甜瓜果实八氢番茄红素合成酶基因的克隆、表达分析及遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜(Cucumis melo L.)是世界上重要的园艺作物之一,甜瓜果实含有大量的类胡萝卜素,其中β-胡萝卜素含量最为丰富。β-胡萝卜素被人体消化吸收后转变为维生素A,所以β-胡萝卜素也被称为维生素A原。医学研究表明,类胡萝卜素在增强人体免疫力、防止心血管疾病和癌症等方面具有重要的作用。八氢番茄红素合成酶是甜瓜类胡萝卜素合成途径中的关键酶,对甜瓜果实类胡萝卜素的合成起着关键作用,因此,利用现代分子生物学手段研究甜瓜八氢番茄红素合成酶的活性及其调节机制对改善甜瓜品质有重要意义。本研究通过HPLC测定了不同基因型甜瓜果实发育时期β-胡萝卜素含量,克隆到了甜瓜果实Psy基因全长cDNA,并对该基因进行了表达特性分析和遗传转化研究。
     主要研究结果如下:
     1.利用HPLC测定了不同基因型甜瓜果实发育时期β-胡萝卜素含量,结果表明,三个基因型(M01-3、Homoken和J-01)甜瓜在果实发育中,β-胡萝卜素含量的变化趋势是一致的,即果实发育前期,β-胡萝卜素含量很低。在果实接近成熟的时候,β-胡萝卜素含量迅速升高,成熟后,β-胡萝卜素含量又有所下降。橙色果肉的Homoken临近成熟的果实中β-胡萝卜素含量最高,为白色果肉的M01-3和浅绿色果肉的J-01的十几倍到几十倍。
     2.根据GeneBank中登记的甜瓜果实的Psy基因的序列设计引物,利用RT-PCR技术从M01-3甜瓜果实中克隆到了Psy基因,该基因全长1443 bp,编码422个氨基酸。在GenBank中登记号为GU361622。利用Real Time RT-PCR进行了该基因的表达特性分析。结果表明,Psy基因在根、茎、叶、花和果实中的表达水平不同,在果实发育前期,Psy基因的相对表达量很低,在接近成熟时达到最大值,成熟期又趋于下降。Psy基因在甜瓜果实发育中的表达趋势与β-胡萝卜素的变化趋势一致。
     3. Psy基因编码区与原核表达载体pET-30a(+)连接,并转化大肠杆菌BL21感受态细胞,构建重组质粒pET-Psy,并用8%的SDS-PAGE电泳分析。经IPTG诱导的目的蛋白分子量为46.7 kDa,说明该基因经诱导后可正确表达PSY蛋白
     4.甜瓜Psy基因的编码区连接在pMD18-T克隆载体上并测序。正、反向重组质粒pMD18-T-Psy分别用BamHⅠ和SalⅠ双酶切并与经BamHⅠ和SalⅠ双酶切的表达载体pBI121连接,转化大肠杆菌感受态细胞DH5α,获得正、反义表达载体。利用农杆菌介导法将正、反义表达载体分别对甜瓜进行遗传转化,已成功获得了Kan抗性的转化苗。
Melon (Cucumis melo L.) is one of the most important horticultural crops in the world, it contains a lot of carotenoids, especiallyβ-carotene.β-carotene is transformed into the vitamin A after digested and absorbed in the body, so theβ-carotene also known as the original vitamin A. Medical studies have shown that carotenoids have important roles in enhancing human immunity, preventing cardiovascular disease and cancer. Phytoene synthase (PSY) is the key enzyme in the melon carotenoid biosynthesis pathway, and plays a key role in the synthesis of carotenoids in melon. To improve the quality of melon, it has important significance to study melon phytoene synthase activity and its’regulatory mechanism by the use of modern molecular biology methods. In this study, we measuredβ-carotene content at different developmental stages of melon fruit by HPLC. We cloned the full length of melon PSY cDNA by RT-PCR. We also analyzed the Psy expression characteristic and its genetic transformation to melon.
     The main results are as follows:
     1.β-carotene content in different genotypes’muskmelon fruit at different development stages were measured by HPLC. The results showed that in the fruit development of three genotypes (M01-3, Homoken and J-01), there are very littleβ-carotene content in early melon fruit development andβ-carotene content rapidly increased in nearly mature fruit and followed by declined after mature. Orange flash Homoken had the highestβ-carotene content in nearly mature fruit and significantly higher than white flash M01-3 and light green flash J-01.
     2. Primers were designed according to Psy gene conservative sequence in GenBank, A 1443bp cDNA was cloned from M01-3 melon fruit by RT-PCR, it encoded 422 amino acids and the registration number in GenBank is GU361622. Real-time RT-PCR was used to analyze Psy expression characteristic. The results showed that Psy expression level were different among root, stem, leaf, flower and fruit tissues. The Psy expression level was very low in the early development stage of fruit and reached the maximum at nearly mature fallowed decreased after mature. The expression trend of Psy was consist with the trend ofβ-carotene content in the development of fruit.
     3. The ORF of Psy was ligated to pET-30a(+), and transformed into E. coli BL21 (DE3) competent cells to construct recombinant plasmid pET-Psy and analyzed by 8% SDS-PAGE. The specific expressed proteins induced by IPTG were about 46.7kDa in molecular weight. The results indicated that the protein was induced in vivo protein expression in the melon.
     4. Whole ORF of Psy was cloned in to clone vector PMD18-T followed by sequencing determination. The recombinant plasmids PMD18-T-Psy were isolated, double digested with BamHI and Sal1, ligated into BamHI - SalI digested pBI121 and transformed into E.coli competent cells DH5αand obtained sense and antisense expression vector, respectively. Agrobacterium-mediated method was used to genetic transformed sense and antisense expression vector into the melon,respectively. Melon seedlings with Kan resistance have been successfully obtained and they will be identified in a few weeks.
引文
丛玲.小麦类胡萝卜素生物合成关键酶基因的克隆与遗传转化研究(博士学位论文).2008.
    陈涛,向文洲,何慧等.不同碳源对小球藻异养产虾青素的影响[J].微生物学通报.2007,34:856-858.
    邓波涛,庄飞云,欧承刚,陆红梅.蔬菜作物中类胡萝卜素的遗传研究及其基因工程改良[J].中国蔬菜.2009(16):1-7.
    惠伯棣,朱雨杰,武兴德等.高等植物中类胡萝卜素的生物合成[J].北京农业科学.1999,17(2):17-20.
    韩春然,马永强,孙冰玉.海水小球藻生产叶黄素的研究[J].食品工业科技,2007,28:187-189.
    韩利军,阳成伟,欧志英.类胡萝卜素的生物合成途径及生物学功能研究进[J].生物学杂志.2002,19(6):l-3.
    韩雅珊.类胡萝卜素的功能研究进展(综述)[J].中国农业大学学报.1999,4(1):5-9.
    胡小明,代斌.天然β-胡萝卜素的提取工艺优化研究[J].食品工业科技.2006,(10):133-136.8.
    季静,山村三郎,西原昌宏等.通过转基因提高β-胡萝卜素生物合成量[J].中国生物化学与分子生物学报.2004,20(4):440-444.
    季静,王罡.来自龙胆草(Getina lutea)的5个类胡萝卜素生物相关酶基因对类胡萝卜素生物合成量影响的差异[J].农业技术生物学报.2002,10(3):62-63.
    姜娜娜,李长生,王绛辉等.番茄类胡萝卜素的研究[J].安徽农业科学.2007,35(34):10979-10980.
    冷向军,李小勤.水产动物着色的研究进展[J].水产学报.2006,30(1):138-143.
    梁燕,王鸣,陈杭,陈大明.番茄红素β?环化酶反义RNA基因对烟草的遗传转化〔J].西北农林科技大学学报(自然科学版).2003,31(3):73-76.
    刘石泉,余沛涛.农杆菌介导高等植物基因转化的影响因素[J].自然杂志,2002,25(1):16-22.
    秦淑丽,张兴国,宋波等.异戊烯基转移酶基因的克隆与转化烟草的研究[J].西南师范大学学报(自然科学版).2009,34(3):206-209.
    陶俊,张上隆,徐昌杰,安新民,张良诚.类胡萝卜素合成的相关基因及其基因工程[J].生物工程学报.2002,18(3):276-281.
    王素琴,李雅雯,闫海等.小球藻USTB01的异养培养和叶黄素的生产[J].北京科技大学学报.2007,29(8):766-770.
    王玉萍,刘庆昌,翟红.植物类胡萝卜素生物合成相关基因的表达调控及其在植物基因工程中的应用[J].分子植物育种.2006,4(1):103-110.
    朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用[J].植物生理与分子生物学学报.2004,30(6):609-618.
    钟秋月,国艳梅,梁燕等.两个不同来源的番茄GGPS基因克隆和序列分析[J].华北农学报.2009,24(3):15-22.
    赵文恩,李艳杰,崔艳红,乔宪生.类胡萝卜素生物合成途径及其控制与遗传操作[J].西北植物学报.2004,24(5):930-942.
    周小全,张兴国,田婷婷等.豌豆凝集素基因的克隆与植物表达载体的构建[J].西南师范大学学报(自然科学版).2008,33(3):77-80.
    周晓丽,朱国坡,李雪华,王艳玲,刘兴友.实时荧光定量PCR技术原理与应用[J].中国畜牧兽医.2010,37(2):87-89.
    郑阳霞,杨婉身,季静等.类胡萝卜素生物合成相关基因的克隆及其遗传工程的研究进展[J].细胞生物学杂志.2006(28):442-446.
    Aitken S.M., Attucci S., Ibrahim R.K., et al. A cDNA encoding geranylgeranyl pyrophosphate synthase from white lupin [J]. Plant Physiol. 1995, 108(2): 837-838.
    Albrecht M., Klein A., Hugueney P., Sandmann G., and Kuntz M. Molecular cloning and functional expression in E.coli of a novel plant enzyme mediatingδ-carotene desaturation[J]. FEBS Lett. 1995, 372: 199-202.
    Ament K., Van Schie C.C., Bouwmeester H. J., et al. Induction of a Leaf Specific Geranylgeranyl Pyrophosphate Synthasand Emission of Trimethyltrideca Tetraene in Tomato are Dependent on Both Jasmonic Aciand Salicylic Acid Signaling Pathways [J]. Plant. 2006, 224(5): 1197-1208.
    Armstrong G.A., Sehinidt A., Sandmann G.and Hearst J.E., Genetic and biochemical charaeterization of carotenoid biosynthesis mutants of Rhodobacter capsulatus [J]. Biol.Chem. 1990, 265(14): 8329-8338.
    Armstrong G.A., Alberti M., Leach F., Hearst J.E. Nueleotide Sequenee, Organization, and Nature of the Protein Produets of the Cartenoid Biosynthesis Genec luster of Rhodobaeter Culatus [J]. Mol Gen Genet. 1989, 216(2-3): 254-268.
    Bantignies B., Liboz T. and Ambid C. Nucleotide sequenee of a Catharanthus roseus geranylgeranyl Pyrophosphate synthase gene [J]. Plant Physiol. 1995,110: 336-336. Bartley G.E. and Seolnik P.A. Moleeular biology of earotenoid biosynthesisin Plants [J]. Ann. Re. Plant Physiol. Plant Molec.Biol. 1994, 45: 287-301.
    Bartley G.E., Viltanen P.V., Pecker I., et al. Molecular cloning and expression in photosynthetic bacteria of soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway [J]. Proc Natl A cad Sci USA. 1991,88: 6532-6536.
    Bartley G.E., Seolnik P.A. Plant carotenoid:Pigment for photoproteetion,visual Attraction and Human health [J]. Plant Cell. 1995,7: 1027-1038.
    Bird C.R., Ray J.A., Fletcher J.D., et al. Using antisense RNA to study gene function: Inhibition of carotenoid biosynthesis in transgenic tomatoes [J]. Bio Technol., 1992, 9: 635-639.
    Bonk M., Hoffmann B., Von Lintig J., et al. Chloroplast import of for carotenoid Biosynthetic enzymes in vitro reveals differential fates Prior to membrane binding and oligomeric assembly [J]. Eur.J.Biochem. 1997,247(3): 942-950.
    Botella-Pavia P. and Rodriguez-Concepcion M. Carotenoid biotechnology in Plants for nutritionally improved foods [J]. Physiologia Plantarum. 2006,126(3): 369-381
    Bramley P.M. Regulation of Carotenoid Formation during Tomato Fruit Ripening and Brirkhauser,Basel ,Development [J]. Exp Bot. 2002, 531(377): 2107-2113.
    Switzerla Mann V., Harker M., Pecker I., Hirschberg J. Metabolic engineering of astaxanthin production in tobacco flowers. [J]. Nature Biotechnology. 1998, 18: 888-892.
    Bramley P., Teulieres C., Blain I., Bird C., and Schuch W. Biochemical characterization of transgenic tomato in which carotenoid biosynthesis has been inhibited through the expression of antisense RNA to pTOMS [J]. Plant J. 1992, 2: 343-349.
    Britton G., Overview of carotenoids biosynthesis. [M]. In carotenoids(eds Britton G.,Liaaen Jensen S.& Pfander H.) 13-147.
    Busch M., Seuter A., and Hain R. Functional analysis of the early steps of carotenoidbiosynthesis in tobacco, [J]. Plant Physiol. 2002, 128:439-453.
    Burbidge A, Grieve T., Terry C., et al. Structure and expression of a cDNA encoding zeaxanthin epoxidase, isolated from a wilt-related tomato(Lycopersicon esculentumMill) [J]. Journal of Experimental Botany, 1997, 48(314): 1749-1750.
    Burkhardt P.K., Beyer P., Wunn J., et al. Transgenic Rice (Oryza sativa)endosperm expressing daffodil(Narcissus Pseudonarcissus) Phytoene synthase accumulates phytoene,a key intermediate of provitamin A biosynthesis [J]. Plant J. 1997, 11(5): 1071-1073.
    Chamovitz D., Pecker I., Hirschberg J. The molecular basis of resistance to the Herbicide norflurazon [J]. Plant Mol Biol. 1991, 16: 967-974.
    Chamovitz D., Sandmann G., and Hirschberg J., Molecularand biochemical characterization of herbicide resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate limiting step in carotenoid biosynthesis [J].Biol.Chem. 1993, 268(23): 17348-17353.
    Chollet R.,Sandmann G., Diethelm R., Felix H., Milzner K.P.ζ-carotene accumulation and bleaching by new pyrimidine compounds [J]. Pestic. Sci. 2000, 30: 326-329.
    Cunningham F.X., Pogson B.J., Sun Z., et al. Functional analysis of the lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation [J]. Plant Cell. 1996, 8(9): 1613-1626.
    Cunningham F.X., Gantt E., Genes and enzymes of carotenoid biosynthesis in plants [J]. Plant Mol Biol. 1998, 49: 557-583.
    Cunningham F.X., Gantt E., One ring or two? Determination of ring number in carotenoids by lycopene cyclases [J]. Proc.Natl.Acad.Sc.USA. 2001, 98(5): 2905-2910.
    Demmig-Adams B.,Gilmore A.M., Adams W.W.Ⅲ.In vivo functions of carotenoids in higher plants [J]. FAEBS. 1996,10(4): 403-412.
    Dharmapuri S., Rosati C., Pallara P., et al. Metabolic engineering of xanthophylls Content in tomato fruit [J]. FEBS Lett. 2002, 519: 30-34.
    Dogbo O., Laferriere A.D., Harlingue A., Camara B., Carotenoid biosynthesis: isolation and characterization of a functional enzyme catalyzing the synthesis of phytoene [J]. Proc Natl Acad Sci USA. 1988, 85: 7054-7058.
    Ducreux L. J., Morris W. L., Hedley P. E., Shepherd T., Davies H. V., Millam S., Taylor M. A., Metabolic engineering of high carotenoid potato tubers containing enhanced levels ofbeta-carotene and lutein [J]. Journal of ExperimentalBotany. 2005, 56: 81-89.
    Dogbo O., Camara B., Purification of isopentenyl pyrophosphate is camerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography [J]. Biochem Biophys. Acta. 1987, 920: 140-148.
    Euler H., Hellstrom H. Resemblance of action of lipochromes to that of vitamin A [J]. Bioehem Zeitschr. 1928, 203: 370-384.
    Fraser P.D., Bramley P. M. The biosynthesis and nutritional uses of carotenoids [J]. Progress Lipid Research. 2004, 43: 228-265.
    Fraser P.D., Romer S., Shipton C.A., et al. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner [J]. Proc.Natl, Acad.Sci USA. 2002, 99: 1092-1097.
    Fraser P.D., Kiano J.W., Truesdale M.R., Schuch W., and Branley P.M. Phytoene synthase enzyme activity in tomato does not contribute to carotenoid biosynthesis in ripening fruit[J]. Plant Mol.Biol. 1999, 40(4): 687-698.
    Fraser P.D., Romer S., Shipton C.A., et al.Evaluation of transgenic tomato plants expressing an additional phytoene synthase in fruit-specific manner [J]. Proc Natl Acad Sci USA. 2002, 99: 1092-1097.
    Fraser P.D., Schuch W., Brawmley M., Phytoene synthase from tomato (Lycopersicon escullentum) chloroplasts-partial purification and biochemical properties [J]. Plant J. 2000.39: 692-696.
    Fraser P.D., Truesdale M.R., Bird C.R., Schuch W. and Bramley P.M. Carotenoid biosynthesis during tomato fruit development,Plant Physiol [J]. 1994, 105(1): 405-413.
    Fray R.G., Wallace A., Fraser P.D., et al. Constitutive Expression of a Fruit Phytoene Synthase Gene in Transgenic Tomato Causes Dwarfism by Redirecting Metebolisms from the Gibberellin Pathway [J]. Plant J. 1995(8): 693-701.
    Giuliano G., Al-Babili S., von Lintig J., Carotenoid oxygenases: cleave it or leave it [J]. Trends Plant Sci. 2003, 8: 145 - 149.
    Giuliano G., BartleyG. E., SeolnikP.A. Regulation of carotenoid biosynthesis During tomato development [J]. Plant Cell. 1993, 5(4): 379-387.
    Goodwin T. W. The biochemistry of the carotenoids, Vol.1, Plants. 2nd ed [M]. London:Chapman and Hall. 1980. pp.377.
    Hirschberg J., Cohen M., Harker M., Lotan T., Mann V., and Pecker I. Molecular genetics of the carotenoidbiosynthesis pathway in plants and algae [J]. Pure Appl. Chem. 1997, 69: 2151-2158.
    Hugueney P., Romer S., Kuntz M., and Camara B. Characterization and molecular cloning of a flavoprotein catalyzing the synthesis of phytofluene andδ-carotene in Capsicum chromoplasts [J]. Eur. Biochem. 1992, 209: 399-407.
    Isaacson T.,Ronen G.,Zamir D., and Hirschberg J.,Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production ofβ-carotene and xanthophyllsin plants [J], Plant Cell. 2002, 14(2): 333-342.
    Jacq B., Lesobre O., Sangwan, R.S. et al. Factors influencing T-DNA transfer in A gro bacterium mediated transformation of sugarbeet [J]. Plan Cell Reports. 1993, 12: 621-624.
    Kajiwara S., Fraser P.D., Kondo K., et al. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances is oprenoid biosynthesis in Escherchia coli [J]. Biochem. 1997, 324: 421-426.
    Kato M., Ikoma Y., Matsumoto H., Sugiura M., Hyodo H., and Yano M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit [J]. Plant Physiol. 2004, 134: 824-837.
    Kopsell D.A., Kopsell D.E. Accumulation and bioavail ability of dietary carotenoids in vegetable crops [J]. Trends in PlantScience. 2006, 11 (10) : 499 - 507.
    Kostichka K., Tao L., Bramucci M., Tomb J.F., Nagarajan V., Cheng Q. A small cryptic plasmid from Rhodococcus erythropolis: characterization and utility for gene expression [J]. Applied Microbiology and Biotechnology. 2003, 62: 61-68.
    Krens F.A., Trifonova A., Keizer E. et al. The effect of exogenously-applied phytohormones on gene from potato(Solanumtub erosum) [J]. Nucleic Acids Res. 1996, 116: 97-106.
    Kuntz M., Romer S., Suire C., et al. Identification of a cDNA for the plastid located geranylgeranyl pyrophosphate synthase from Capsicum annum: Correlative increase in enzyme activity and transcript level during fruit ripening [J]. Plant J. 1992, 2: 25-34.
    Liao Z., Chen M., Gong Y., Guo L., Tan Q., Feng X., Sun X., Tan F., and Tang K. A newgeranylgeranyl diphosphate synthase gene from Ginkgo biloba, which intermediates the biosynthesis of the key precursor for ginkgolides [J]. DNA Seq. 2004, 15(2): 153-158.
    Lichtenthaler H.K., Schwender J., Disch A., and Rohmer M. Biosynthesis of isoprenoids in higher plants chloroplasts proceeds via a mevalonate independent pathway [J]. FEBS Lett. 1997, 40(3): 271-274.
    Linden H., Misawa N., Saito T., and Sandmann G. A novel carotenoid biosynthesis gene coding for zeta-carotene desaturase:functional expression, sequence and phylogenetic origin [J]. Plant Mol.Biol. 1994, 24(2): 369-379.
    Lu S, Li L. Carotenoid metabolism: biosynthesis, regulation, and beyond [J]. Journl of Integrative Plant Biology. 2008, 50(7) : 778 - 785.
    Mann V., Harker M., Peeker I., et al. Metabolic engineering of astaxanthin Production in tobacco flowers [J]. Nat. Biotech. 2000, 18: 888-892.
    Matthews P.D., Wurtzel E.T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase [J]. Applied Microbiology and Biotechnology. 2000, 53: 396-400.
    Misawa N., Satomi Y., Kondo K., Yokoyama A., Kajiwara S., Saito T., Ohtani T., Miki W. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level [J]. Journal of Bacteriology. 1995, 177: 6575-6584.
    Misawa N., Yamano S., Linden H., et al. Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtI in transgenic plants showing an inecease of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon [J]. The Plant Journal. 1993, 4(5): 833-840.
    Moore T. Vitamin A and carotene: The association of vitamin A activity with Carotene in the carote root [J]. Bioshem J. 1929, 23 (4): 803-811.
    Misawa N., Masamoto K., Hori T., et al. Expression of an Erwinia uredovora Phytoene desaturase gene not only confers multiple resistances to herbicides interfering with carotenoid biosynthesis but also alters xanthophylls metabolism in transgenic plants [J].The Plant, Journal. 1994, 6(4): 481-489.
    Niyogi K.K. The cell commitment to somatic embryogenesis. [J]. Plant Molec. Biol. 1999, 50: 391-417.
    Olson J.A., Provitamin-A Function of carotenoids: the conversion ofβ-carotenoid into vitamin-A [J]. Nutr. 1989,119: 105-108
    Oster U., Rudiger W., The G4 Gene of Arabidopsis the lianaencode a Chlorophyll Synthase of Etiolated Plants [J]. Bacta. 1997, (110): 420-423.
    Paine J.A., Shipton C.A., Chaggar S., et al. Improving the nutritional value of Golden Penuelas J. Munne-Bosch S. Isoprenoids:an evolution pool for photoprotection [J]. Trends in Plant Sci. 2005, 10: 166-169.
    Park H., Kreunen S.S., Cuttriss A. J., et al. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis,prolamellar body formation and photomorphogenesis [J]. Plant Cell. 2000, 14(2): 321-332.
    Pecker I., Chamovitz D., Linden H., Sandmann G., and Hirshberg. A single polypeptide catalyzing the conversion of phytoene to Z-carotene is transcriptionally regulated during tomato fruit ripening RNA [J]. 1992, 89: 4962-4966.
    Ravanello M. P., Ke D. Y., Alvarez J., Huang B. H., Shewmaker C. K. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production [J]. Metab Eng. 2003, 5 (4) : 255 - 263.
    Ray J.A., Bird C.R., Mammders M., et al.Sequence of pTOMS, a ripening related cDNA from tomato [J]. Nucl Acid Res. 1987, 24: 1058-1066.
    Rosati C., Aquilani R., Dharmapuri S. Metabolic engineering ofβ-carotene and lycopene content in tomato fruit [J]. Plant J. 2000, 24: 413-419.
    Romer S., Lubeck J., Kauder F., Steiger S., Adomat C., Sandmann G. Genetic engineering of a zeaxanthin-rich patato by antisense inactivation and co-suppression of carotenoid epoxidation [J]. Metab Eng. 2002, 4 (4) : 263 - 272.
    Rock C.D., and Zeevaart J.A., The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis [J]. Proc.Natl.Acad.Sci. 1991, 88(17): 7496-7499.
    Sandmann G. Carotenoid biosynthesis in microorganism and plants [J]. Eur.J.Biochem. 1994, 223: 7-24.
    Sandmann G., and Mitchell G. In vitro inhibition studies of phytoene desaturase by bleachingketomorpholine derivatives [J]. Agric. Food Chem. 2001, 49(1): 138-141
    Sandmann G. Carotenoid biosynthesis and bio-technological application [J]. Arch. Biochem. Biophys. 2001, 385: 4-12.
    Sandmann G. Carotenoid biosynthesis in microorganism and plants [J]. Eur. J. Biochem. 1994, 223: 7-24.
    Sandmann G. Carotenoid biosynthesis and biotechnological application [J]. Arch. Biochem. Biophys. 2001, 385: 4-12.
    Schledz M., et al. Phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering [J]. Plant J. 1996, 10: 781-792.
    Scolnik P.A., Bartley G.E. Nucleic sequences of an Arabidopsis cDNA for Geranylgeranyl pyrophosphate sythase [J]. Plant Physiol. 1994,104: 1469-1470.
    Ray J., Moureau P., Bird C., Bird A., Grierson D., Maunders M.,T ruesdale M., Bramley M., and Schuch W. Cloningand characterization of gene involved in phytoene synthesisfrom tomato[J]. Plant Mol. Biol. 1992, 19(3): 401-404.
    Tracewell C.A., Vrettos J.S., Bautista J.A., et al. Carotenoid photo-oxidation in photosystem [J]. Arehives of Biochemistry and Biophysics. 2001, 385(l): 61-69.
    Vandenberg H., Faulks R., Granado H.F., Hirschberg J. The potential for the improvement of carotenoid levels in foods and the likely systemic effects [J]. Sci Food Agric. 2000, 80: 880-912.
    Ye X., Al-Babili S., Kitti A., et al. Engineering the ProvitaminA (beta-carotene) bios the tic Path way into(carotenoid-free)rice end of Perm [J]. Science. 2000, 287: 303-305.
    Wetzel C.M., Rodermel S.R. Regulation of phytoene desaturase expression is independent of leaf pigment content in Arabidopsis thaliana [J]. Plant Mol Biol. 1998, 37(6): 1045-1053.
    Zhu X.F., Suzuki K., Okada K., Tanaka K., Nakagawa T., Kawamukai M., and Matsuda K. Cloning and functional expression of a novel gera-nylgeranyl pyrophosphate synthase gene from Arabidopsis thaliana in Escherichia coli [J]. Plant Cell Physiol. 1997, 38: 357-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700