城市公交枢纽布局与运营调度方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的推进,城市公交系统不断向立体、多元化方向发展。城市公交枢纽作为各种交通方式衔接的物理载体,其布局和运营效率是否合理直接关系到整个线网是否通畅。因此,本文从枢纽的衔接角度出发,对枢纽的空间布局及运营调度优化进行了较为深入的探讨。本文的主要内容如下:
     (1)城市公交枢纽的空间布局优化研究。合理的空间布局是发挥枢纽功能和作用的基础,以最低的空间消耗提高整个网络的运输效率。由于公交枢纽空间布局优化问题是非线性优化模型,是一个NP-hard问题,如果备选枢纽数量较大将很难求解出合理的布局方案。为了提高模型的求解精度和减少计算时间,根据枢纽布局的主要影响因素,建立了基于魅力度的备选枢纽筛选模型以缩小枢纽优化的解空间。然后,在备选枢纽筛选的基础上,分别提出单枢纽布局优化模型和多枢纽布局优化模型。由于多枢纽布局优化模型是一个多目标优化模型,本论文开发了基于排序法的多目标遗传算法对其进行求解。最后通过大连市主城区的数据对模型和算法进行了检验。结果显示,基于魅力度的备选枢纽模型得到的备选枢纽非常符合大连市主城区的实际情况。同时,多枢纽优化结果表明,对于公交换乘乘客来说,枢纽间的组合效用最大,可以提供更顺畅的的公交服务。
     (2)城市公交枢纽时刻表优化研究。公交枢纽静态调度是公交运营者主要的日常工作。时刻表优化是静态调度中最重要的组成部分,其直接或间接决定了车辆排班、司机调度等工作。因此,本文针对枢纽内的公交线路的运营特点,以枢纽内对等待时间影响最大的线路(例如,轨道线路或大间隔的公交线路等)作为基准线路,使其他线路与基准线路之间实现最大同步换乘。考虑到公交车辆(列车)运行的随机性,特别是常规公交车辆,本文引入一个松弛时间来完善枢纽内公交线路的衔接程度。然后,从优化单枢纽时刻表入手,拓展到多枢纽的时刻表优化研究,并开发基于启发式算法———SCE-UA的求解算法对枢纽内公交线路的时刻表进行了优化。最后,基于仿真分析对模型和算法进行了检验,结果显示,多枢纽联合优化的效果优于每个枢纽的单独优化,而且,增加松弛时间的优化模型的鲁棒性要更好。
     (3)城市公交枢纽的动态调度决策研究。公交车辆的运营环境非常复杂,经常会受到很多随机因素的干扰。通过采取有效实时调度措施,减弱由于干扰带来的影响,从而恢复枢纽内公交线路的正常运营。本文针对动态调度对车辆运行信息的实时性要求高的特点,提出公交车辆运行时间预测模型,并通过衰减因子来提高模型的预测精度。同时考虑到公交车辆运行状况是动态的,准确预测最佳的松驰时间可以减少乘客的等待时间,因此,本文提出松驰时间预测模型。然后基于车辆运行实时信息基础上,分析基于枢纽的动态调度的特点,提出以最小化乘客等待时间为目标的动态调度模型。考虑到动态调度模型是一个复杂问题,采用遗传算法对模型进行了求解。最后通过实例对模型和算法进行了验证。
     本文在枢纽布局优化、时刻表优化以及动态调度等方面有一定的创新,对城市交通规划的研究和实践具有一定的借鉴意义。
With the development of urbanization process, the urban transit system has been developing rapidly. Public transportation hubs are the physical carriers of urban transit system. Whether the layout and operational efficiency of the hubs are reasonable directly influences the connection of the whole network. Thus, according to the connection of hubs, this paper focuses on location optimization and operation scheduling of public transportation hubs. The main contents of this paper are as follows: (1) The location optimization of public transportation hubs. Proper location of hubs is the basis to achieve its function. The transport efficiency of the whole network should be improved at the lowest consumption. As the optimization process of hubs location is related to many factors, it is difficult to get a reasonable solution if there are a large number of candidate hubs. To improve the accuracy of the solution and reduce the computational time, a candidate hub location model based on fascination is presented. Then, on the basis of candidate hubs model, an optimization model of a single hub location and of multi-hub location are also proposed. As the multi-hub location optimization model is a multi-subjective optimization model, a multi-subjective genetic algorithm based on a ranking method is adopted to solve the multi-hub location optimization model. The model and the algorithm are examined by the data of Dalian city and the results indicate that the candidate hubs gained by the candidate hubs model are in accordance with the actual situation of Dalian city. And the proposed multi-hub location model is more effective than the single hub location model for proving more transit service.
     (2) The timetable optimization of public transportation hubs. Public transportation hubs operation is the main work of transit operator. Timetable optimization is the most important part of the operation, which directly or indirectly determines the vehicle scheduling, driver arrangement, etc. Therefore, according to the operation features of transit routes in hubs, this paper considers the route which plays the strongest effect on the waiting time in hubs as the basic line to achieve the maximum synchronization of other routes with the basic line. In order to reduce the randomness effect of arrival time of transit vehicles, some slack time is proposed. Thus, the timetable model of the multi-hub is also proposed based on the timetable model of the single hub. SCE-UA, an evolution algorithm, is used to solve this model. Finally, the model and the algorithm are examined by simulation analysis. The results demonstrate that the effect of multi-hub timealbe optimization is better than that of each hub timetable optimization and the robustness of the optimization model with the slack time is better than that of the optimization mode without the slack time.
     (3) The research on dynamic control strategies of public transportation hubs. The running environment of transit vehicle is very complicated and often affected by many stochastic factors. The influence can be weakened by taking effective measures to restore the normal operation of transit routes in hubs. Due to the real-time feature of dynamic dispatching, the prediction accuracy of transit vehicle running time prediction model can be improved with a forgetting factor. Considering that the condition of transit vehicles is dynamic and the accurate prediction of optimal slack time can ensure a good convergence of transfer routes and reduce the waiting time of passengers, the slack time prediction model is also presented. And on the basis of real-time vehicles operational information, the features of dynamic control strategies based on the hubs are analyzed, and a dynamic dispatching model aiming at minimizing the waiting time of passengers is proposed. Since the dynamic dispatching model is a complicated problem, a genetic algorithm is also used to solve the model. Then the model and the algorithm are examined with data of Dalian city.
     Finally, a summary is given and some contributions are discussed.
引文
[1]杨兆升,城市智能公共交通系统理论与方法[M].中国铁道出版社,2004.
    [2]O'Kelly, M.E. A quadratic integer program for the location of interacting hub facilities[J]. European Journal of Operational Research,1987,32:393-404.
    [3]Ostresh. J.L.M. An efficient algorithm for solving the two center location-allocation problem[J]. Journal of Regional Science,1975,15:209-216.
    [4]Aykin T, Brown.G.F. Interacting new facilities and location-allocation problems[J]. Transportation Science,1992,26:212-222.
    [5]Klincewicz, J. G. Heuristics for the p-hub location problem[J]. European Journal of Operational Research,1991,53:25-37.
    [6]O'Kelly, M. E., Bryan, D. Hub Location with Flow Economies of Scale[J]. Transportation Research,1998,32(8):605-616.
    [7]John G Klincewicaz. Enumeration and search procedures for a hub location problem with economices of scale[J]. Annals of Operations Research,2002,110(1):107-122.
    [8]Evans M., Davies Jonathan.Understanding Policy Transfer:A Multi-Level, Multi-Disciplinary Perspective[J]. Public Administration,1999,77(2):361-385.
    [9]Marianov, V. and Serra,D. Location of hubs in a competitive environment, European Journal ofOperational Research,114.1999,3:63-71.
    [10]王有为.城市公共交通枢纽规划研究[D].西安:西安建筑科技大学,硕士学位论文,2001.
    [11]周伟,姜彩良.城市交通枢纽旅客换乘问题研究[J].交通运输系统工程与信息,2005,5(5):23-28.
    [12]席庆,霍娅敏,叶怀珍.交通运输枢纽中客运站点布局问题的研究[J].西南交通大学学报(自然科学版),1999,34(3):374-378.
    [13]盛志前,赵波平.基于轨道交通换乘的枢纽交通设计方法研究[J].城市规划,2004,81(4):87-89.
    [14]刘有军,晏克非.基于GIS的停车换乘设施优化选址方法的研究[J].交通科技,2003,4:85-87.
    [15]谢涛.城市换乘枢纽空间布局与交通资源整合研究[D].大连:大连理工大学.硕士学位论文,2005.
    [16]孟岩,刘希玉,李镇.基于蚁群聚类算法的文本模糊聚类方法[J];山东科学,2007,20(5):48-52.
    [17]秦固.基于蚁群优化的多物流配送中心选址算法[J].系统工程理论与实践,2006,4:120-124.
    [18]柏明国,朱金福,徐进.P-枢纽航线网络设计问题的一种启发式算法[J].运筹与管理, 2007,16(4).
    [19]胡大伟,陈诚.遗传算法和禁忌搜索算法在配送中心选址和路线问题中的应用[J].系统工程与实践,2007,9:171-176.
    [20]尹传忠;铁路行包物流配送系统优化若干问题研究[D].四川:西南交通大学.博士学位论文,2006.
    [21]刘强,陆化普,王庆云.区域综合交通枢纽布局双层规划模型[J].东南大学学报(自然科学版),2010,40(6):1358-1363.
    [22]李铭.公交枢纽内始发线路优化配置模型及其模拟退火算法[J].数学的实践与认识.2008,38(7):84-89.
    [23]孙立山,任福田,姚丽亚.模糊算法在城市客运交通枢纽换乘方案优选中的应用[J];北京工业大学学报,2007,33(5):470-474.
    [24]徐斌,李南,王建华.求解灰色双层线性规划模型的交互式模糊算法[J].系统工程学报.2010,25(2):185-189.
    [25]李旭宏,肖为周,陈大伟,徐中,朱彦东.大城市对外客运枢纽布局优化模型[J].交通运输工程学报,2010,10(2):75-81.
    [26]陈大伟,徐中,李旭宏.区域综合货运枢纽布局优化模型[J].华南理工大学学报(自然科学版),2009,37(11):31-36.
    [27]吴坚,史忠科.基于遗传算法的配送中心选址问题[J].华南理工大学学报,2004,36(15):71-74.
    [28]Scheele s. A supply model for public transit services[J].Transportation Research, 1980,14(1-2):133-146.
    [29]Furth, P.G., Wilson, N.H.M. Setting Frequencies on Bus Routes:Theory and Practice[J].Trans. Res. Record,1981,818:1-7.
    [30]Koutsopoulos, H.N., Odoni, A., Wilson, N.H.M. Determination of Headways as a Function of Time Varying Characteristics on a Transit Network. in Computer Scheduling of Public Transport 2, North-Holland, Amsterdam.1985,391-414.
    [31]Lazar, N.S., Paul, M., Schonfeld. Method for Optimizing Transit Service Coverage[J]. Transportation Research Record,1993.1402:28-39.
    [32]Shih, M-C, Mahmassani, H.S., and Baaj, M. H..Trip Assignment Model for Timed-Transfer Transit Systems[J].Transportation Research Record,1997,1571:24-30.
    [33]Rapp, M. H., and Gehner, C. D. Transfer optimization in an interactive graphic system for transit planning[J].Transportation Research Record,1976,619:27-33.
    [34]Desilets, A., Rousseau, J. M. SYNCRO:A computerassisted tool for synchronization of transfers in public transit networks[J]. Computer-Aided Transit Scheduling, M. Desrochers and J. M.Rousseau, eds., Springer, Berlin,1990,153-166.
    [35]Becker, J., and Bakker, J. J. The design of timed transfer networks[J].Operational and Service Planning Symposium, Washington, D.C.,1993,12:8-10.
    [36]Daganzo, C. F. On the coordination of inbound and outbound schedules at transportation terminal[J].11th Int. Sym. Theory of Traffic Flow and Transportation, M. Koshi, ed., Yokohama, Japan,1990,379-390.
    [37]Klemt, W.D., Stemme.W. Schedule synchronization in public transit networks[J].Lecture notes in economics and mathematical systems 308:Computer-aided transit scheduling, Springer-Verlag, New York,1988,327-335.
    [38]Keudel, W. Computer-aided line network design (DIANA) and minimization of transfer times in network (FABIAN) [J]. Lecture notes in economics and mathematical systems 308: Computer-aided transit scheduling, Springer-Verlag, New York,1988,315-326.
    [39]Knoppers. P., Muller. T. Optimized transfer opportunities in public transport[J].Transp. Sci.,1995,29(1):101-105.
    [40]Ting, C. J. Transfer coordination in transit networks[D]. PhD dissertation, Civil Engineering Dept., Univ. of Maryland, College Park, Md.1997.
    [41]Ceder, A., Golany, B.,Tal, O. Creating bus timetables with maximal synchronization[J].Transp. Res., Part A:Policy Pract.,2001,35(10):913-928.
    [42]Voβ, S. Network design formulation in schedule synchronization[C]. Computer-Aided Transit Scheduling, M. Desrochers and J. M. Rousseau eds., Springer, Berlin, 1992,137-152.
    [43]Desilets, A., and Rousseau, J. M. SYNCRO:A computerassisted tool for synchronization of transfers in public transit networks[C]Computer-Aided Transit Scheduling, M. Desrochers and J. M.Rousseau, eds., Springer, Berlin,1990,153-166.
    [44]Lu, B. A study of bus route coordination[D]. MS thesis, Civil Engineering Dept., Univ. of Maryland, College Park, Md.1990.
    [45]Systan, Inc. Timed transfer:An evaluation of its structure, performance and cost[M]. Urban Mass Transportation Administration, Washington, D.C.1983
    [46]王秋平,李峰.城市其他客运交通换乘轨道交通协调探讨[J].西安建筑科技大学学报,2003,35(2):136-139,150.
    [47]沙滨,袁振洲,缪江华等.城市轨道交通换乘方式对比分析[J].城市交通,2006,4(2):11-15.
    [48]周雪梅,杨晓光.基于ITS的公共交通换乘等待时间最短调度问题研究[J].中国公路学,2004,17(2):82-84.
    [49]杨晓光,周雪梅,臧华.基于ITS环境的公共汽车交通换乘时间最短调度问题研究[J].系统工程,2003,21(2):56-59.
    [50]石琴,覃运梅,黄志鹏.公交区域调度的最大同步换乘模型[J].2007,20(6):90-94.
    [51]张铭,徐瑞华.轨道交通网络列车衔接组织的递阶协调优化[J].系统工程,2007,25(9):33-37.
    [52]张铭,徐瑞华,.城市轨道交通网络运营组织协调性研究[J].城市轨道交通研究,2007,37(11):31-36.
    [53]袁振洲.城市轨道交通规划中与其它交通衔接问题的分析[J].科技导报,2001,11:48-50.
    [54]房霄虹,周磊山,王永明.城市轨道交通的网络化协调问题研究[J].综合运输,2008,6:63-66.
    [55]徐瑞华,张铭,江志彬.基于线网运营协调的城市轨道交通首末班列车发车时间域研究[J].铁道学报,2005,30(2):7-11.
    [56]张铭,杜世敏.基于递阶偏好的轨道交通网络化运营换乘协调优化[J].铁道学报,2009,31(6):9-14.
    [57]DU P, LIU Ch, LIL1 Zh.L. Walking Time Modeling on Transfer Pedestrians in Subway Passages[J]. Journal of Transportation Systems Engineering and Information Technology, 2009,9(4):103-109.
    [58]滕靖.面向公交换乘枢纽的公共汽车协调调度理论与方法[D].上海:同济大学.2005.
    [59]吴友梅,张秀媛.城市轨道交通的公共换乘问题与对策分析[J].铁道运输与经济.2008.27(8).
    [60]BARNETT A. On Controlling Randomness in Transit Operations[J]. Transportation Science, 1974,8(2):102-116.
    [61]DESSOUKY M, HALL R, ZHANG L, et al. Real-time control of buses for schedule coordination at a terminal[J]. Transportation Research Part A,2003,37(2):145-164.
    [62]TURNQUIST M A, BLUME S W. Evaluating potential effectiveness of headway control strategies for transit systems[J]. Transportation Research Record,1980,746:25-29.
    [63]ZOLFAGHARI S, AZIZI N, JABER M Y. A model for holding strategy in public transit systems with real-time information[J]. International Journal of Transport Management,2004, 2(2):99-110.
    [64]EBERLEIN X J, WILSON N H M, BERNSTEIN D. Modeling real-time control strategies in public transit operations[C]. Computer Aided Transit Scheduling, Lecture Note in Economics and Mathematical Systems. Springer-Verlag, Berlin.1999,471:325-346.
    [65]Lin G, Liang P, Schonfeld P, and 1. 2trson R. Adaptive Control of Transit Operations[M].College Park: University of Maryland,1995.
    [66]Adebisi, O. A Mathematical Model for Headway Variance of Fixed Route Buses[J]. Transportation Research,1986,20:59-70.
    [67]Adamski, A. Optimal Adaptive Dispatching Control in an Integrated Public Transport Management System[C].Proceedings of the Second Meeting of the EURO Working Group on Urban Traffic and Transportation:Paris.1993,913-938.
    [68]Adamski, A. Real-time Computer-aided Control in Public Transport from the Point of View of Xchedule Reliability [J].Lecture Notes in Economics and Mathematics Systems. 1995,430:278-295.
    [69]Turnquist, M.A., Strategies for improving reliability of bus transit service[J]. Transportation Research Record,1978,818:7-13.
    [70]Abkowitz, M.D., Engelstein.I.Methods for maintaining transit service regularity[J].Transportation Research Record,1984,961:1-8.
    [71]Adebisi, O., A Mathematical Model for Headway Variance of Fixed Route Buses[J]. Transportation Research,1986,20:59-70.
    [72]Chowdhury, M.S. and Chien, S.I. (2001a).Optimization of Transfer Coordination for Intermodal Transit Networks[C]. The 80th Annual Meeting of Transportation Research Board. Washington, D.C.
    [73]Chowdhury, M.S. and Chien, S.I. (2001b). Dynamic Vehicle Dispatching at Intermodal Transfer Station[C].. The 80th Annual Meeting of Transportation Research Board. Washington, D.C.
    [74]Dessouky, M., Hall, R., Nowroozi, A. and Mourikas, K. Bus dispatching at timed transfer transit stations using bus tracking technology[J]. Transportation Research Part C,1999,7(4): 187-208.
    [75]Dessouky, M., Hall, R., Zhang, L.and Singh, A. Real-time control of buses for schedule coordination at a terminal[J]. Transportation Research Part A,2003,37(2):145-164.
    [76]Abkowitz, M.D., Engelstein, I. Methods for maintaining transit service regularity [J]. Transportation Research Record 1984,961:1-8.
    [77]张席洲.公交改善措施重要性的层次分析法[J].长安大学学报(自然科学版);2000,17(1):5-9.
    [78]杨新苗,王炜.基于准实时信息的公交调度优化系统[J].交通与计算机,2000,18(5):12-15.
    [79]黄溅华,张国伍.公共交通实时放车调度方法研究[J].系统工程理论与实践.2001,21(3):107-111.
    [80]黄溅华,葛芳,张国伍.公共交通实时控制模型研究[J].系统工程理论与实践.2001,21(5):129-136.
    [81]滕靖,杨晓光.面向换乘枢纽的公共汽车协调调度模式研究[J].城市交通.2006,4(5):20-25.
    [82]张飞舟,晏磊,范跃祖,孙先仿.智能交通系统中的公交车辆动态调度研究[J].公路交通科技.2002,19(3):123-126.
    [83]朱滨,王武宏,沈中杰.基于专家系统的公交运营调度系统结构研究[J].交通科技与经济.2005,6:59-61.
    [84]杨兆升,朱中.基于BP神经网络的路径行程时间实时预测模型[J].系统工程理论与实践.1999,8:59-64.
    [85]石琴,覃运梅,黄志鹏.公交区域调度的最大同步换乘模型[J].中国公路学报.2007,20(6):90-94.
    [86]沈吟东和夏家宏.公交区域运营模式在我国的应用研究[J].科技进步与对策.2004,21(8):88-90.
    [87]滕靖,杨晓光.面向换乘枢纽的公共汽车驻站协调优化[J].系统工程理论与实践.2006,28(5):156-163.
    [88]Yu, Bin, Yang, Zhongzhen. A Dynamic Holding Strategy In Public Transit Systems With Real-Time Information [J]. Applied Intelligence,2009,31(1):69-80.
    [89]姚宝珍,于滨,杨忠振.基于公交车到站时间预测的动态调度模型[J].北京工业大学学 报,2011,37(4):133-139.
    [90]李铭,李旭宏.公交枢纽内多线路车辆实时调度优化方法研究[J].公路交通科技.2006,23(10):108-112.
    [91]邹迎,李建国.公共交通区域运营组织与调度系统研究[J].交通运输系统工程与信息.2003,2:38-42.
    [92]杨兆升.城市智能公共交通系统理论与方法[M].北京:中国铁道出版社,2004.
    [93]高作刚,朱健,黄承明,董德存。一种行程时间检测和预测的实现方法[J].交通与计算机2004,22(4):37-39.
    [94]周雪梅,杨晓光.王磊公交车辆行程时间预测方法研究[J].交通与计算机.2002,20(6):12-14.
    [95]姚丽亚,魏连雨,李春宝.区域路网中交通事件影响范围及诱导分析[J].河北工业大学学报.2005,2.
    [96]Cathey, F.W. and Dailey, D.J. A prescription for transit arrival/departure prediction using automatic vehicle location data[J]. Transportation Research Part C.2003,11:241-264.
    [97]Vanajakshi, L. Subramanian, S.C. Sivanandan, R. Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses[J]. Intelligent Transport Systems,2009,3(1):1-9.
    [98]温惠英,徐建闽,傅惠.基于灰色关联分析的路段行程时间卡尔曼滤波预测算法[J].华南理工大学学报,2006,34(9),66-69.
    [99]Chien, I-Jy., Ding, Y. and Wei, C. Dynamic Bus Arrival Time Prediction With Artificial Neural Networks[J]. Journal of Transportation Engineering, ASCE,2002,128(5),429-438.
    [100]Chen, M., Liu, X.B., Xia, J.X. and Chien S.I. A Dynamic Bus-Arrival Time Prediction Model Based on APC Data[J].Computer-Aided Civil and Infrastructure Engineering.2004,19:364-376.
    [101]杨兆升,朱中.基于BP神经网络的路径行程时间实时预测模型[J].系统工程理论与实践.1999,8:59-64.
    [102]于滨,杨忠振,林剑艺.应用支持向量机预测公交车运行时间[J].系统工程理论与实践.2007,27(4):160-165.
    [103]姚宝珍,杨成永,于滨.动态公交车辆运行时间预测模型[J].系统工程学报.2010,25(3):365-370.
    [104]吕安民,李成名,林宗坚,史文中.人口密度的空间连续分布模型[J].测绘学报.2003,32(4):344-348.
    [105]吕安民,李成名,林宗坚,金逸民.人口统计数据的空问分布化研究[J].武汉大学学报(信息科学版)2002,27(3):301-305.
    [106]郭亚军.综合评价理论、方法及应用[M].北京:科学出版社,2007.
    [107]Aurenhammer, F. Voronoi diagrams—a survey of a fundamental geometric data structure[J]. ACM Computing Surveys,1991,23(3):345-405.
    [108]汀嘉业,杨承磊Voronoi图理论与应用新成果[J].2007,3:1-4.
    [109]陈南祥,李跃鹏,徐晨光.基于多目标遗传算法的水资源优化配置[J].水利学报,2006,37(3):308-313.
    [110]李绍军,王惠,钱锋.多目标遗传算法及其在化工领域的应用[J].计算机与应用化学,2003,20(6):755-760.
    [111]Yu, Bin, Yang, Zhongzhen and Cheng, Chuntian. Optimizing The Distribution Of Shopping Centers With Parallel Genetic Algorithm[J]. Engineering Applications of Artificial Intelligence,2007,20(2):215-223.
    [112]Duan Q. Y., G., V. K., and Sorooshian, S. Shuffled complex evolution approach for effective and efficient minimization.[J]. J. Optim. Theory Appl.,1993.76(3):501-521.
    [113]Nelder, J. A., Mead, R. A simplex method for function minimization [J]. Comput. J.1965, 7(4):308-313.
    [114]Sheu, J.B., Chou, Y.H., Chen, A stochastic modeling and real-time prediction of incident effects on surface street traffic congestion[J]. Applied Mathematical Modelling,2004,28: 445-468.
    [115]Vapnik, V.N. An Overview Of Statistical Learning Theory [J].IEEE Transactions on Neural Networks,1999,10(5):988-999.
    [116]Vapnik, V. N. The nature of statistical learning theory[M].New York:Springer.2000.
    [117]Dong, B., Cao, C. and Lee, S.E. Applying Support Vector Machines to Predict Building Energy Consumption in Tropical Region[J]. Energy and Buildings.2005,37(5):545-553.
    [118]Eberlein, X.J., Wilson, N. H. M., Barnhart,C. and Bernstein,D. The Real-Time Deadheading Problem in Transit Operations Control [J].Transportation Research Part B.1998, 32(2):77-100.
    [119]Zhao, J., Dessouky, M., Bukkapatnam, S. Optimal Slack Time for Schedule-Based Transit Operations[J].Transportation Science.2006,40(4):529-539.
    [120]HOLLAND J H. Adaptation in Natural and Artificial Systems[M]. University of Michigan Press, Ann Arbor, MI.1975.
    [121]Fu, L.P. and Liu, Q. Real-Time Optimization Model for Dynamic Scheduling of Transit Operations[J].Transportation Research Record.2003,1857:48-55.
    [122]EBERLEIN X J, WILSON N H M, BERNSTEIN D. Modeling real-time control strategies in public transit operations[C]. Computer Aided Transit Scheduling, Lecture Note in Economics and Mathematical Systems. Springer-Verlag, Berlin.1999,471:325-346.
    [123]Zolfaghari, S., Azizi, N. and Jaber, M.Y. A model for holding strategy in public transit systems with real-time information[J].International Journal of Transport Management.2004,2:99-110.
    [124]陈国良,王熙法,庄镇泉等.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [125]Yu, B., Yang, Z. Z. and Yao, B. Z. Bus Arrival Time Prediction Using Support Vector Machines[J]. Journal of Intelligent Transportation Systems.2006,10(4):151-158.
    [126]Hsu, C.W., Chang, C.C., and Lin, C.J. A Practical Guide to Support Vector Classification[D].Technical report, Department of Computer Science and Information Engineering, National Taiwan University,2003.
    [127]Dong, B., Cao, C. and Lee, S.E. Applying Support Vector Machines To Predict Building Energy Consumption In Tropical Region[J]. Energy and Buildings.2005,37 (5):545-553.
    [128]Yu, Bin, Yao, Jinbao, Yang, Zhongzhen. An Improved Headway-based Holding Strategy for Bus Transit[J]. Transportation Planning and Technology.2010,33(3):329-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700