基于若干智能方法的先进控制系统综合设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实事物中绝大多数对象都是包含噪声干扰的非线性系统,基于经典控制理论、现代控制理论的传统控制方法往往是针对线性系统设计的,对包含噪声干扰的强非线性、复杂时变系统的应用具有较大的限制。随着人工智能技术的不断发展,以模糊系统、神经网络为代表的智能产物显示出对复杂非线性系统强大的处理能力,一系列基于智能控制理论及方法的控制系统被不断提出和改进,在对复杂对象的控制问题上取得了重大的突破和丰硕的成果。然而,由于各种智能产物的基础理论发展仍不成熟,在应用各种智能控制方法时存在许多值得改进的地方。本论文拟针对基于智能方法的先进控制系统设计提出若干新的参考方法和改进应用方法,具体工作包括以下内容:
     1.对智能控制理论的背景及发展状况进行了综述,评述了智能控制领域的主要研究方法和获得的成果,阐述了基于智能方法的控制系统综合设计研究的意义和工程实用价值。
     2.提出一类以模糊神经网络和PID神经网络组成的模糊神经PID网络;提出一种基于混沌优化机制的粒子群优化算法,设计了混沌优化与粒子群结合的两步方案。将上述方法用于控制系统设计,具体构成为:模糊神经PID网络用作控制器,优化策略为带混沌机制的粒子群算法离线优化和误差反传算法在线调整相结合的方法;被控对象为确定性典型非线性和惯性时滞对象。
     3.提出一种基于最小二乘支持向量机建模的自适应智能PID控制系统。控制系统具体构成:控制器及其优化算法采用模糊神经PID网络和改进粒子群算法的方案;引入最小二乘支持向量机用于离线建模,将控制系统拓展到能处理具有未知特性的不确定对象的控制问题。
     4.提出一种基于改进蚁群算法优化的大时滞对象神经网络控制系统。控制系统具体构成:控制器采用模糊神经PID网络,其离线优化采用一种改进的蚁群优化算法,在线时采用误差反传算法调整;利用最小二乘支持向量机辨识来获取系统下一离散时间步的预估值,对不确定大时滞对象进行离线辨识和在线辨识来处理时滞和不确定性问题。对空调房间对象进行了控制仿真。同时,设计了基于径向基函数神经网络的空调系统模型参考自适应控制系统,给出了前向型神经网络控制系统设计的一般性方案。
     5.针对航空发动机对象,提出一种综合模糊推理、神经网络自适应和PID控制各自优点的控制系统。控制系统具体构成:模糊神经PID网络用作控制器,其参数优化策略采用改进蚁群算法离线优化和误差反传在线调整的方法;最小二乘支持向量机用于系统的离线和在线辨识,其参数优化选取采用交叉验证的方法。对某型航空发动机设计点处的线性和非线性模型进行了控制仿真。
     6.针对航空发动机加速过程的控制问题,通过结合多种智能方法,提出了一种基于分类转换策略的控制系统。控制系统具体构成:模糊神经PID网络用作控制器,提出一种改进的量子粒子群算法离线优化其参数;利用标称模型将加速过程中发动机大范围不确定模型划分为若干小偏差不确定模型,作为未知控制对象;离线时利用最小二乘支持向量机结合主成分分析方法对小偏差模型进行分类和辨识训练,在线时根据系统实时数据利用分类器自动选择相应的小偏差模型,同时利用误差反传算法实时调整控制器参数跟踪期望信号;分类器和辨识器参数分别采用交叉验证和量子粒子群算法优化选取。基于模式识别思想和智能神经网络控制实现了一种新颖的依据系统信息实时选择对象模型的非线性PID控制策略。对某型航空发动机的加速过程进行了控制仿真。
     7.研究一类系统参数在很大范围内变化的不确定对象,为克服传统鲁棒控制方法的保守设计缺陷并进一步改善系统的性能,提出一种分类转换控制策略:在已知系统参数变化上下界前提下,基于类似分段线性化的思想,将系统进行分割;对于分割后的多个小偏差范围模型,利用最小二乘支持向量机结合主成分分析方法进行分类;对每类模型分别设计滑模控制器,并利用一种改进量子粒子群优化算法离线优化构造近似最佳切换函数,同时利用径向基函数神经网络结合误差反传算法在线调整切换项增益的方法降低系统的抖振;在线时根据系统实时数据利用分类器自动选择相应的小偏差模型和滑模控制器,完成相应的控制作用;为提高最小二乘支持向量机的分类及泛化性能,利用改进量子粒子群算法优化其惩罚因子和核参数。基于以上策略和优化配置,对控制系统进行了设计与仿真。
     8.针对以模糊神经自适应方法为核心的未知非线性系统控制问题,以常规静态模糊神经网络控制结构为基础,分别就控制器、辨识器、优化算法三个方面展开研究。以模糊神经PID网络作为控制器,最小二乘支持向量机为辨识器,利用改进量子粒子群算法离线优化控制器参数和改进粒子群算法优化辨识器的相关参数,最后通过对系统的稳定性分析将控制系统逐步完善,完成对基于模糊神经网络方法的自适应控制系统中各个环节的改进。对某热交换非线性对象进行了控制仿真。
     最后对论文的主要工作进行了概括性的总结,阐述了所获得的一般性结论。列出了论文工作的主要创新之处,对后续的研究工作进行了展望。
Nonlinear characteristics and noise disturbance exist in most of the actual systems. The conventional control methods based on classical control theory and modern control theory are mainly designed for linear systems, which can hardly be applied to strongly nonlinear and complex systems. As the artificial intelligence technologies continue to develop, products of these technologies represented by fuzzy system and artificial neural network show the powerful processing capability to complex nonlinear systems. A series of advanced control systems based on intelligent control theories and methods are continuously put forward and improved, great breakthrough and plentiful fruits are derived for the control problem of complex systems. However, due to the immaturity of the foundation theory of intelligent control,there are still many aspects and key points need to be improved when applying the control methods. In view of the combined design of the advanced intelligent control system in future, the main research work of this dissertation can be described as follows:
     1、This chapter gives an overview of the background and the development of intelligent control theory, sums up the main research methods and achievements of intelligent control field, illustrates the significance and practical value in the study of the combined design of intelligent control system.
     2、A fuzzy neural PID controller consists of a fuzzy neural network and a PID neural network is proposed. A partical swarm optimization (PSO) algorithm based on chaos optimization is designed. The control system is designed based on the work above, the system scheme includes: the fuzzy neural PID network is used as the controller; the parameters of the controller are optimized by the mixed learning methods integrating offline particle swarm optimization algorithm combined with chaos strategies of global searching ability and online BP algorithm of local searching ability; a typical nonlinear object and a time delay object are used as controlled plant.
     3、A self-adaptive intelligent PID control system is presented based on least squared support vector machine (LS_SVM). LS_SVM is used as the identifier for uncertain objects. The proposed control system scheme includes: the controller and the optimization algorithm configuration are the same as the last chapter; by introducing LS_SVM, the control system is extended to an improved scheme which can handle the objects with uncertainty.
     4、A neural network control system for time-delay objects is presented based on an improved ant colony algorithm (ACO). The proposed control system scheme includes: the controller uses the fuzzy neural PID controller; the parameters of the controller are optimized by the mixed learning methods integrating offline chaotic ant colony optimization (CACO) and online error back propagation algorithm; LS_SVM is used as identifier, and it is trained offine and online to obtain the forecasting value of the next step time of the discrete system. By applying the proposed control system, the simulation is done with a air conditioning room object. Also, the model reference adaptive control system for the whole air conditioning system is designed based on radial basis function (RBF) neural network. The general designing method of the control system using feed-forward neural network is described in details.
     5、In view of complicated, undetermined and strongly nonlinear aeroengine object, a novel control scheme integrating the merits of fuzzy inference, neural network adaptation and simple proportional-integral-derivative (PID) method is presented. The proposed control system scheme includes: the controller uses the fuzzy neural PID controller; the parameters of the controller are optimized by the mixed learning methods integrating offline chaotic ant colony optimization (CACO) and online error back propagation algorithm; LS_SVM is used as identifier, and it is trained offine and online; the parameters of LS_SVM is optimized by cross-validation method; the simulation is done with a aeroengine object at the designed work condition.
     6、A novel control scheme consists of several intelligent control strategies for aeroengine acceleration process is proposed. The proposed control system scheme includes: the controller is constructed by a fuzzy neural PID network; the parameters of the controller are optimized by offline quantum-behaved particle swarm optimization (QPSO) with chaos strategy combined by online error back propagation tuning; in process of acceleration, the model with the wide range of uncertainty is partitioned by designed nominal model and several models with the small range of uncertainty are derived; these models are classified and identified by LS_SVM offline. In online situation, the designed model with the small range of uncertainty is selected automatically by LS_SVM based on system data, and the controller is tuned by error back propagation simultaneously; the parameters of the classifier are optimized by cross-validation and the identifier by QPSO. The whole system with the model selected by online system data is designed by nonlinear PID strategy based on pattern recognition and intelligent neural network; the simulation is done with an aeroengine object in acceleration process.
     7、In order to overcome the conservation of conventional robust control methods, a new classifying and switching strategy based on LS_SVM for the control of uncertain system with the parameters varying in a wide range is proposed. The proposed control strategy includes: the original system model is divided into several models with small range of uncertainty; these models are classified by LS_SVM combined with principal component analysis (PCA) offline; for each model, the sliding-mode controller (SMC) with its gain tuned by RBF neural network is designed to reduce the chattering phenomenon effectively, and the QPSO algorithm with chaos strategy is designed and applied to adjusting the parameters of the controller so as to construct an optimized switching function. In online situation, each model with the designed SMC is selected automatically by LS_SVM based on system data; the parameters of LS_SVM are optimized by QPSO with chaos strategy to improve the performance of classification and generalization. In final, the system scheme is designed by the proposed method.
     8、Considering the fuzzy neural adaptive control method for undetermined nonlinear system, the control scheme are studied and improved based on the conventional fuzzy neural network control scheme. The controller, identifier and optimization algorithm of the scheme are designed respectively by the improved new methods. The proposed control system scheme includes: the fuzzy neural PID network is used as the controller, and LS_SVM as the identifier; the controller is optimized by offline QPSO with chaos strategy combined by online error back propagation tuning; the parameters of LS_SVM are optimized by PSO with chaos optimization; the stability of the improved scheme is discussed to finish the whole design in conclusion; the simulation is done with a heat exchanger object.
     In final, the main research work is summarized. As a whole, the conclusions derived from this dissertation is illustrated. The innovation points and the future outlook of the research work is given.
引文
[1] Fu K.S. Learning control systems and intelligent control systems: An intersection of artificial intelligent control. IEEE Trans. AC, 1991, 16(1): 70-72.
    [2] Autsaklis P.J. Defining intelligent control. IEEE control systems, 1994, 14(3): 58-66.
    [3]卢伯英,译.人工智能.北京:科学出版社, 2003.
    [4]王永初.智能控制理论与系统的发展评述.华侨大学学报(自然科学版), 2004, 25(1): 1-4.
    [5]李少远,席裕庚,陈增强.智能控制的新进展(II).控制与决策, 2000, 15(2): 136-140.
    [6]王树青.先进控制技术及应用.北京:化学工业出版社, 2001.
    [7]孙增圻,张再兴,邓志东.智能控制理论与技术.北京:清华大学出版社, 1997.
    [8]王耀南.智能控制系统——模糊逻辑专家系统神经网络控制.湖南:湖南大学出版社, 1996.
    [9]王顺晃,舒迪前.智能控制系统及其应用.北京:机械工业出版社, 1995.
    [10]胡寿松.自动控制原理.北京:科学出版社, 2002.
    [11]王积伟.现代控制理论与工程.北京:高等教育出版社, 2003.
    [12] L.A.Zadeh. Fuzzy Sets. Information and Control, 1965, 8: 338-353.
    [13] H.J.Zimmerman. Fuzzy Set Theory and Its Applications. Norwell: Kluwer Nijh Of Publishing, 1988.
    [14]李洪兴,汪培庄.模糊数学.北京:国防工业出版社, 1994.
    [15]刘应明,任平.模糊性——精确性的另一半.北京:清华大学出版社, 2000.
    [16] E.H.Mamdani. Applications of fuzzy algorithms for control of simple dynamic plant, Proc IEEE, 1974, 121(21): 1585-1588.
    [17] Kevin M.Passino, Stephen Yurkovich. Fuzzy Control. Beijing: Tsinghua University Press, 2001.
    [18]章卫国,杨向忠.模糊控制理论与应用.西安:西北工业大学出版社, 2001.
    [19]诸静.模糊控制原理与应用.北京:机械工业出版社, 1995.
    [20]李士勇.模糊控制和智能控制理论与应用.哈尔滨:哈尔滨工业大学出版社, 1990.
    [21]窦振中.模糊逻辑控制技术及其应用.北京:北京航空航天大学出版社, 1995.
    [22]唐兵勇,路林吉,王文杰.模糊控制理论与应用技术.北京:清华大学出版社, 2002.
    [23]张恩勤,施颂椒,高卫华等.模糊控制系统近年来的研究与发展.控制理论与应用, 2001, 18(1): 7-11.
    [24]陈建勤,席裕庚,张钟俊.模糊控制的现状与发展.上海交通大学学报, 1996, 30(2): 71-76.
    [25]李洪兴.从模糊控制的数学本质看模糊逻辑的成功.模糊系统与数学, 1995, 9(4): 1-14.
    [26]李洪兴.模糊控制的数学本质与一类高精度模糊控制器的设计.控制理论与应用, 1997, 14(6): 868-872.
    [27]董劲,黄金泉.航空发动机多变量模糊PID控制.航空动力学报, 2003, 18(4): 538-541.
    [28] G. Chen. Conventional and fuzzy PID Controllers: An overview. Int. J. Intel, Control Syst, 1996, 1(2): 235-246.
    [29] R. K. Mudi and N. R. Pal. A self-tuning fuzzy PI controller. Fuzzy Sets and Systems, 2000, 115(3): 327-338.
    [30] Lee C C. Fuzzy logic in control system: fuzzy logic controller, Part I II. IEEE Trans on Systems, Man and Cybernetics, 1990, 20(2): 404-435.
    [31] J.J.Buckley. Sugeno Type Controllers are Universal Controllers. Fuzzy Sets and Systems, 1993, 53(3): 299-303.
    [32] J.J.Buckley. Controllable Processes and The Fuzzy Controller. Fuzzy Sets and System, 1993, 53(3): 27-31.
    [33] J.J.Buckley. Universal Fuzzy Controllers. Automation, 1992, 28(6): 1245-1248.
    [34] Wang H.O, Tanaka K, and Griffin M.F. An approach to fuzzy control of nonlinear systems: stability and design issues, IEEE Trans. on Fuzzy Systems, 1996, 4(1): 14-23.
    [35] L.X. Wang and J.M .Mendel. Generating Fuzzy Rules by Learning From Examples. IEEE Trans on Systems, Man and Cybernetics, 1992, 22(6): 1414-1427.
    [36] Lee J X,Vukovich G. The dynamic fuzzy logic system: nonlinear system identification and application to robotic manipulators. J of Robotic Systems, 1997, 14(6): 391-405.
    [37]张际先,宓霞.神经网络及其在工程中的应用.北京:机械工业出版, 1996.
    [38] McCulloch M.S. and W.Pitts.A. Logical Calculus of the Ideas Immanence in Nervous Active. Bulletin of Mathematical Biophysics, 1943, 5: 115-133.
    [39] Hebb D.O. The Organization of Behavior. Wiley New York, 1949.
    [40] M.Minsky and S.Paper. Perceptrons. MIT Press, Cambridge, MA, 1969.
    [41] S.Grossberg. Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biological Cybernetics, 1976, 23: 121-134.
    [42] T.Kohonen. Correlation matrix memories. IEEE transactions on Computers, 1972, 21: 353-359.
    [43] J.J.Hopfield. Neural networks and physical systems with emergent collective computational abilities. In proceedings of the National Academy of Science,USA, 1982, 79(2): 2554-2558.
    [44] J.J.Hopfield. Neural with Graded Response Have Collative Computational Properties Like Those of Two-state Neurons. Proc. Nat. Acad. Sci. USA, 1984, 81(10): 3088-3092.
    [45] J.J.Hopfield and D.W.Tank. Neural computation of decisions in optimization problems. Biological Cybernetics, 1985, 52(3): 141-152.
    [46] Rumelhart D.E. and J.L.McClelland. Parallel Distributed Processing. MIT Press, 1986.
    [47]张立明. ANN的模型及其应用.上海:复旦大学出版社, 1993.
    [48]焦李成.神经网络系统理论.西安:西安电子科技大学出版社, 1990.
    [49]焦李成.神经网络的应用和实现.西安:西安电子科技大学出版社, 1993.
    [50]袁曾任. ANN及其应用.北京:清华大学出版社, 1999.
    [51]施鸿宝.神经网络及其应用.西安:西安交通大学出版社, 1993.
    [52]徐丽娜.神经网络控制.哈尔滨:哈尔滨工业大学出版社, 1999.
    [53]王永骥,涂健.神经网络控制.北京:机械工业出版社, 1998.
    [54]从爽.神经网络、模糊系统及其在运动控制中的应用.合肥:中国科学技术大学出版社, 2001.
    [55]孙富春等.非线性系统神经网络自适应控制的发展现状及展望.控制理论与应用, 2005, 22(2): 254-260.
    [56]史忠科.神经网络控制理论.西安:西北工业大学出版社, 1997.
    [57]张绍德.一类神经网络非线性系统模型参考自适应控制.华中理工大学学报, 2000, 28(4): 77-79.
    [58] Ahmed M.S. Neural net based MRAC for a class of nonlinear plants. IEEE Neural Networks, 2000, 13(1): 111-124.
    [59] HUNT K.J, SBARBARO D. Adaptive filtering and neural networks of realization of internal model control. Intelligent Systems Engineering, 1993, 2(2): 67-76.
    [60] RIVALS I, PERSONNAZ L. Nonlinear internal model control using neural networks: application to processes with delay and design issue. IEEE Trans on Neural Networks, 2000, 11(1): 80-90.
    [61]陈捷,王宁,王树青.汽油调合过程的神经内模优化控制.控制理论与应用, 1999, 16(8): 532-535.
    [62]王洪元,郑晓文,钱积新等.基于神经元网络模型的柴油调合非线性预测控制和在线优化.化工自动化及仪表, 2000, 27(6): 11-15.
    [63] P.H.Sorensen, M.Norgaard, O.Ravn. Implementation of Neural Network Based NonLinear Predictive Control. Neurocomputing, 1999, 28(1): 37-51.
    [64] A.G.Parlos, O.T.Rais, A.F.Atiya. Multi-Step-Ahead Prediction Using Dynamic Recurrent Neural Network .Neural Networks, 2000, 13(4): 765-786.
    [65] Shu Huai-lin, Pi You guo. PID neural networks for time-delay systems. Computers and Chemical Engineering, 2000, 24(8): 859-862.
    [66] Chen C L, Chang F Y. Design and analysis of neural/fuzzy variable structural PID control systems. IEEE Proc. D Control Theory Appl. 1996, 143(2): 200-228.
    [67]傅强,樊丁.航空发动机PID神经网络解耦控制.推进技术, 2007, 28(2): 208-210.
    [68]姚华,袁鸯,鲍亮亮等.航空发动机神经网络自学习PID控制.推进技术, 2007, 28(3): 313-316.
    [69]姚华,鲍亮亮,孙健国.基于神经网络的航空发动机全包线PID控制.南京航空航天大学学报, 2007, 39(2): 236-239.
    [70]安大伟,王江江,娄承芝.神经网络PID控制器在高大空间恒温空调系统中的应用.天津大学学报, 2005, 38(3): 268-273.
    [71]牛建军,吴伟,陈国定.基于神经网络自整定PID控制策略及其仿真.系统仿真学报, 2005, 17(6): 1425-1427.
    [72]王俊国,王永骥,万淑芸.基于动态神经网络的PID参数整定与实时控制.系统工程与电子技术, 2004, 26(6): 777-780.
    [73]武国庆,姜长生,张锐等.基于径向基神经网络的不确定非线性系统的鲁棒自适应控制.航空学报, 2002, 23(6): 530-533.
    [74]张显库,吕晓菲,郭晨等.船舶航向保持的鲁棒神经网络控制.船舶力学, 2006, 10(5): 54-58.
    [75]彭济根,倪元华,乔红.柔性关节机操手的神经网络控制.自动化学报, 2007, 33(2): 175-180.
    [76] Sanner R M, Slotine J J E. Stable adaptive control of robot manipulators using neural network. Neural Computation, 1995, 7(3): 753-790.
    [77] Sun F, Sun Z Q, Woo P. Neural network-based adaptive control design of robotic manipulators with an observer. IEEE Transactions on Neural Network, 2001, 12(1): 54-67.
    [78]郭迎清.航空发动机神经网络自适应控制研究.航空动力学报, 2001, 16(1): 83-86.
    [79]丛爽,梁艳阳,李国栋.多变量自适应型神经网络控制器及其设计方法.信息与控制, 2006, 35(5): 568-573.
    [80]李明,李会莹,杨汉生等.基于一种新型动态神经网络的非线性自适应逆控制.系统仿真学报, 2007, 19(17): 4021-4024.
    [81]李运华等.神经网络离散变结构控制的算法及其应用.控制与决策, 2000, 9(4): 301-305.
    [82]陈丽,陈卫东,王洪瑞.改进的机器人神经网络变结构混合控制.系统工程与电子技术, 2006, 28(3): 429-433.
    [83]王伟,易建强,赵冬斌等.一种新型神经网络滑模控制器的设计.电机与控制学报, 2005, (9)6: 603-606.
    [84]王忠勇等.一种基于小波网络的自校正控制方法.控制理论与应用, 2001, 18(2): 270-273.
    [85]季春光,王朋,李士勇等.基于神经网络的时变大滞后系统的Smith预估控制.哈尔滨工业大学学报, 2003, 35(3): 303-306.
    [86]孙富春,孙增圻.采样非线性系统的动态神经网络稳定自适应控制.自动化学报, 2000, 26(6): 721-728.
    [87] Ku C.C, Lee K Y. Diagonal recurrent neural networks for dynamic systems control. IEEE Trans. On Neural Networks, 1995, 6(1): 144-155.
    [88] G.V.Puskorius, L.A.Feldkamp. Automotive engine idle speed control with recurrent neural networks. Proceedings of the American Control Conference, San Francisco, WA, 1993, 311-316.
    [89] Rorithakis G A, et al. Adaptive control of unknown plants using dynamical neural network. IEEE Trans. On SMC, 1994, 24(3): 400-411.
    [90]赵振宇,徐用懋.模糊理论和神经网络的基础与应用.北京:清华大学出版, 1996.
    [91]王士同.神经模糊系统及其应用.北京:北京航空航天大学出版社, 1998.
    [92]张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社, 2000.
    [93] Liu, Xiaodi. A self-organizing neural-fuzzy system for knowledge extraction. Wayne State University (Ph. D. Dissertation), 1994.
    [94] Buckley J.J, Hayashi Y, Czogala E. On the Equivalence of Neural Networks and Fuzzy Expert Systems In proceedings of International Joint Conference on Neural Networks. Baltimore 1992, 2(6): 691-685.
    [95] Kawamura Akira,et al. A Prototype of Neuro-Fuzzy Cooperation System. IEEE, Fuzzy'92: 1275-1282.
    [96] Takagi H, Hayashi I. NN-driven fuzzy reasoning. Int. J. of Approximate Reasoning, 1991, 5(3): 191-212.
    [97] Hollatz JuGen. Supplementing Neural Network Learning with Rule-based Knowledge. IJCNN-Beijing'92, III: 595-600.
    [98] Jyh Shing, Roger Jang. ANFIS: Adaptive Network Based Fuzzy Inference System. IEEE Trans actions Systems, Man and Cybernetics, 1993, 23(3): 665-684.
    [99]邓志东等.一种模糊CMAC神经网络.自动化学报, 1995, 21(3): 288-293.
    [100]孙富春,刘华平,孙增圻.非线性系统神经模糊自适应控制的问题与策略.清华大学学报(自然科学版), 2003, 43(4): 470-474.
    [101]赵光宙等.应用神经网络模糊控制器的发动机怠速控制.内燃机工程, 2001, 21(1): 59-62.
    [102] Lin C.T, Lee C.S.G. Neural-network-based Fuzzy Logic Control and Decision System. IEEE Trans. Computation, 40(2): 1320-1336.
    [103] Gupta M.M, Rao D.H. On the principles of fuzzy neural networks. Fuzzy Sets Syst. 1994, 61(1): 1-18.
    [104] Simpson P.K. Fuzzy min-max neural network-Part 1: Classification. IEEE Trans. Neural Network, 1992, 3(5): 776-786.
    [105] Keller J.M, et al. Neural Network implementation of Fuzzy Logic. Fuzzy Sets and Systems, 1992, 45(1): 1-12.
    [106] Ishibuchi Hisao, et al. An Architecture of Neural Networks for Input Vectors of Fuzzy Numbers. IEEE Fuzzy'92: 1293-1300.
    [107] Uebeles F, Abe S, Lan M.S. A Neural Network Based Fuzzy Classifier. IEEE Trans on System, Man and Cybernetics, 1995, 25(2): 353-361.
    [108] Wang Wei Yen, Leu Yih Guang, Hsu Chen Chien. Robust Adaptive Fuzzy-neural Control of Nonlinear Dynamical Systems Using Generalized Projection Update Law and Variable Structure Controller. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 2001, 31(1): 140-147.
    [109]达飞鹏,宋文忠.基于模糊神经网络的非线性大系统滑模自适应控制. CONTROL AND DECISION, 1998, 13(6): 629-634.
    [110]余晓江,胡学军,胡于进等.基于模糊神经网络的车辆间距智能自适应控制.华中科技大学学报(自然科学版), 2007, 35(9): 22-24.
    [111]邱焕耀,毛宗源.变结构模糊神经网络控制及其学习规律研究.华南理工大学学报(自然科学版), 1999, 27(3): 88-93.
    [112]陈善本,吴林,李友善.不确定对象的自学习模糊神经网络控制方法.模糊系统与数学, 1997, 11(2): 63-69.
    [113]彭小奇等.多变量系统的模糊神经网络控制模型及其应用.控制理论与应用, 1995, 12(3): 351-357.
    [114]王耀南.模糊神经网络模型参考自适应控制及其应用.湖南大学学报, 1997, 24(4): 65-73.
    [115]程启明,陈刚,王勇浩.一种模糊神经网络控制系统研究.系统工程与电子技术, 2005, 27(3): 501-504.
    [116]周志坚,毛宗源.一种最优模糊神经网络控制器.控制与决策, 2000, 15(3): 358-360.
    [117]王耀南,张昌凡,刘治.专家模糊神经网络控制系统在复杂工业过程中的应用.电机与控制学报, 2000, 4(3): 175-178.
    [118]鲍鸿,黄心汉.用模糊RBF神经网络简化模型设计多变量自适应模糊控制器.控制理论与应用, 2006, 17(2): 169-170.
    [119] Lin C.T, Lee C.S.G. Real-time Supervised Structure/Parameter Learning for Fuzzy Neural Networks. IEEE Fuzzy'92, 1283-1291.
    [120] Yamakawa, Takeshi et al. A Design Algorithm of Membership Function for A Fuzzy Neuron Using Example-Based Learning. IEEE Fuzzy'92, 75-82.
    [121] Junbong Nie. Self-organizing Control Using Fuzzy Neural Networks. Int. J. Control, 1992, 56(2): 415-439.
    [122] Hunt K.J, Sbarbaro D, Bikowski R.Z, et al. Neural Networks for control systems-A Survey. Automatica, 1992, 28(6): 1083-1112.
    [123]应行仁,曾南.采用BP神经网络记忆模糊规则的控制.自动化学报, 1992, 17(1): 63-67.
    [124]陈建勤,陈来九.基于自适应神经元学习模糊控制规则.控制与决策, 1994 , 9(1): 350-354.
    [125]张成乾,张国强.系统辨识与参数估计.北京:机械工业出版社, 1986.
    [126]方崇智,萧德云.过程辨识.北京:清华大学出版社, 1998.
    [127]徐南荣,宋文中,夏安邦.系统辨识.南京:东南大学出版社, 1991.
    [128]胡德文.非线性与多变量系统相关辨识.北京:国防科技大学出版社, 2001.
    [129]朱全民.非线性系统辨识.控制理论与应用. 1994, 11(6): 641-652.
    [130]鲍晓红. ANN在非线性系统辨识中的应用.北京航空航天大学博士论文, 1996.
    [131] Benitez J. M, Casrto J. L, Requena I. Are artificial neural networks black boxes? IEEE Trans on Neural Networks, 1997, 8(5): 1156-1164.
    [132] Hornik K.M, Stinchcombe, and H.White. Multilayer feedback networks are universal approximators. Neural networks, 1989, 2(5): 359-366.
    [133] Funahashi Ken-Ichi. On the approximate realization of continual mappings by neural networks. Neural Networks, 1989, 2: 183-192.
    [134] WEN YU, ALEXANDER S. POZNYAK and XIAOOU LI. Multi-layer dynamic neural networks for non-linear system on-line identification. INT.J.CONTROL. 2001, 74(18): 1858-1864.
    [135] Chen S, Billings S.A. Neural network for nonlinear dynamic system modeling and identification. Int. J. CONTROL, 1992, 56(2): 319-346.
    [136] Robert J, Schilling.James J.carroll, Ahmad F.Al-Ajlouni. Approximation of nonlinear systems with radial basis function neural networks. IEEE Transactions on Neural Networks, 2001, 12(1): 1-15.
    [137] Narendra K.S, Parthasarathy L. Identification and Control of Dynamical Systems Using Neural Networks. IEEE Trans On Neural Networks, 1990, 1(1): 4-27.
    [138] Park J, Sandberg I.W. Universal approximation using radial-basis-function networks. Neural Computation, 1991, 3(2): 246-257.
    [139] Poggio T, Girosi F. Networks for approximation and learning. Proc IEEE, 1990, 78(9): 1481-1497.
    [140] Liu B, Si J. The best approximation to C2 functions and its error bounds using regular center Gaussian networks. IEEE Trans on Neural Networks, 1994, 5(5): 845-847.
    [141] Pham D T, Liu X. Training of Elman Networks and Dynamic System Modeling. Int. J of System Science, 1996, 27(2): 221-226.
    [142] Scarselli F, Tsoi A C. Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results. Neural Networks, 1998, 11(1): 15-37.
    [143]丛爽,高雪鹏.几种递归神经网络及其在系统辨识中的应用.系统工程与电子技术, 2003, 25(2): 194-197.
    [144]刘延年,冯纯伯.用神经网络进行非线性离散动态系统辨识的可行性.控制理论与应用, 1994, 11(4): 413-420.
    [145]任雪梅,高为炳.基于神经网络非线性系统辨识和控制的研究.控制理论与应用, 1995, 12(2): 147-153.
    [146]鲍晓红,贾英民.用动态隐层的前馈网辨识非线性系统.自动化学报, 1997, 23(5): 689-693.
    [147]鲍晓红,贾英民.用神经元网络辨识非线性系统中的网络结构选择.控制理论与应用, 1997, 14(4): 489-494.
    [148]谢辉,孙艳辉,夏超英.基于动态递归神经网络的HCCI发动机燃烧相位辨识模型.内燃机学报, 2007, 25(4): 352-357.
    [149]罗南华,王伟.基于动态递归模糊神经网络的水轮发电机组建模.控制与决策, 2007, 22(10): 1125-1128.
    [150]孙强,程明.基于模糊神经网络的双凸极永磁电机非线性建模.控制理论与应用, 2007, 24(4): 601-606.
    [151] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans on Systems, Man and Cybernetics, 1985, 15(1): 116-132.
    [152] Wang L.X. Fuzzy systems as universal approximators. IEEE Int. Conf. Fuzzy Systems San Diego, USA, 1992, 1163-1170.
    [153] Zeng X.J, Signh M.G. Approximation theory of fuzzy systems SISI case. IEEE Trans on Fuzzy Systems, 1994, 2(2): 162-176.
    [154] Czogala E, Pedrvcz W. On identification of fuzzy systems and its applications in Control Problems. Fuzzy Sets and Systems, 1981, 6: 73-83.
    [155] Pedrycz W. An Identification algorithm in fuzzy relational systems. Fuzzy Sets and Systems, 1984, 13(2): 153-167.
    [156] Casrto J.L, Pelgado M. Fuzzy Systems With defuzzification are universal approximators. IEEE Trans on systems, Man and Cybernetics, 1996, 26(1): 149-152.
    [157] Ying H. Sufficient conditions on general fuzzy systems as function approximators. Automatica, 1994, 30(3): 521-525.
    [158] Michio Sugeno, Takahiro Yasukawa. A Fuzzy-Logic-Based Approach to Qualitative Modeling. IEEE Trans On Fuzzy Systems, 1993, 1(1): 7-31.
    [159] Ching-Chang Wong, Chia-Chong Chen. A Hybrid Clustering and Gradient Descent Approach for Fuzzy Modeling. IEEE Trans on Systems, Man and Cybernetics PART B: Cybernetics, Dec 1999, 29(6): 686-693.
    [160] Sun C.T. Rule-base structure identification in and adaptive-network-based fuzzy inference system. IEEE Trans on Fuzzy Systems, 1994, 2(1): 64-73.
    [161] Delgado A, et al. Dynamic recurrent networks for system identification and control. IEEE Proc. Control Theory Appl, 1995, 142(4): 307-314.
    [162]王凌.智能优化算法及其应用.北京:清华大学出版社, 2001.
    [163]王伟,张晶涛,柴天佑. PID参数先进整定方法综述.自动化学报, 2000, 26(3): 347-355.
    [164]房振勇,游文虎,冯汝鹏.改进BP算法在模糊神经网络中的应用.北京航空航天大学学报, 2007, 33(11): 1321-1324.
    [165]田华,李相林.一种基于混合学习算法的模糊神经网络控制.哈尔滨理工大学学报, 2002, 7(1): 18-20, 24.
    [166] Kirkpatrick S. et al. Optimization by simulated annealing. Science, 1983, 220(18): 671-680.
    [167]高国华,沈林成,常文森.求解TSP问题的空间锐化模拟退火算法.自动化学报, 1999, 25(3): 425-428.
    [168]杨振强,王宏伟,庄显义等.基于快速模拟退火算法的T-S模糊神经网络学习算法.电机与控制学报, 1999, 3(1): 42-45.
    [169] TASSWA I, KOAKUSU S, HIRATA H. An evolutionary optimization based on the immune system and its application to the VLSI floor plan design problem. Electrical Engineering, 1998, 122(2): 20-37.
    [170] Han K H, kin J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evol Comput, 2002, 6(6): 580-593.
    [171] R.S. Sexton, B. Alidaee, R.E. Dorsey, et al. Global Optimization for Artificial Neural Networks: A Tabu Search Application. European Journal of Operational Research, 1998, 106(2): 570-584.
    [172] Dong Hwa Kim. Parameter tuning of fuzzy neural networks by immune algorithm. IEEE international conference on fuzzy systems. Honolulu, Hawaii, 2002, 1: 408-413.
    [173]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社, 2002.
    [174] Gen M, Chung R. Genetic Algorithm and Engineering Design. Johns Wiley & Sons, New York, 1997.
    [175]陈容,徐用懋,兰鸿森.多层前向网络的研究——遗传BP算法和结构优化策略.自动化学报, 1997, 23(1): 43-49.
    [176]唐巍,郭镇明,唐嘉亨等.复杂函数优化的混沌遗传算法.哈尔滨工程大学学报, 2000, 21(5): 1-5.
    [177]孙丰诚,孙健国,张海波.量子遗传算法在航空发动机PID控制中的应用.推进技术, 2007, 28(3): 307-312.
    [178]陈文英,阎绍泽,褚福磊.免疫遗传算法在智能桁架结构振动主动控制系统优化设计中的应用.机械工程学报, 2008, 44(2): 196-200.
    [179]李盼池,李士勇.基于量子遗传算法的正规模糊神经网络控制器设计.系统仿真学报, 2007, 19(16): 3710-3714.
    [180]李秋红,孙健国,周继超.航空发动机PID控制参数优化的改进遗传算法.南京航空航天大学学报, 2006, 38(2): 162-165.
    [181]王宏伦,吕庆风,佟明安.模糊逻辑系统的GA+BP混合学习算法.控制理论与应用, 2001, 18(1): 17-20.
    [182] Srinivas M, Patnaik L.M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms. IEEE Transactions on system, Man, and Cybernetics, 1994, 24(4):367-384.
    [183]康波.一种混沌遗传算法及其在测试生成中的应用.系统工程与电子技术, 2006, 28(11): 1743-1746.
    [184]振雷,顾树生.基于实值遗传算法的模糊神经网络辨识器.东北大学学报(自然科学版), 2000, 21(4): 354-356.
    [185]谭冠政,李安平,王越超.最优Fuzzy-GA PID控制器及其应用.中南工业大学学报, 2002, 33(4): 419-423.
    [186]方建安,邵世煌.采用遗传算法学习的神经网络控制器.控制与决策, 1993, 8(3): 208 -212.
    [187]徐炜,贺占庄,黄士坦等.基于免疫遗传算法的递归模糊神经网络.吉林大学学报(信息科学版), 2004, 23(2): 162-166.
    [188] Arnold F.Shapiro. The merging of neural networks, fuzzy logic, and genetic algorithms. Insurance: Mathematics and Economics, 2002, 31(1): 115-131.
    [189] Michalewicz Z, Janikow C, and Krawczyk J. A Modified Genetic Algorithm for Optimal Control Problems. Computers & Mathematics with Applications, 1992, 23(12):83-94.
    [190] MonLana D.J. and Davis L. Training Feedforward Neural Networks Using Genetic Algorithms. Proceedings of the 1989 international Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers, San Mateo , CA, 1989, 762-767.
    [191]刘宇,覃征,史哲文.简约粒子群优化算法.西安交通大学学报, 2006, 40(8): 883-887.
    [192] Kennedy J, Eberhart R C. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks. Australia: IEEE, 1995, 1942-1948.
    [193] Shi Y. H, Eberhart R.C. A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, 1998, 69-73.
    [194] A.Carlisle, G.Dozier. An off-the-shelf PSO. In Proceedings of the Workshop on Particle Swarm Optimization. Indianapolis, USA: IEEE Press, 2001, 1-6.
    [195] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complexspace. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
    [196] Eberhart R.C, Shi Y. Particle swarm optimization: developments, applications and resources. Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, NJ: IEEE Service Center, 2001: 81-86.
    [197] Van den Bergh F, Engelbrecht A.P. Training Product Unit Networks Using Cooperative Particle Swarm Optimizers. In Proceedings of the third Genetic and Evolutionary Computation Conference, San Francisco, USA, 2001, 126-132.
    [198] S-KAI S.FAN, YUN-CHIA LIANG, ERWIE ZAHARA. Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions. Engineering Optimization, 2004, 36(4): 401-418.
    [199] Sun J, Feng B, Xu WB. Particle swarm optimization with particles having quantum behavior. Proceedings of 2004 Congress on Evolution Computation. Piscataway, NJ: IEEE Press, 2004: 325-331.
    [200]曹晓辛,李柠,黄道.基于蚁群聚类算法的模糊神经网络.华东理工大学学报(自然科学版) , 2005, 31(2): 215-218.
    [201]高尚.解旅行商问题的混沌蚁群算法.系统工程理论与实践, 2005, 9(9): 100-104.
    [202]吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法.计算机研究与发展, 1999, 36(10): 1240-1245.
    [203] Colorni A, Dorigo M, Maniezzo V. An investigation of some properties of an ant algorithm. Proc. of the parallel Problem Solving from Nature Conference (PPSN’92). Brussels, Belgium: Elsevier Publishing, 1992, 509-520.
    [204] Dorigo M, Maniezzo V, Colorni A. AntSystem: Optimization by a Colony of Cooperating Agents. IEEE Trans on Systems Man and Cybernetics, Part B, 1996, 26(1): 29-41.
    [205] Gunes M, Sorges U, Bouazizi I. ARA the ant colony based routing algorithm for MANETs. Proceedings International Conference on Parallel Processing Workshops. Uuncouver, B C, Canada, 2002, 79-85.
    [206] Lumer E, Faieta B. Diversity and adaptation in populations of clustering ants. Proc of the 3rd Conf On Simulation of Adaptive Behavior. MA MIT Press, 1994: 499-508.
    [207] Parpinelli R S, Lopes H S, Freitas. Data Mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation, 2002, 6(4): 321-332.
    [208]杨迪雄,李刚,程耿东.非线性函数的混沌优化方法比较研究.计算力学学报, 2004, 21(3): 257-262.
    [209]张国平,王正欧,袁国林.求解一类组合优化问题的混沌搜索法.系统工程理论与实践, 2001, 21(5): 102-105.
    [210]李祥飞,邹恩等.前馈神经网络的混沌学习方法研究.小型微型计算机系统, 2004, 25(2): 233-236.
    [211]潘永湘,徐前锋,高红梅.基于混沌思维的模糊控制算法优化研究.控制理论与应用, 2000, 17(5): 703-706.
    [212]费春国,韩正之.一种新混沌优化方法及在神经网络中的应用.系统仿真学报, 2005, 17(4): 812-814.
    [213]张学工.关于统计学习理论与支持向量机.自动化学报, 2000, 26(l): 32-42.
    [214] Cristianini N, Shawe Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. New York: Cambridge University Press, 1999.
    [215] VAPNIK V. The nature of statistical learning theory. New York: Springer-Verlag, 1995.
    [216] VAPNIK V, GOLOWICH S, SMOLA A. Support vector method for function approximation, regression estimation and signal processing. Adv Neural Information Proc Syst. Cambridge: MIT Press, 1997, 1281-1287.
    [217] Vapnik V, Levin E, Le C Y. Measuring the VC Dimension of a Learning Machine. Neural Computation, 1994, 8(5): 51-76.
    [218] Byun H, Lee S W. Applications of Support Vector Machines for Pattern Recognition: A Survey. Lee S W, Verri A(Eds.): SVM. LNCS 2388, 2002: 213-236.
    [219] Boser B E, Guyon I M, Vapnik V N. A Training Algorithm for Optimal Margin Classifiers. N.J.: ACM Press. In 5th Annual ACM Workshop on COLT, 1992, 144-152.
    [220] Muller K R, Smola A J, Ratsch G, et al. Predicting Time Series with Support Vector Machines. Berlin: Springer. In Artificial Neural Networks-ICANN'97, 1997, 999-1004.
    [221] Drucker H, Burges C, et al. Support vector regression machines. Advances in Neural Information Processing Systems, 1997, 9(9): 155-161.
    [222] Frontzek T, Navin Lal T, Eckmiller R. Predicting the Nonlinear Dynamics of Biological Neurons Using Support Vector Machineswith Different Kernels. N.Y.: IEEE, 2001. Proceedings of International Joint Conference onNeural Networks, 2001, 2: 1492-1497.
    [223] Osuna E, Freund R. Training Support Vector Machines: an Application to Face Detection. Proc. of Computer Vision and Pattern Recognition. San Juan, Puerto Rico, IEEE Computer Soc, 1997: 130-136.
    [224] Mukherjee S, Osuna E, Girosi F. Nonlinear Prediction of Chaotic Time Series Using a Support Vector Machine. N.Y.: IEEE, In Neural Networks for Signal Processing VII--Proceedings of the1997 IEEE Workshop, 1997, 511-520.
    [225]边肇棋,张学工.模式识别.北京:清华大学出版社, 2000.
    [226]高学,金连文,尹俊勋等.一种基于支持向量机的手写汉字识.电子学报, 2002, 30(5): 651-654.
    [227]马勇,丁晓青.基于层次型支持向量机的人脸检测.清华大学学报(自然科学版), 2003, 43(1): 35-38.
    [228]张燕昆,杜平,刘重庆.基于主元分析与支持向量机的人脸识.上海交通大学学报, 2002, 36(6): 884-886.
    [229]李曦,曹广益,朱新坚等.基于LS-SVM的燃料电池控制建模的研究, 2005, 17(6): 1360-1362.
    [230]胡金海,谢寿生,杨帆等.基于支持向量机的组合分类方法及应用.推进技术, 2007, 28(6): 669-673.
    [231] Drezet P. Support vector machines for system identification. In: Proceedings of UKACC International Conference on Control’98, 1998, 1(1): 688-692.
    [232] Greton A, Doucet A, Herbrich R, et al. Support vector regression for black-box system identification. Statistical Signal Processing. Proceedings of the 11th IEEE Signal Processing Workshop, Singapore, 2001, 341-344.
    [233] Athanassia C, Scholkopt B, Smola A. Experimentally optimalυin support vector regression for different Noise models and parameter settings. IEEE Trans on Neural Networks, 2004, 15(2): 127-141.
    [234] Suykens J.A.K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing letters, 1999, 9(3): 293-300.
    [235] Suykens J. A.K, Vandewalle J. Recurrent least squares support machines. IEEE Trans. On Circuits and Systems-I, 2000, 47(7): 1109-1114.
    [236] Suykens J.A.K, Vandewalle J, De Moor B. Optimal Control by Least Square Support Vector Machines. Neural Networks, 2001, 14(1): 23-35.
    [237]张浩然,韩正之,李昌刚.基于支持向量机的未知非线性系统辨识与控制.上海交通大学学报, 2003, 37(6): 927-930.
    [238]王定成,姜斌.支持向量机控制与在线学习方法研究的进展.系统仿真学报, 2007, 19(6): 1177-1181.
    [239]王定成,方廷健,高理富等.支持向量机回归在线建模及应用.控制与决策, 2003, 18(1): 89-91.
    [240]尉询楷,李应红,王剑影等.基于支持向量机的航空发动机辨识模型.航空动力学报, 2004, 19(5): 684-688.
    [241]崔万照.最小二乘小波支持向量机在非线性系统辨识中的应用.西安交通大学学报, 2004, 38(6): 562-565.
    [242]张国云,章兢,谭建豪.不确定时滞系统的自适应支持向量机Smith预估控制.湖南大学学报(自然科学版), 2005, 32(3): 84-87.
    [243]叶美盈.基于最小二乘支持向量机建模的混沌系统控制.物理学报, 2005, 54(1): 30-34.
    [244]刘涵,刘丁,任海鹏.基于最小二乘支持向量机的混沌控制.物理学报, 2005, 54(9): 4019-4025.
    [245]郑水波,韩整之,唐厚君等.最小二乘支持向量机在汽车动态系统辨识中的应用.上海交通大学学报, 2005,39(3): 392-395.
    [246]王宇红,黄德先,高东杰等.基于LS-SVM的非线性预测控制技术.控制与决策, 2004, 19(4): 383-387.
    [247]黄宴季.回归型支持向量机的系统辨识及仿真.计算机仿真, 2004, 21(5): 41-44.
    [248]王伟,王田苗,魏洪兴. LS-SVM与多层前向网络的非线性回归性能比较.系统仿真学报, 2008, 20(1): 256-263.
    [249] Chapelle O, Vapnik V, Bousquet O, et al. Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 2002, 46(1): 131-159.
    [250]董春曦,饶鲜,杨绍全等.支持向量机参数选择方法研究.系统工程与电子技术, 2004, 26(8): 1117-1120.
    [251]刘靖旭,蔡怀平谭跃进.支持向量回归参数调整的一种启发式算法.系统仿真学报, 2007, 19(7): 1540-1543.
    [252]陈帅,朱建宁,潘俊等.最小二乘支持向量机的参数优化及其应用.华东理工大学学报(自然科学版), 2008, 34(2): 278-282.
    [253] Duan K, Keerthi S S, Poo A N. Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters. Neurocomputing, 2003, 51(4): 41-59.
    [254] Cortes C, Vapnik V N. Support vector networks. Machine Learning, 1995, 20(3): 273-297.
    [255] Osuna E, Freund R. and Girosi F. An improved training algorithm for support vector machines. Principe J, GileL, Morgan N, et.al. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing. IEEE, 1997, 276-285.
    [256] Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In Advances in Kernel Methods--Support Vector Learning, MA: MIT Press, 1999, 185-208.
    [257] Joachims T. Making large--scale support vector machine learning practical. Schlkopf B, Borges C, Smola A. Advances in Kernel Methods—Support Vector Learning. Cambridge, MA: MIT Press, 1999, 169-184.
    [258] Keerthi S, et.al. A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Transactions on Neural Network, 2000, 11(1): 124-136.
    [259] Hevade S K, Keerthi S S, Bhattacharyya C, et al. Improvements to the SMO Algorithm for SVM Regression. IEEE Transactions on Neural Networks, 2000, 11(5): 1188–1193.
    [260] Syed N A, Liu H, Sung K K. Incremental Learning with Support Vector Machines. San Mateo: Morgan Kaufmann, Workshop on Support Vector Machines at the International Joint Conference on. Artificial Intelligence, 1999, 2: 272-276.
    [261] Cauwenberghs G, Poggio T. Incremental and Decremental Support Vector Machine Learning. Machine Learning, 2001, 44(13): 409-415.
    [262] Ma J H, Theiler J, Perkins S. Accurate On-line Support Vector Regression. Neural Computation, 2003, 15(11): 2683–2703.
    [263] Mario Martin. On-line Support Vector Machine Regression. Berlin: Springer-Verlag ECML, LNAI, 2002, 282-294.
    [264] Friess T T, Cristianini N,Campbell C. The Kernel Adatron Algorithm: A Fast and Simple Learning. San Mateo: Morgan Kaufmann, Procedure for Support Vector Machines. In 15th Intl. Conf. Machine Learning, 1998, 188-196.
    [265] Vijayakumar S, Wu S. Sequential Support Vector Classifiers and Regression. Proc. International Conference on Soft Computing, 1999, 610-619.
    [266]亢海伟,杨庆芬,王硕禾.模糊控制与PID控制的内在联系.石家庄铁道学院学报, 2000, 13(1): 43-45.
    [267] Nello Cristianini, John Shawe-Taylor(李国正等译).支持向量机导论,北京:电子工业出版社, 2004.
    [268]刘延峰. X型航空发动机神经网络控制研究.西安:西北工业大学, 2003.
    [269]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展.控制理论与应用, 2007, 24(3): 407-418.
    [270]张昌凡,王耀南,何静等.遗传算法和神经网络融合的滑模控制系统及其在印刷机中的应用.控制理论与应用, 2003, 20(2): 217–222.
    [271] HA Q P, NGUYEN Q H, RYE D C, et al. Fuzzy sliding-mode controllers with applications. IEEE Trans on Industrial Electronics, 2001, 48(1): 38–41.
    [272] NG K C, LI Y, MURRAY-SMITH D J, et al. Genetic algorithms applied to fuzzy sliding mode controller design. Proc of the First Int Conf on Genetic Algorithms in Engineering Systems: Innovations and Applications. Galesia, UK: Institution of Electrical Engineers, 1995, 9: 12–14.
    [273]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社, 2005.
    [274]吴德会.基于支持向量机的非线性动态系统辨识方法.系统仿真学报, 2007, 19(14): 3169-3171.
    [275] Davide Anguita, Andrea Boni, Luca Tagliafico. SVM performance assessment for the control of injection moulding processes and plasticating extrusion.The International Journal of Systems Science, 2002, 33(9): 723-735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700