec,2008,12 (6):428-56.
    [3]Perez-Garcia, R.,Martin-Malo, A.,Fort, J., etc. Baseline characteristics of an incident haemodialysis population in Spain:results from ANSWER--a multicentre, prospective, observational cohort study[J]. Nephrol Dial Transplant, Feb,2009,24 (2):578-88.
    [4]Nangaku, M. Mechanisms of tubulointerstitial injury in the kidney:final common pathways to end-stage renal failure[J]. Intern Med, Jan,2004,43 (1): 9-17.
    [5]Steinke, J. M.,Mauer, M. Lessons learned from studies of the natural history of diabetic nephropathy in young type 1 diabetic patients[J]. Pediatr Endocrinol Rev, Aug,2008,5 Suppl 4958-63.
    [6]Nangaku, M.,Miyata, T. [Mechanisms in remodeling of the kidney][J]. Nihon Rinsho, Sep,2008,66 (9):1696-700.
    [7]Efstratiadis, G.,Divani, M.,Katsioulis, E., etc. Renal fibrosis[J]. Hippokratia, Oct,2009,13 (4):224-9.
    [8]Liu, Y. Epithelial to Mesenchymal Transition in Renal Fibrogenesis:Pathologic Significance, Molecular Mechanism, and Therapeutic Intervention [J]. Journal of the American Society of Nephrology,2004,15 (1):1-12.
    [9]Simonson, M. S. Phenotypic transitions and fibrosis in diabetic nephropathy [J]. Kidney Int, May,2007,71 (9):846-54.
    [10]杨俊伟,陈香美,王笑云,etc.整合素连锁激酶介导转化生长因子β1上调肾小管上皮细胞表达纤连蛋白的研究[J].中华肾脏病杂志,2005, (11):61-64.
    [11]Park, H. C.,Choi, H. Y.,Kim, B. S., etc. Urinary TGF-betal as an indicator of antiproteinuric response to angiotensin II receptor blocker in proteinuric renal diseases[J]. Biomed Pharmacother, Nov,2009,63 (9):672-8.
    [12]Miyauchi, K.,Takiyama, Y.,Honjyo, J., etc. Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy:TGF-betal enhanced IL-18 expression in human renal proximal tubular epithelial cells[J]. Diabetes Res Clin Pract, Feb,2009,83 (2):190-9.
    [13]Li, J. H.,Wang, W.,Huang, X. R., etc. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway [J]. Am J Pathol, Apr,2004,164 (4):1389-97.
    [14]Russo, L. M.,del Re, E.,Brown, D., etc. Evidence for a role of transforming growth factor (TGF)-betal in the induction of postglomerular albuminuria in diabetic nephropathy:amelioration by soluble TGF-beta type II receptor[J]. Diabetes, Feb,2007,56 (2):380-8.
    [15]Saito, T. [Hyperlipidemia in kidney diseases][J]. Nihon Rinsho, Jul 28,2007,65 Suppl 7 407-11.
    [16]Grashoff, C.,Thievessen, I.,Lorenz, K., etc. Integrin-linked kinase:integrin's mysterious partner[J]. Curr Opin Cell Biol, Oct,2004,16 (5):565-71.
    [17]Boulter, E.,Van Obberghen-Schilling, E. Integrin-linked kinase and its partners: a modular platform regulating cell-matrix adhesion dynamics and cytoskeletal organization[J]. Eur J Cell Biol, Apr,2006,85 (3-4):255-63.
    [18]Li, Y.,Yang, J.,Dai, C., etc. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis[J]. J Clin Invest, Aug,2003,112 (4):503-16.
    [19]宁建平,杨椹,宁晨,etc.整合素连接激酶在糖尿病肾小管上皮细胞转分化中的作用[J].中南大学学报(医学版),2007,(01):104-108.
    [20]Lan, H. Y. Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells[J]. Curr Opin Nephrol Hypertens, Jan,2003,12 (1):25-9.
    [21]Rysz, J.,Banach, M.,Stolarek, R. A., etc. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy [J]. J Nephrol, Jul-Aug,2007,20 (4):444-52.
    [22]Chevalier, R. L. Pathogenesis of renal injury in obstructive uropathy[J]. Curr Opin Pediatr, Apr,2006,18 (2):153-60.
    [23]Han, S. Y. An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy [J]. Nephrology Dialysis Transplantation,2006,21 (9): 2406-2416.
    [24]Bai, Y.,Wang, L.,Li, Y., etc. High ambient glucose levels modulates the production of MMP-9 and alpha5(Ⅳ) collagen by cultured podocytes[J]. Cell Physiol Biochem,2006,17 (1-2):57-68.
    [25]Mi, Z.,Guo, H.,Wai, P. Y., etc. Integrin-linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells[J]. Carcinogenesis, Jun, 2006,27(6):1134-45.
    [26]Assi, K.,Mills, J.,Owen, D., etc. Integrin-linked kinase regulates cell proliferation and tumour growth in murine colitis-associated carcinogenesis [J]. Gut, Jul,2008,57 (7):931-40.
    [27]Watanabe, D.,Tanabe, A.,Naruse, M., etc. Renoprotective effects of an angiotensin II receptor blocker in experimental model rats with hypertension and metabolic disorders[J]. Hypertens Res, Sep,2009,32 (9):807-15.
    [28]Remuzzi, G.,Ruggenenti, P.,Perna, A., etc. Continuum of renoprotection with losartan at all stages of type 2 diabetic nephropathy:a post hoc analysis of the RENAAL trial results[J]. J Am Soc Nephrol, Dec,2004,15 (12):3117-25.
    [29]Abe, H.,Minatoguchi, S.,Ohashi, H., etc. Renoprotective effect of the addition of losartan to ongoing treatment with an angiotensin converting enzyme inhibitor in type-2 diabetic patients with nephropathy [J]. Hypertens Res, Oct, 2007,30 (10):929-35.
    [30]Wojcikowski, K.Johnson, D. W.,Gobe, G. Herbs or natural substances as complementary therapies for chronic kidney disease:ideas for future studies[J]. J Lab Clin Med, Apr,2006,147 (4):160-6.
    [31]朱伟,王学美.大黄治疗慢性肾功能衰竭机制的研究进展[J].中国中西医结合杂志,2005,(05):471-475.
    [32]龚伟,黎磊石,孙骅,etc.大黄酸对糖尿病大鼠转化生长因子β及其受体表达的影响[J].肾脏病与透析肾移植杂志,2006,(02):101-111+143.
    [33]何东元,王笑云,王宁宁,etc.大黄酸抑制肾间质成纤维细胞激活的实验研究[J].中华肾脏病杂志,2006,(02):105-108.
    [34]Zheng, J. M.,Zhu, J. M.,Li, L. S., etc. Rhein reverses the diabetic phenotype of mesangial cells over-expressing the glucose transporter (GLUT1) by inhibiting the hexosamine pathway [J]. Br J Pharmacol, Apr,2008,153 (7):1456-64.
    [35]Kanda, T.,Wakino, S.,Hayashi, K., etc. Effect of fasudil on Rho-kinase and nephropathy in subtotally nephrectomized spontaneously hypertensive rats[J]. Kidney Int, Dec,2003,64 (6):2009-19.
    [36]李文星.大黄酸对糖尿病大鼠肾小管上皮细胞转分化与MMP-9/TIMP-1的影响[D].硕士,中南大学2008.
    [37]Riera, M.,Torras, J.,Cruzado, J. M., etc. The enhancement of endogenous cAMP with pituitary adenylate cyclase-activating polypeptide protects rat kidney against ischemia through the modulation of inflammatory response [J]. Transplantation, Oct 15,2001,72 (7):1217-23.
    [38]金永东.糖尿病肾病肾小管上皮细胞转分化及虫草菌液对其影响[D].博士,中南大学2008.
    [39]Ohnishi, M.,Hasegawa, G.,Yamasaki, M., etc. Integrin-linked kinase acts as a pro-survival factor against high glucose-associated osmotic stress in human mesangial cells[J]. Nephrol Dial Transplant, Jul,2006,21 (7):1786-93.
    [40]Carneiro, E.,Menezes, R.,Garlet, G. P., etc. Expression analysis of matrix metalloproteinase-9 in epithelialized and nonepithelialized apical periodontitis lesions[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, Jan,2009,107 (1):127-32.
    [41]Chen, W. J.,Wang, H.,Tang, Y., etc. Multidrug resistance in breast cancer cells during epithelial-mesenchymal transition is modulated by breast cancer resistant protein[J]. Chin J Cancer, Feb,2010,29 (2):151-7.
    [42]Pegorier, S.,Campbell, G. A.,Kay, A. B., etc. Bone morphogenetic protein (BMP)-4 and BMP-7 regulate differentially transforming growth factor (TGF)-betal in normal human lung fibroblasts (NHLF)[J]. Respir Res,2010,11 85.
    [43]陆小兰.大黄酸对高糖环境下肾小管上皮细胞转分化的影响[D].硕士,中南大学2008.
    [44]Iwano, M.,Neilson, E. G. Mechanisms of tubulointerstitial fibrosis[J]. Curr Opin Nephrol Hypertens, May,2004,13 (3):279-84.
    [45]Kliem, V.,Johnson, R. J.,Alpers, C. E., etc. Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats[J]. Kidney Int, Mar,1996,49 (3):666-78.
    [46]Phillips, A. O. The role of renal proximal tubular cells in diabetic nephropathy[J]. Curr Diab Rep, Dec,2003,3 (6):491-6.
    [47]Jinde, K.,Nikolic-Paterson, D. J.,Huang, X. R., etc. Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis[J]. Am J Kidney Dis, Oct,2001,38 (4):761-9.
    [48]Strutz, F.,Okada, H.,Lo, C. W., etc. Identification and characterization of a fibroblast marker:FSP1 [J]. J Cell Biol, Jul,1995,130 (2):393-405.
    [49]Rastaldi, M. P.,Ferrario, F.,Giardino, L., etc. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies[J]. Kidney Int, Jul,2002,62 (1):137-46.
    [50]Iwano, M. Evidence that fibroblasts derive from epithelium during tissue fibrosis[J]. Journal of Clinical Investigation,2002,110 (3):341-350.
    [51]Burns, W. C.,Twigg, S. M.,Forbes, J. M., etc. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition:implications for diabetic renal disease[J]. J Am Soc Nephrol, Sep,2006,17 (9):2484-94.
    [52]Chen, L.,Liu, B. C.,Zhang, X. L., etc. Influence of connective tissue growth factor antisense oligonucleotide on angiotensin II-induced epithelial mesenchymal transition in HK2 cells[J]. Acta Pharmacol Sin, Aug,2006,27 (8): 1029-36.
    [53]Rhyu, D. Y.,Yang, Y.,Ha, H., etc. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells[J]. J Am Soc Nephrol, Mar,2005,16 (3):667-75.
    [54]Ng, Y. Y.,Huang, T. P.,Yang, W. C, etc. Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats[J]. Kidney Int, Sep,1998,54 (3):864-76.
    [55]Berx, G.,Staes, K.,van Hengel, J., etc. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1)[J]. Genomics, Mar 20, 1995,26 (2):281-9.
    [56]Yang, J.,Liu, Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis[J]. Am J Pathol, Oct, 2001,159(4):1465-75.
    [57]Tian, Y. C.,Fraser, D.,Attisano, L., etc. TGF-betal-mediated alterations of renal proximal tubular epithelial cell phenotype[J]. Am J Physiol Renal Physiol, Jul, 2003,285 (1):F130-42.
    [58]Jandeleit-Dahm, K.,Cao, Z.,Cox, A. J., etc. Role of hyperlipidemia in progressive renal disease:focus on diabetic nephropathy[J]. Kidney Int Suppl, Jul,1999,71 S31-6.
    [59]Chuang, L. Y.,Guh, J. Y.,Liu, S. F., etc. Regulation of type II transforming-growth-factor-beta receptors by protein kinase C iota[J]. Biochem J, Oct 15,2003,375 (Pt 2):385-93.
    [60]Lee, Y. I.,Kwon, Y. J.,Joo, C. K. Integrin-linked kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition[J]. Biochem Biophys Res Commun, Apr 16,2004,316 (4):997-1001.
    [61]Cheng, X.,Zhou, Q.,Lin, S., etc. Fosinopril and valsartan intervention in gene expression of Klotho, MMP-9, TIMP-1, and PAI-1 in the kidney of spontaneously hypertensive rats[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, Oct,2010,35 (10):1048-56.
    [62]Ning, J. P.,Liu, J. S.,Peng, L. L. Effects of Valsartan on expressions of MMP-9/TIMP-1 in tubular epithelial cells of diabetic rats.[J]. China Journal of Modern Medicine,2011,21 (08):942-946.
    [63]Rahkonen, O. P.,Koskivirta, I. M.,Oksjoki, S. M., etc. Characterization of the murine Timp4 gene, localization within intron 5 of the synapsin 2 gene and tissue distribution of the mRNA[J]. Biochim Biophys Acta, Aug 19,2002,1577 (1):45-52.
    [64]Zhou, L.,Xue, H.,Yuan, P., etc. Angiotensin ATI receptor activation mediates high glucose-induced epithelial-mesenchymal transition in renal proximal tubular cells[J]. Clin Exp Pharmacol Physiol, Sep,2010,37 (9):e152-7.
    [65]Kang, Y. S.,Li, Y.,Dai, C., etc. Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria[J]. Kidney Int, Aug,2010,78 (4):363-73.
    [66]Mankhey, R. W.,Wells, C. C.,Bhatti, F., etc.17beta-Estradiol supplementation reduces tubulointerstitial fibrosis by increasing MMP activity in the diabetic kidney[J]. Am J Physiol Regul Integr Comp Physiol, Feb,2007,292 (2): R769-77.
    [67]Osman, B.,Akool el, S.,Doller, A., etc. Differential modulation of the cytokine-induced MMP-9/TIMP-1 protease-antiprotease system by the mTOR inhibitor rapamycin[J]. Biochem Pharmacol, Jan 1,2011,81 (1):134-43.
    [68]Wang, X. Y.,Wang, Y.,Liu, H. C. Tamoxifen lowers the MMP-9/TIMP-1 ratio and inhibits the invasion capacity of ER-positive non-small cell lung cancer cells[J]. Biomed Pharmacother, Oct,2011,65 (7):525-8.
    [69]Lorente, L.,Martin, M. M.,Labarta, L., etc. Matrix metalloproteinase-9,-10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis[J]. Crit Care,2009,13 (5):R158.
    [70]Yang, J.,Zhou, Q.,Wang, Y., etc. [Effect of high glucose on PKC and MMPs/TIMPs in human mesangial cells] [J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, May,2009,34 (5):425-31.
    [71]Troussard, A. A.,Tan, C.,Yoganathan, T. N., etc. Cell-extracellular matrix interactions stimulate the AP-1 transcription factor in an integrin-linked kinase-and glycogen synthase kinase 3-dependent manner[J]. Mol Cell Biol, Nov,1999, 19 (11):7420-7.
    [72]Troussard, A. A.,Costello, P.,Yoganathan, T. N., etc. The integrin linked kinase (ILK) induces an invasive phenotype via AP-1 transcription factor-dependent upregulation of matrix metalloproteinase 9 (MMP-9)[J]. Oncogene, Nov 16, 2000,19 (48):5444-52.
    [73]Karin, M. The regulation of AP-1 activity by mitogen-activated protein kinases[J]. J Biol Chem, Jul 14,1995,270 (28):16483-6.
    [74]Adcock, I. M. Transcription factors as activators of gene transcription:AP-1 and NF-kappa B[J]. Monaldi Arch Chest Dis, Apr,1997,52 (2):178-86.
    [75]徐江锋,罗庚求,余丹.Twist基因对胃癌细胞中AP-1转录活性及MMP-9表达的影响[J].实用预防医学,2008,(05):1333-1335.
    [76]Zheng, L.,Sinniah, R.,Hsu, S. I. Pathogenic role of NF-kappaB activation in tubulointerstitial inflammatory lesions in human lupus nephritis[J], J Histochem Cytochem, May,2008,56 (5):517-29.
    [77]Jadhav, A.,Torlakovic, E.,Ndisang, J. F. Hemin therapy attenuates kidney injury in deoxycorticosterone acetate-salt hypertensive rats[J]. Am J Physiol Renal Physiol, Mar,2009,296 (3):F521-34.
    [78]Mezzano, S. A.,Barria, M.JDroguett, M. A., etc. Tubular NF-kappaB and AP-1 activation in human proteinuric renal disease[J]. Kidney Int, Oct,2001,60 (4): 1366-77.
    [79]Fire, A.,Xu, S.,Montgomery, M. K., etc. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, Feb 19,1998, 391 (6669):806-11.
    [80]Zhang, G.,el Nahas, A. M. The effect of rhubarb extract on experimental renal fibrosis[J]. Nephrol Dial Transplant, Jan,1996,11 (1):186-90.
    [81]Gao, Q.,Qin, W. S.,Jia, Z. H., etc. Rhein improves renal lesion and ameliorates dyslipidemia in db/db mice with diabetic nephropathy[J]. Planta Med, Jan,2010, 76 (1):27-33.
    [82]Tan, Z. H.,Shen, Y. J.,Zhao, J. N., etc. [Effects of rhein on the function of human mesangial cells in high glucose environment][J]. Yao Xue Xue Bao, Nov, 2004,39(11):881-6.
    [83]Guo, X. H.,Liu, Z. H.,Dai, C. S., etc. Rhein inhibits renal tubular epithelial cell hypertrophy and extracellular matrix accumulation induced by transforming growth factor betal[J]. Acta Pharmacol Sin, Oct,2001,22 (10):934-8.
    [84]杨俊伟,黎磊石,张真.大黄治疗糖尿病肾病的实验研究[J].中华内分泌代谢杂志,1993,(04):31-33+61.
    [1]Zamore, P. D. Ancient pathways programmed by small RNAs[J]. Science, May 17,2002,296 (5571):1265-9.
    [2]Guo, S.,Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, May 19,1995,81 (4):611-20.
    [3]Jorgensen, R. A.,Cluster, P. D.,English, J., etc. Chalcone synthase cosuppression phenotypes in petunia flowers:comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences[J]. Plant Mol Biol, Aug,1996,31 (5):957-73.
    [4]Cogoni, C.,Irelan, J. T.,Schumacher, M., etc. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation[J]. EMBO J, Jun 17,1996,15 (12):3153-63.
    [5]Baulcombe, D. C. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants[J]. Plant Mol Biol, Oct,1996,32 (1-2):79-88.
    [6]Bingham, P. M. Cosuppression comes to the animals[J]. Cell, Aug 8,1997,90 (3):385-7.
    [7]Kasschau, K. D.,Carrington, J. C. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing[J]. Cell, Nov 13,1998,95 (4): 461-70.
    [8]Fire, A.,Xu, S.,Montgomery, M. K., etc. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, Feb 19,1998, 391 (6669):806-11.
    [9]Dalmay, T.,Hamilton, A.,Rudd, S., etc. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus[J]. Cell, May 26,2000,101 (5):543-53.
    [10]Zamore, P. D.,Tuschl, T.,Sharp, P. A., etc. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell, Mar 31,2000,101(1):25-33.
    [11]Svoboda, P.,Stein, P.,Hayashi, H., etc. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference [J]. Development, Oct,2000, 127 (19):4147-56.
    [12]Elbashir, S. M.,Lendeckel, W.,Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs[J]. Genes Dev, Jan 15,2001,15 (2):188-200.
    [13]Paddison, P. J.,Caudy, A. A.,Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells[J]. Proc Natl Acad Sci U S A, Feb 5, 2002,99(3):1443-8.
    [14]Elbashir, S. M.,Martinez, J.,Patkaniowska, A., etc. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate[J]. EMBO J, Dec 3,2001,20 (23):6877-88.
    [15]Bernstein, E.,Caudy, A. A.,Hammond, S. M., etc. Role for a bidentate ribonuclease in the initiation step of RNA interference [J]. Nature, Jan 18,2001, 409 (6818):363-6.
    [16]Blaszczyk, J.,Tropea, J. E.,Bubunenko, M., etc. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage [J]. Structure, Dec,2001,9 (12):1225-36.
    [17]Worby, C. A.,Simonson-Leff, N.,Dixon, J. E. RNA interference of gene expression (RNAi) in cultured Drosophila cells[J]. Sci STKE, Aug 14,2001, 2001 (95):pll.
    [18]Hannon, G. J. RNA interference[J]. Nature, Jul 11,2002,418 (6894):244-51.
    [19]Morel, J. B.,Godon, C.,Mourrain, P., etc. Fertile hypomorphic ARGONAUTE (agol) mutants impaired in post-transcriptional gene silencing and virus resistance[J]. Plant Cell, Mar,2002,14 (3):629-39.
    [20]Tijsterman, M.,Okihara, K. L.,Thijssen, K., etc. PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C. elegans[J]. Curr Biol, Sep 3,2002,12 (17):1535-40.
    [21]Pak, J.,Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans[J]. Science, Jan 12,2007,315 (5809):241-4.
    [22]Takabatake, Y.,Isaka, Y.,Mizui, M., etc. Exploring RNA interference as a therapeutic strategy for renal disease [J]. Gene Ther, Jun,2005,12 (12):965-73.
    [23]Takabatake, Y.,Isaka, Y.,Mizui, M., etc. Chemically modified siRNA prolonged RNA interference in renal disease[J]. Biochem Biophys Res Commun, Nov 16, 2007,363 (2):432-7.
    [24]姚健,黎磊石.糖尿病大鼠肾小球产生转化生长因子β的研究[J].肾脏病与透析肾移植杂志,1993,(05):379-382.
    [25]Hwang, M.,Kim, H. J.,Noh, H. J., etc. TGF-betal siRNA suppresses the tubulointerstitial fibrosis in the kidney of ureteral obstruction[J]. Exp Mol Pathol, Aug,2006,81 (1):48-54.
    [26]Noh, H. J.,Kim, H. C.,Lee, S. S., etc. The inhibitory effect of siRNAs on the high glucose-induced overexpression of TGF-betal in mesangial cells[J]. J Korean Med Sci, Jun,2006,21 (3):430-5.
    [27]Goruppi, S.,Bonventre, J. V.,Kyriakis, J. M. Signaling pathways and late-onset gene induction associated with renal mesangial cell hypertrophy [J]. EMBO J, Oct 15,2002,21 (20):5427-36.
    [28]Goruppi, S.,Kyriakis, J. M. The pro-hypertrophic basic helix-loop-helix protein p8 is degraded by the ubiquitin/proteasome system in a protein kinase B/Akt-and glycogen synthase kinase-3-dependent manner, whereas endothelin induction of p8 mRNA and renal mesangial cell hypertrophy require NFAT4[J]. J Biol Chem, May 14,2004,279 (20):20950-8.
    [29]Lin, C. L.,Wang, F. S.,Hsu, Y. C., etc. Modulation of notch-1 signaling alleviates vascular endothelial growth factor-mediated diabetic nephropathy[J]. Diabetes, Aug,2010,59 (8):1915-25.
    [30]Wu, D.,Peng, F.,Zhang, B., etc. EGFR-PLCgammal signaling mediates high glucose-induced PKCbetal-Akt activation and collagen I upregulation in mesangial cells[J]. Am J Physiol Renal Physiol, Sep,2009,297 (3):F822-34.
    [31]Alvarez, M. L.,DiStefano, J. K. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy[J]. PLoS One,2011,6 (4):e18671.
    [32]Cheng, X.,Zhou, Q.,Lin, S., etc. Fosinopril and valsartan intervention in gene expression of Klotho, MMP-9, TIMP-1, and PAI-1 in the kidney of spontaneously hypertensive rats[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, Oct,2010,35 (10):1048-56.
    [33]Fan, Q.,Xing, Y.,Ding, J., etc. The relationship among nephrin, podocin, CD2AP, and alpha-actinin might not be a true'interaction'in podocyte[J]. Kidney Int, Apr,2006,69 (7):1207-15.
    [34]Lee, S. C.,Han, S. H.,Li, J. J., etc. Induction of heme oxygenase-1 protects against podocyte apoptosis under diabetic conditions [J]. Kidney Int, Oct,2009, 76 (8):838-48.
    [35]Gu, L.,Liang, X.,Wang, L., etc. Functional metabotropic glutamate receptors 1 and 5 are expressed in murine podocytes[J]. Kidney Int, Mar,2012,81 (5): 458-68.
    [36]Tumbarello, D. A.,Turner, C. E. Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA/ROCK-dependent pathway [J]. J Cell Physiol, Jun,2007,211 (3):736-47.
    [37]Gong, R.,Rifai, A.,Ge, Y., etc. Hepatocyte growth factor suppresses proinflammatory NFkappaB activation through GSK3beta inactivation in renal tubular epithelial cells[J]. J Biol Chem, Mar 21,2008,283 (12):7401-10.
    [38]Veerasamy, M.,Nguyen, T. Q.,Motazed, R., etc. Differential regulation of E-cadherin and alpha-smooth muscle actin by BMP 7 in human renal proximal tubule epithelial cells and its implication in renal fibrosis[J]. Am J Physiol Renal Physiol, Nov,2009,297 (5):F1238-48.
    [39]Harrison, E. M.,McNally, S. J.,Devey, L., etc. Insulin induces heme oxygenase-1 through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in renal cells[J]. FEBS J, Jun,2006,273 (11):2345-56.
    [40]Noh, H.,Oh, E. Y.,Seo, J. Y., etc. Histone deacetylase-2 is a key regulator of diabetes-and transforming growth factor-beta 1-induced renal injury[J]. Am J Physiol Renal Physiol, Sep,2009,297 (3):F729-39.
    [41]Xie, P.,Sun, L.,Oates, P. J., etc. Pathobiology of renal-specific oxidoreductase/myo-inositol oxygenase in diabetic nephropathy. its implications in tubulointerstitial fibrosis[J]. Am J Physiol Renal Physiol, Jun, 2010,298(6):F1393-404.
    [42]Schodel, J.,Bohr, D.,Klanke, B., etc. Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells[J]. Kidney Int, Nov,2010,78 (9):857-67.
    [43]Vasko, R.,Koziolek, M.,Ikehata, M., etc. Role of basic fibroblast growth factor (FGF-2) in diabetic nephropathy and mechanisms of its induction by hyperglycemia in human renal fibroblasts[J]. Am J Physiol Renal Physiol, Jun, 2009,296 (6):F1452-63.
    [44]Zheng, H.,Whitman, S. A.,Wu, W., etc. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy [J]. Diabetes, Nov,2011,60 (11): 3055-66.
    [45]Lim, J. C.,Lim, S. K.,Han, H. J., etc. Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells[J]. J Cell Physiol, Nov,2010,225 (3):654-63.
    [46]Ortmann, J.,Amann, K.,Brandes, R. P., etc. Role of podocytes for reversal of glomerulosclerosis and proteinuria in the aging kidney after endothelin inhibition[J]. Hypertension, Dec,2004,44 (6):974-81.
    [47]Jiao, S.,Meng, F.,Zhang, J., etc. STAT1 mediates cellular senescence induced by angiotensin II and H(2)O (2) in human glomerular mesangial cells [J]. Mol Cell Biochem, Dec 23,2011.
    [48]Jiao, S.,Zheng, X.,Yang, X., etc. Losartan inhibits STAT1 activation and protects human glomerular mesangial cells from angiotensin II induced premature senescence [J]. Can J Physiol Pharmacol, Jan,2012,90 (1):89-98.
    [49]Wang, X.,Skelley, L.,Cade, R., etc. AAV delivery of mineralocorticoid receptor shRNA prevents progression of cold-induced hypertension and attenuates renal damage[J]. Gene Ther, Jul,2006,13 (14):1097-103.
    [50]Yatabe, J.,Sanada, H.,Yatabe, M. S., etc. Angiotensin II type 1 receptor blocker attenuates the activation of ERK and NADPH oxidase by mechanical strain in mesangial cells in the absence of angiotensin II[J]. Am J Physiol Renal Physiol, May,2009,296 (5):F1052-60.
    [51]Dey, M.,Baldys, A.,Sumter, D. B., etc. Bradykinin decreases podocyte permeability through ADAM17-dependent epidermal growth factor receptor activation and zonula occludens-1 rearrangement[J]. J Pharmacol Exp Ther, Sep 1,2010,334 (3):775-83.
    [52]Yang, Z.,Xiaohua, W.,Lei, J., etc. Uric acid increases fibronectin synthesis through upregulation of lysyl oxidase expression in rat renal tubular epithelial cells[J]. Am J Physiol Renal Physiol, Aug,2010,299 (2):F336-46.
    [53]Zhang, L.,Li, J.,Jiang, Z., etc. Inhibition of aquaporin-1 expression by RNAi protects against aristolochic acid I-induced apoptosis in human proximal tubular epithelial (HK-2) cells[J]. Biochem Biophys Res Commun, Feb 4,2011,405 (1): 68-73.
    [54]Fuchshofer, R.,Ullmann, S.,Zeilbeck, L. F., etc. Connective tissue growth factor modulates podocyte actin cytoskeleton and extracellular matrix synthesis and is induced in podocytes upon injury[J]. Histochem Cell Biol, Sep,2011,136 (3): 301-19.
    [55]Kume, S.,Haneda, M.,Kanasaki, K., etc. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation[J]. Free Radic Biol Med, Jun 15,2006,40 (12):2175-82.
    [56]Graham, S.,Gorin, Y.,Abboud, H. E., etc. Abundance of TRPC6 protein in -glomerular mesangial cells is decreased by ROS and PKC in diabetes[J]. Am J Physiol Cell Physiol, Aug,2011,301 (2):C304-15.
    [57]Ren, S.,Babelova, A.,Moreth, K., etc. Transforming growth factor-beta2 upregulates sphingosine kinase-1 activity, which in turn attenuates the fibrotic response to TGF-beta2 by impeding CTGF expression[J]. Kidney Int, Oct,2009, 76 (8):857-67.
    [58]Yang, T.,Zhang, B.,Pat, B. K., etc. Lentiviral-mediated RNA interference against TGF-beta receptor type Ⅱ in renal epithelial and fibroblast cell populations in vitro demonstrates regulated renal fibrogenesis that is more efficient than a nonlentiviral vector[J]. J Biomed Biotechnol,2010,2010 859240.
    [59]He, F. F.,Zhang, C.,Chen, S., etc. Role of CD2-associated protein in albumin overload-induced apoptosis in podocytes[J]. Cell Biol Int, Aug 1,2011,35 (8): 827-34.
    [60]Woods, A. J.,White, D. P.,Caswell, P. T., etc. PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions [J]. EMBO J, Jul 7,2004,23 (13):2531-43.
    [61]Banzi, M.,Aguiari, G.,Trimi, V., etc. Polycystin-1 promotes PKCalpha-mediated NF-kappaB activation in kidney cells[J]. Biochem Biophys Res Commun, Nov 17,2006,350 (2):257-62.
    [62]Dere, R.,Wilson, P. D.,Sandford, R. N., etc. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR[J]. PLoS One, 2010,5 (2):e9239.
    [63]Rundle, D. R.,Gorbsky, G.,Tsiokas, L. PKD2 interacts and co-localizes with mDial to mitotic spindles of dividing cells:role of mDial IN PKD2 localization to mitotic spindles[J]. J Biol Chem, Jul 9,2004,279 (28):29728-39.
    [64]Hu, J.,Barr, M. M. ATP-2 interacts with the PLAT domain of LOV-1 and is involved in Caenorhabditis elegans polycystin signaling[J]. Mol Biol Cell, Feb, 2005,16 (2):458-69.
    [65]Yoo, K. H.,Sung, Y. H.,Yang, M. H., etc. Inactivation of Mxil induces 11-8 secretion activation in polycystic kidney [J]. Biochem Biophys Res Commun, Apr 27,2007,356(1):85-90.
    [66]Mai, W.,Chen, D.,Ding, T., etc. Inhibition of Pkhdl impairs tubulomorphogenesis of cultured IMCD cells[J]. Mol Biol Cell, Sep,2005,16 (9):4398-409.
    [67]Latif, F.,Tory, K.,Gnarra, J., etc. Identification of the von Hippel-Lindau disease tumor suppressor gene[J]. Science, May 28,1993,260 (5112):1317-20.
    [68]Crossey, P. A.,Foster, K.,Richards, F. M., etc. Molecular genetic investigations of the mechanism of tumourigenesis in von Hippel-Lindau disease:analysis of allele loss in VHL tumours[J]. Hum Genet, Jan,1994,93 (1):53-8.
    [69]Galban, S.,Martindale, J. L.,Mazan-Mamczarz, K., etc. Influence of the RNA-binding protein HuR in pVHL-regulated p53 expression in renal carcinoma cells[J]. Mol Cell Biol, Oct,2003,23 (20):7083-95.
    [70]Petrella, B. L.,Brinckerhoff, C. E. Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase[J]. Mol Cancer,2006,566.
    [71]Wacker, I.,Sachs, M.,Knaup, K., etc. Key role for activin B in cellular transformation after loss of the von Hippel-Lindau tumor suppressor [J]. Mol Cell Biol, Apr,2009,29 (7):1707-18.
    [72]Perier, A.,Fregni, G.,Wittnebel, S., etc. Mutations of the von Hippel-Lindau gene confer increased susceptibility to natural killer cells of clear-cell renal cell carcinoma[J]. Oncogene, Jun 9,2011,30 (23):2622-32.
    [73]Zimmer, M.,Doucette, D.,Siddiqui, N., etc. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/-tumors[J]. Mol Cancer Res, Feb,2004,2 (2):89-95.
    [74]He, X.,Wang, J.,Messing, E. M., etc. Regulation of receptor for activated C kinase 1 protein by the von Hippel-Lindau tumor suppressor in IGF-I-induced renal carcinoma cell invasiveness[J]. Oncogene, Feb 3,2011,30 (5):535-47.
    [75]Aubert, S.,Fauquette, V.,Hemon, B., etc. MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression[J]. Cancer Res, Jul 15,2009,69 (14):5707-15.
    [76]Xu, K.,Ding, Q.,Fang, Z., etc. Silencing of HIF-lalpha suppresses tumorigenicity of renal cell carcinoma through induction of apoptosis[J]. Cancer Gene Ther, Mar,2010,17 (3):212-22.
    [77]Crnkovic-Mertens, I.,Wagener, N.,Semzow, J., etc. Targeted inhibition of Livin resensitizes renal cancer cells towards apoptosis[J]. Cell Mol Life Sci, May, 2007,64(9):1137-44.
    [78]Sato, A.,Oya, M.,Ito, K., etc. Survivin associates with cell proliferation in renal cancer cells:regulation of survivin expression by insulin-like growth factor-1, interferon-gamma and a novel NF-kappaB inhibitor[J]. Int J Oncol, Apr,2006, 28 (4):841-6.
    [79]Zhang, Y.,Chen, Z. D.,Du, C. J., etc. siRNA targeting survivin inhibits growth and induces apoptosis in human renal clear cell carcinoma 786-0 cells[J]. Pathol Res Pract,2009,205 (12):823-7.
    [80]Grigo, K.,Wirsing, A.,Lucas, B., etc. HNF4 alpha orchestrates a set of 14 genes to down-regulate cell proliferation in kidney cells[J]. Biol Chem, Feb,2008,389 (2):179-87.
    [81]Xu, L.,Tong, R.,Cochran, D. M., etc. Blocking platelet-derived growth factor-D/platelet-derived growth factor receptor beta signaling inhibits human renal cell carcinoma progression in an orthotopic mouse model[J]. Cancer Res, Jul 1,2005,65 (13):5711-9.
    [82]Zheng, J. N.,Sun, Y. F.,Pei, D. S., etc. Inhibition of proliferation and induction of apoptosis in human renal carcinoma cells by anti-telomerase small interfering RNAs[J]. Acta Biochim Biophys Sin (Shanghai), Jul,2006,38 (7):500-6.
    [83]Agouni, A.,Sourbier, C.,Danilin, S., etc. Parathyroid hormone-related protein induces cell survival in human renal cell carcinoma through the PI3K Akt pathway:evidence for a critical role for integrin-linked kinase and nuclear factor kappa B[J]. Carcinogenesis, Sep,2007,28 (9):1893-901.
    [84]Bilim, V.,Yuuki, K.,Itoi, T., etc. Double inhibition of XIAP and Bcl-2 axis is beneficial for retrieving sensitivity of renal cell cancer to apoptosis[J]. Br J Cancer, Mar 11,2008,98 (5):941-9.
    [85]Wagener, N.,Holland, D.,Bulkescher, J., etc. The enhancer of zeste homolog 2 gene contributes to cell proliferation and apoptosis resistance in renal cell carcinoma cells[J]. Int J Cancer, Oct 1,2008,123 (7):1545-50.
    [86]Tang, S. W.,Chang, W. H.,Su, Y. C, etc. MYC pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells[J]. Cancer Lett, Jan 8,2009,273 (1):35-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700