植酸酶毕赤酵母基因工程菌PP-MS-NP~(m-4)-16高密度发酵条件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题组根据毕赤酵母的信号肽序列,按照酵母偏爱密码,人工合成毕赤酵母的新型信号肽MS,并构建了新型酵母表达载体pPIC9k-MS,构建重组质粒pPIC9k-MS-phyA~(m-4),然后电击转化毕赤酵母,筛选获得了植酸酶毕赤酵母基因工程菌株pp-MS-NP~(m-4)-16。本研究以麦芽汁培养基、蚕蛹培养基为基础培养基,用于工程菌pp-MS-NP~(m-4)-16高密度培养,结果表明:40%的蚕蛹培养基,190mg╱L的营养盐使酶活比对照高出36.8%。
     通过对植酸酶毕赤酵母基因工程菌PP-MS-Np~(m-4)-16摇瓶培养条件的研究,实验结果表明,最佳转速为220r/min,最适生长pH和诱导pH分别为5.0和6.0,通过正交实验,结果表明:接种量4%,甲醇浓度4%,豆油浓度(生长阶段)1.3%,豆油浓度(诱导阶段)3.5%为工程菌最适产酶条件,诱导结束时最高酶活达到192.4 ku/ml,是培养条件优化前酶活力的1.6倍。
     对植酸酶毕赤酵母基因工程菌PP-MS-NP~(m-4)-16在5L发酵罐中的发酵条件包括补料方式、甲醇流速、甘油流速和诱导时间进行研究,确定了它的最佳培养条件。实验结果表明,恒溶氧补料为最佳补料方式,通过正交实验,结果表明:在温度28℃,搅拌750r/min条件下,接种量10%、甲醇流速8 ml/L/h、甘油流速1 ml/L/h、诱导时间84 h为发酵罐的最佳发酵条件,发酵结束时菌体浓度OD_(600)高达175.2,实现了工程菌的高密度发酵,最高酶活达到472.933 ku/ml,是摇瓶培养酶活力的2.458倍,比本课题组报道的植酸酶工程菌PP-NP~m-8最高酶活263 ku/ml提高了0.8倍。
     对植酸酶的耐热性及产品的配制进行了初步研究,发酵液经过冷冻离心除去菌体得到粗酶液,然后添加10mg/ml的甘露醇,采用细米糠作为载体,与发酵液以1:1进行混合,喷涂米糠质量分数20%的Na_2SO_4,用米糠质量分数0.5%的海藻酸钠进行包被,经过80℃空气热处理0.5h,剩余酶活92.6%。
     PP-MS-NP~(m-4)-16工程菌高密度发酵培养基成本与酶产量比价为0.005461元/10~6U,获得5000 u/g的产品价格在18元╱kg左右。
     本研究得到了植酸酶工程菌的高密度发酵条件和产品配制方法,提高了植酸酶表达量,提高了植酸酶的耐热性,为降低植酸酶生产成本和大规模发酵生产提供了科学依据。
Abstract: Synthesizing new signal peptide MS which was based on signal peptide of Pichia pastoris and codes of yeast, and new Pichia pastoris vector pPIC9k-MS and the expression plasmid pPICgk-MS-phyA~(m-4) were constructed and were transformed into GS115 strain, one high activity strains of transformant PP-MS-Np~(m-4)-16 was selected. In this research, the media of PP-MS-NP~(m-4)-16 was studied, the result indicated that the 40% chrysalis culture, 190mg/ml nutrition, salt added, phytase activity was increased 36.8% on the base ofcomparision.
     In baffled flask the single element experiment indicated that the relevance rotation speeds was 220r/min, initial pH of cell growth 5.0, initial pH of methanol inducing 5.5. by using orthogonal experiment, the result indicated that inoculate quantity 4%, methanol inducing concentration 4%,bean oil concentration during growth phase 1.3%, bean oil concentration during inducement phase 3.5%. when it was finished inducing the hignest phytase activity reached 192.4 ku/ml, which was 1.6 times as high as that of before optimizing.
     In the 5L automatic fermenter, the fermentation condition was optimized as the follows: the temperature 28℃, stirring speed 750r/min, inoculate quantity 4%, methanol velocity 8ml/L/h, glycerol velocity during inducing phase lml/L/h, induce time 84 h, when fermentation end, the thalli density attain 175.2, the paytase activity reached to 472.933KU/ml, which was 2.458 times as high as that of flask and increased 0.8 times than the activity of PP-Np~m-8.
     The preparation of phytase product and its thermostability were studied, the coarse enzyme was obtained by freeze centrifugal of fermentation liquid, then the 10mg/ml mannitol was added, coat of rice was used as carrier, mixed the coat of rice and fermentation according to the proportion 1: 1 , Na_2SO_4 was 20% w/w to coat of rice, sodium alginate was 0.5% w/w to coat of rice, the result indicated that after coating, the relative retaining activites of coated phytase under the temperature of 80℃reached 92.6%.
     The ratio of substrate cost of PP-MS-Np~(m-4)-16 strain and enzyme yield was 0.005461yuan/10~6u, the price of product of 5000u/g was about 18yuan/kg.
     In this research we brought out phytase fermentation and product procession, which increased phytase activity、increased thermostability of phytase and provided scientific base for its fermentational production and cost decreasing as well.
引文
1.王红宁,黄勇,陈惠等.饲用微生物植酸酶的研究进展(综述).国外畜牧学-饲料,1999,(3):9-10
    2.王红宁,吴琦,谢晶等.真菌植酸酶phyA基因研究进展.四川农业大学学报,2000,18(3):84-87,蒋守群,吴天星.植酸酶的研究进展.动物营养学报,1999,11(3):1-11
    3.Cantor A.H.家禽日粮中添加植酸酶可提高磷利用率利降低动物粪便磷环境污染.中国饲料,1993,(1):40-43
    4.蒋守群,吴太星.植酸酶的研究进展.动物营养学报,1999,11(3):1-11
    5. Lei X. G., P. K. Ku, E. R. Miller, et al. Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. Nutr. 1993, 123: 11-17
    6. Han Y. M., K. R. Roneker, et al. Adding wheat middling, microbial phytase, and citric acid to corn-soybean meal diets for growing pigs may replace inorganic phosphorus supplementation. J. Anim. Sci. 1998, 76: 2649-2656
    7.汪世华,吕茂洲,孙长春等.植酸酶的现状及其研究进展.广州食品工业科技,18(1):54-57
    8.Wyss M, Brugger R, Kronenberger A, et. al. Biochemical characterization of fungal phytases(myo-inositol hexakisphosphate phosphohydrolases): catalytic properties Appl Environ Microbiol. 1999, 65(2): 367-73
    9.黄遵锡,章克昌.植酸酶基础与应用研究概况.食晶与发酵工业,1999,25(2):54-58
    10. Sanderg A. S, Andersson. H. Effect of dietary phytase on the digestion ofphytate in stomach and small intestine of humans. J. Nutr. 1988, 118: 469-473
    11. Wang H. L., E. W. Swain, C. W. Hasseltine. Phytase of moulds used in oriental food fermentation. J. Food Sci, 1980, 45: 1262-1266
    12.毕士峰,张毅.一种新的食品添加剂-植酸酶.食品科学,2000,21(8):9-10
    13. Shiel, T. R. and Ware, J. H. Survey of microorganisms for the production of extracellular phytase. Appl. Microbiol. 1968, 16: 1348-1351
    14. Ullah A. H. J. Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum. Prep. Biochem, 1988a, 18: 443-458
    15. Ullah H. J. Aspergillus ficuum phytase: partial primary structure, substrate selectivity, and kinetic characterization. Prep. Biochem, 1988b, 18: 459-471
    16. Ullah H. J., Cummins B. J, Purification, N-terminal amino acid sequence and characterization of pH 2.5 optimum acid phosphatase (E.C.3.1.3.2) from Aspergillus ficuum. Preparative Biochem, 1987, 17: 397-422
    17. Ullah H. J., Gibson D. M. Extracclular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL3115: Purification and characterization. Preparative Biochem, 1987, 17: 63-91
    18.张晚鸣,马立新.土曲霉CCTCCAF93044植酸酶基因的克隆及序列分析.湖北大学学报(自然科学版),2001,23(2):174-77
    19. Loon, Mitchell Van. EP Patent 0684313A2, 1995
    20. Berka R. M, Rey M. W, et al. Molecular characterization and Expression of Phytase Gene from the Thermophilic Fungus Thermomyces lanuginosus Appl Environ Microbiot. 1998, 64(11): 4423-4427
    21. Pasamontes L, Henriquez-Huecas Met al. Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochim. Biophys. Acta. 1997:1353 (3): 217-223
    22. Pasamontes L, Henriquez-Huecas M et al. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol. 1997 63(5): 1696-1700
    23.郑常文,刘惠侠,董长江等.米曲霉(Aspergillus oryzae)植酸酶的分离纯化及性质研究.四川大学学报(自然科学版).1993,30(2):253-259
    24. Piddington C. S., C.S. Houston, and M. Paloheimo, et al. The cloning and sequencing of the genes encoding phytase (phyA) and pH2.5-optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene. 1993, (133): 55-62
    25. Hartingsveldt M Van, Van Zeijl C M J, Harteveld G M et. al. Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene, 1993, 127: 87-94
    26. Kerovuo J, Lauraeus M, Nurminen P et. al. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus Subtilis. Appl Environ Microbiol. 1998, 64(6): 2079-2085
    27. Sreeramulu-G. Srinivasa-DS. Nand-K. et al. Lactobacillus amylovorus as a Phytase Producer in Submerged Culture. Letters-in-Applied-Microbiology. 1996, 23: 6, 385-388
    28. Greiner R, Konietzny U, Jany K D. Purification and characterization of two phytases from Esch erich ia coli. Arch Biophys. 1993, 303(1): 107-113
    29. Igbasan FA. Manner K, Miksch G, Comparative studies on the in vitro properties of phytases from various microbial origins. Arch Tieremahr. 2000, 53(4): 353-373
    30.姚斌,范云六.植酸酶的分子生物学与基因工程.生物工程学报,2000,16(1)1-5
    31. Rudy J. Wodzinski, and A. H. J. Utlah. Phytase. Advances in applied microbiology. 1996, (42): 263-302
    32. Harder W, Veenhuis M. Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeast: a review. Yeast, 1991, 7(3); 195-197
    33. Coudere R, Baratti J. Oxidatio of methanol by the yeast Pichia pastoris: Purification and properties of alcohol oxidase. Agric Biol Chem, 1980, 44: 2279-2289
    34.宋敏.基因工程白蛋白在毕赤酵母中的高效表达.[学位论文].武汉,华中农业大学,2002
    35.李英华.白俊杰.鲤鱼生长激素在毕赤酵母中的表达.中国生物化学与分子生物学报,2001,4:488-491
    36.段聚宝.硫氧还蛋白在毕赤酵母中的分泌表达.军事医学科学院院刊,1998,1:34-34
    37.邢振兰.张红卫.血小板生成素在毕赤酵母中的表达.山东大学学报(自然科学版),2001,1:90-94
    38.孙瑛.李辉.田方曦.钟文韬.毕赤酵母表达重组人白细胞介素11的连续培养研究.中国生物工程杂志,2003,2:92-100
    39.欧阳菁.杨林.猪生长激素基因在巴斯德毕赤酵母中的高效分泌表达及产物的N-糖基化分析.生物工程学报,2001,5:520-525
    40. Dale C, Allen A, Fogerly S. Pichia pastoris: a eukaryotic system for the large-scale production of biopharmaccutical. Biopharm, 1999, 11: 36-42
    41. Invitrogen. Multi-copy Pichia Expression Kit (Version E). Catalog no. K1750-01
    42.聂东宋,梁宋平,李敏.外源蛋白在巴氏毕赤酵母中高效表达的策略.吉首大学学报(自然科学版).2001,22(3):40-44
    43.邬小兵,乐国伟,张必武等.影响毕赤酵母表达外源蛋白的因素.生物技术.2002,12(4):45-46
    44. Demain, Microbial biotechnology, Trends in biotechnology, 2000, 18(1): 26-31
    45. Yamane, Shimizu.. Subcellular localization of docosahexaenoic acid and arachidonic acid ω-hydroxylation activity in the brain, liver and colonic adenocarcinoma, Journal of Chromatography A,, 1996, 730 (1-2): 91-98
    46.彭日荷等,应用毕赤酵母高效表达耐高溫植酸酶,生物化学与生物物理学报,2002,34(6):725-73044.
    47.叶冰等,植酸酶毕赤酵母基因工程菌高密度发酵,大连轻工业学院学报,2002,21(3):193-196
    48. Chang-Chih chen, Peng-hua Wu. A Pichia pastoris fermentation strategy for enhancing the heterologous expressing of an Escherichia coli phytase. Enzyme and microbial technology. 35(2004): 315-320
    49.李红淼,王红宁,重组巴斯德毕赤酵母高密度发酵表达植酸酶,中国生物工程杂志,2005,295-298
    50.何锡杲,植酸酶基因工程菌E-22的发酵工艺研究.[学位论文].重庆,西南大学,2006
    51.赵海霞,王红宁,陈惠.饲用植酸酶热稳定性的研究.微生物学通报,2004,31(1):105-109
    52.史峰,王璋,许时婴.用流化床干燥法改善颗粒酶的热稳定性.食品与生物技术,2002,23(3):12-14
    53.苏东海等,包被工艺条件对植酸酶热稳定性的影响,生物加工过程,2004,2(3):40-45
    54.王红宁,吴琦等.黑曲霉N25植酸酶phyA基因的克隆及序列分析.微生物学报,2001,41(3):310-315
    55.王红宁,马孟根,吴琦等.黑曲霉N25植酸酶phyA基因在巴斯德毕赤酵母中高效表达的研究.菌物系统,2001,20(4):486-493
    56.王平章.植酸酶phyA基因转化毕赤酵母的筛选及工程菌培养基研究.[学位论文].雅安,四川农业大学,2002
    57.赵海霞.植酸酶phyA基因活性中心密码子的改造及基因工程菌培养条件的研究.[学位论文].雅安,四川农业大学,2004
    58.李红淼,植酸酶毕赤酵母基因工程菌发酵条件研究.[学位论文].雅安,四川农业大学,2005
    59.谢涛,表达载体信号肽改造提高毕赤酵母植酸酶phyA基因表达量研究.[学位论文].雅安,四川农业大学,2006
    60.章如安,杨晟.巴斯德毕赤酵母表达体系研究及进展[J],微生物学通报,2000,27:371-373
    61. Fu W Y. Rapid determination method for glycerol with sodium periodate, Chemistry Word, 1953, B (10): 366-367
    62.赵赣等主编.植酸酶活性测定.生物化学实验指导(第一版).江西科学技术出版社.2000
    63.王金喜,孙伟力,蚕蛹培养基的制备及效果,河南大学学报(医学版),2004,23(4):63-64
    64.赵红玲.利用毕赤酵母发酵表达植物甜蛋白(Brazzein)的初步研究.[学位论文].北京,北京化工大学,2004
    65.邱荣德,朱建蓓,王垒等.人p53蛋白在巴氏德毕赤酵母中的表达.生物工程学报,1999,15(4):477-481
    66.王黎明,王琦,梅汝鸿.巴斯德毕赤酵母表达系统研究进展.微生物学杂志,2004,24(3)42-45
    67.卢文菊,罗进贤,何建国等.人血管抑素基因工程菌发酵条件的初步研究[J].厂州医学院学报,2000,28(3):1-3
    68.梁新乐,励建朵,陈敏,氧载体强化氧传递促进法夫酵母虾青素的合成,菌物系统,2003,22(3):424-429
    69. Wenhui Zhang, Mark A. Bevins, Bradley A. Plantz, Leonard A. Smith, Michael M. Meagher., Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A, Biotechnology and Bioengineering, 2000, 70(1), 1-8
    70.叶冰等,植酸酶毕赤酵母工程菌高密度发酵,大连轻工业学院学报,2002,21(3):193-196
    71. Ir Mia Eeckhoul. Phytase quality suffers from steam pelleting and storage temperature[J]. feed technology, 1999, 4(2): 18-21
    72.姜锡瑞.酶制剂应用手册[M].北京:中国轻工业出版社.1999:168-179
    73.陈惠,王红宁,植酸酶热稳定性研究,中国饲料,2004,18:22-23
    74.朱建津,李星等,酶制剂在饲料加工和贮存中的稳定性研究,2000,21(10):18-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700