大豆蚜的飞行生物学及对寄生蜂的传播潜力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蚜Aphis glycines(Matsumura)是栽培大豆Glycine max(L.)的主要害虫之一,通过刺吸危害和传播植物病毒,常引起大豆的品质下降和产量损失,严重发生时可造成减产50%以上。自2000年大豆蚜入侵美国后,在短短的几年内迅速扩散到美国和加拿大的部分大豆种植区,造成当地大豆的大量减产,并有继续蔓延危害的趋势。有翅蚜在寄主条件恶化,种群密度过高的情况下,依靠自主飞行和气流携带两种方式寻找新的生境和寄主植物,以此对大豆造成大面积危害。生物防治可以有效地抑制大豆蚜的危害,其中,寄生蜂是控制蚜虫种群的重要生物因子。在蚜虫和寄生蜂的互作关系和协同进化中,寄生蜂可以随寄主蚜虫的迁飞而进行远距离的扩散。研究寄生蜂随有翅蚜迁飞扩散而进行传播的潜力,以明确寄生蜂的扩散能力,将对大豆蚜的生物防治有重要意义。本文首先研究了大豆蚜的飞行能力及飞行对生殖的影响,在此基础上,通过被寄生蚜虫的模拟飞行试验,测定被寄生有翅蚜的飞行能力以及寄主的飞行对寄生蜂生长发育和羽化的影响,主要研究结果如下:
     大豆蚜具有较强的飞行能力。羽化后12h和24h的个体,飞行能力最强,平均飞行距离分别达5.11km和4.62km,羽化后72h的有翅蚜飞行能力急剧下降。温、湿度对飞行能力影响较大,大豆蚜在16oC-28oC下飞行能力较强,而低温(12oC)和高温(32oC)不利于飞行;适宜飞行的相对湿度为60%-90%RH。
     飞行对大豆蚜的生殖有明显的影响。飞行距离>2.5km的有翅蚜,其生殖量、生殖期和寿命明显降低,而生殖后期显著延长。有翅蚜的飞行对其后代蚜虫的生殖也产生了明显的影响,表现为远距离飞行>1.5km的有翅蚜后代与近距离(<1.5km)飞行的相比,生殖量、种群净增殖率显著降低。
     棉蚜蚜小蜂Aphelinus varipes可随大豆蚜的飞行进行远距离的扩散传播。棉蚜蚜小蜂的寄生抑制3龄有翅若蚜翅的发育,仅有35%的3龄若蚜能够发育为正常的翅,而4龄有翅若蚜翅的发育不受影响,100%的4龄有翅若蚜都能发育为正常的翅。4龄有翅若蚜和有翅蚜被寄生后仍能进行远距离的飞行,寄生24h和48h后,蚜虫的飞行能力没有受到影响,而寄生72h和96h后,蚜虫的飞行能力急剧下降。寄生蜂的幼虫发育历期、蛹发育历期、僵蚜形成率和寄生蜂羽化率不受寄主蚜虫飞行(0 km、<1 km、1-3 km和3-5 km)的影响。棉蚜刺茧蜂Binodoxys communis可随大豆蚜(夏季种群和秋季性母)的飞行进行远距离的扩散传播。棉蚜蚜茧蜂寄生有翅若蚜后,仅3龄蚜虫翅的发育受到影响,而4龄蚜虫完全不受影响,都能够发育为具有飞行能力的正常翅。在大豆蚜夏季种群中,4龄有翅若蚜被寄生后仍能进行远距离的飞行,寄生24h和48h后,蚜虫的飞行能力没有受到影响,而寄生72h和96h后,蚜虫的飞行能力急剧下降,而且幼虫发育历期、蛹发育历期、僵蚜形成率和寄生蜂羽化率不受寄主蚜虫飞行(0h、0.5h、1h和2h)的影响。性母若蚜被寄生后也能进行远距离的飞行,在被寄生7日内,性母的飞行能力不受影响。
     本研究将为预测预报大豆蚜的发生和种群动态提供理论依据,也有助于评估寄生蜂在田间的扩散效果,为研究寄生蜂的越冬提供线索和理论依据,为有效的开展大豆蚜的生物防治具有重要的参考价值。
The soybean aphid, Aphis glycines Matsumura, is a pest of soybean, Glycine max (L.). The soybean aphid reduces soybean yield directly via plant feeding and indirectly through virus transmission and reduction in seed protein content. High soybean aphid densities generally affect soybean plants by reducing plant height, pod number and total yield with yield reductions reaching 50%. The soybean aphid has recently invaded North America and Canada in 2000, where it is currently the most important insect pest of soybeans. Winged aphids (alates) engage in flight to colonize new plants, fields or habitats, and at critical times migrate between different host plants, aphids engage in (active) short-distance flight but also exploit weather patterns mainly for (passive) long-distance migration. Hymenopterous parasitoids are of great significance for natural control of aphid populations. The dispersal of parasitoids with host flight is tightly associated with host aphids. Aphid parasitoids take advantage of host flight for dispersal which would be contributed to biological control of the soybean aphid. In our research, we first studied the active flight potential of A. glycines under a range of environmental conditions and the trade-offs between flight and fecundity in the soybean aphid using an aphid flight mill to aid forecasting and management protocols for A. glycines at the landscape level, then we detected the host alates post-parasitization flight and the development of parasitoids in alate aphids. Our research has implications for classical biological control of the soybean aphid. The main results were summarized as follows.
     Aphids that were 12-24 h old exhibited the strongest flight behavior, with average flight durations of 3.3-4.1h, which represented flight distances of 4.6-5.1 km. After the age of 72 h, A. glycines flight performance rapidly declined. The optimum temperature range for flight was 16-28oC, while optimum relative humidity was 60%-90%. Our findings show that A. glycines posseses a fairly strong active flight aptitude (ability and inclination) and point to the possibility of flight initiation under a broad range of environmental conditions. Fecundity, longevity and reproductive periods of 12h old A. glycines alates which had engaged in >2.5 km long flights were significantly lower than those of <0.5 km individuals. The offspring of alates with flight experiences of >1.5 km also had lower fecundity than those produced by individuals which had engaged in flights <1.5km. Our results are therefore consistent both with direct trade-offs between flight and fecundity and a trade-off between flight and fecundity via maternal effects.
     Parasitism by A. varipes was allowed at different A. glycines developmental stages (i.e., alatoid 3th and 4th instar nymphs, alates) and subsequent aphid flight was measured using a computer-monitored flight mill. Only 35% of aphids parasitized as L3 alatoid nymphs produced normal winged adults compared to 100% of L4 alatoids. Flight performance of aphids that had been parasitized as 4th-instar alatoid nymphs 24 h or 48 h prior to testing was similar to that of un-parasitized alates of identical age. However, flight performance declined sharply for alates that had been parasitized as 4th-instar alatoid nymphs 72h and 96h prior to testing. Flight performance of aphids that had been parasitized as alate adults for 24h was not significantly different from un-parasitized alates of respective ages. Parasitoid larval and pupal development time and percent mummification did not differ between treatments in which aphids had flown over varying distances.
     We investigated the effect parasitism by the parasitoid Binodoxys communis on flight behavior of both the summer population soybean aphid and fall gynoparae. In summer population, flight distance of alate aphids that had been parasitized for 24 or 48 h did not differ significantly from unparasitized alates of the same ages. However, flight duration sharply declined for alates that had been parasitized for 72h and 96h. Larval and mummy development time, parasitoid emergence rate of passenger wasps did not differ between treatments in which the aphid host had flown over differing distances. In gynoparae, flight performance of gynoparae aphids that had been parasitized as 4th-instar alatoid nymphs 7d prior to testing was similar to that of un-parasitized alates of identical age.
     These results have the potential to aid forecasting and management protocols for A. glycines at the landscape level and help evaluating the dispersal efficiency and overwinter host of parasitoid. Our results have implications for natural biological control of A. glycines.
引文
1.鲍玉琴,刘允会.棉蚜迁飞规律及防治.植物保护,1996,3:16.
    2.陈春,冯明光.桃蚜迁飞性有翅蚜携带传播蚜虫病原真菌的证据.科学通报,2002,47:1332~1334.
    3.陈春.蚜虫专化性病原真菌(虫霉目)随寄主迁飞扩散而传播流行的生物学实证研究[博士学位论文].杭州:浙江大学,2005.
    4.陈其瑚.《蚜虫及其防治》,上海科学技术出版社,1988.
    5.陈若篪,丁锦华,谈涵秋,胡国文.《迁飞昆虫学》,农业出版社,1989.
    6.程登发,田喆,李红梅,孙京瑞,陈巨莲.温度和湿度对麦长管蚜飞行能力的影响.昆虫学报,2002,45:80~85.
    7.程登发,田喆,孙京瑞,倪汉详,李光博.禾缢管蚜在不同温度条件下的飞行能力.昆虫学报,1997a,40:180~185.
    8.程登发,田喆,孙京瑞,倪汉详,李光博.适用于蚜虫微小昆虫的飞行磨系统.昆虫学报,1997,40:172~179.
    9.程登发.适用于蚜虫等微小昆虫的飞行磨系统及禾缢管蚜飞行能力的初步研究[硕士学位论文].北京:中国农业科学院,1997.
    10.戴美学,祖爱民. G2P复合生物杀虫剂对豆田蚜虫及其天敌的毒效测定.昆虫天敌,1997,19:49~54.
    11.丁建清,付卫东.利用生物多样性保护生物多样性.生物多样性,1996,4:222~227.
    12.高俊峰.日本豆蚜茧蜂利用研究.昆虫天敌,1985,7:152~154.
    13.高峻峰,日本豆蚜茧蜂控制豆蚜的作用及其生物学特性的观察.中国生物防治,1994,10:91~92.
    14.高峻峰.通化县四条小食蚜细的初步观察.中国生物防治,1991,7:95.
    15.郭近.寄生蜂随寄主有翅蚜迁飞而扩散传播的生物学实证[硕士学位论文].杭州:浙江大学,2007.
    16.郭井泉,张明厚.大豆花叶病毒(SMV)主要介体及其传毒效率研究.大豆科学,1989,8:55~62.
    17.国伟,沈佐锐.麦蚜迁飞的研究进展.中国农学通报,2004,251~254.
    18.国伟.麦长管蚜地理种群时空动态的分子特征分析[博士学位论文].北京:中国农业大学,2005.
    19.韩新才.大豆蚜及其天敌田间消长规律.湖北农业科学,1997,2:22~24.
    20.黄建.《中国蚜小蜂科分类》,重庆出版社,1994.
    21.贾彦霞,贺达汉,哈学娟,韩树立.麻黄蚜实验种群的生命表.昆虫知识,2004,41:434~436.
    22.江幸福.粘虫迁飞行为的生理遗传特征以及遗传多样性的AFLP分析[博士学位论文].北京:中国农业科学院,2004.
    23.赖永琪,杨时宇.角被蚜春季迁飞的观察.林业科学,1986,22:431~436.
    24.李长松,罗瑞梧,杨崇良,尚佑芬,赵玖华,辛相启.大豆蚜生物学及防治研究.大豆科学,2000,19:337~340.
    25.李红梅.麦蚜迁飞的生理生化特性研究[硕士学位论文].北京:中国农业科学院,2002.
    26.李克斌.粘虫和甜菜夜蛾保幼激素与能源物质及相关酶活力与飞行关系[博士学位论文].北京:中国农业科学院,2004.
    27.李莉,周广和,杜志强,王锡锋,马占鸿.不同地区麦长管理蚜种群的RAPD分析.《第三届全国青年植物保护科技工作者学术研讨会>>1998.
    28.李丽莉,王振营,何康来,白树雄,花蕾.转Bt基因抗虫玉米对玉米蚜种群增长的影响.应用生态学报,2007,18:1080~1082.
    29.凌冰,刘芳政.吐鲁番棉蚜的迁飞及为害调查.新疆农业科学,1991,1:18~20.
    30.刘健,吴孔明,赵奎军,郭予元.不同地理种群棉蚜对温度和光周期的生态适应型.生态学报,2003,5:863~869.
    31.刘健,赵奎军.大豆蚜的生物学防治技术.昆虫知识,2007,44:179~185.
    32.刘树生,汪信庚.菜蚜啮小蜂对寄主龄期的选择性和适应性.中国生物防治,1999,15:1~4.
    33.刘向东,翟保平,张孝羲,熊风.棉蚜飞行行为与卵巢发育的关系.昆虫知识,2003,40 :39~42.
    34.刘向东,翟保平,张孝羲.蚜虫迁飞的研究进展.昆虫知识,2004,41:301~307.
    35.刘向东,翟保平,张孝羲,崔金杰.转基因棉对棉蚜繁殖与取食行为的影响.南京农业大学学报,2002,25:27~30.
    36.刘向东,张孝羲,翟保平.南京地区棉蚜的飞行活动节律及其飞行能力.昆虫学报,2003,46:489~493.
    37.刘向东.棉蚜Aphis gossypii Glover寄主型和迁飞型的研究[博士学位论文].南京:南京农业大学,2003.
    38.陆庆光.国外天敌引种与外来有害生物的持续控制.植物保护,1996,22:44~45.
    39.陆宴辉.盲蝽蟓生态适应性研究[博士学位论文].北京:中国农业科学院,2008.
    40.吕利华,陈瑞鹿.大豆蚜有翅蚜产生的原因.昆虫学报,1993,2:143~149.
    41.罗礼智,江幸福,李克宾,胡毅.粘虫飞行对生殖及寿命的影响.昆虫学报,1999,2:150~158.
    42.罗礼智,李光博,胡毅.粘虫飞行与产卵的关系.昆虫学报,1995,3:284~289.
    43.马健,沈佐锐,金晓华,谢爱婷.有翅型荻草谷网蚜的田间扩散飞行行为.昆虫知识,2008,45:214~218.
    44.孟国玲,刘细群.三种瓢虫对大豆蚜自然控制研究.长江蔬菜,2002,10:32~33.
    45.苗进.华北地区大豆蚜Aphis glycines的种群动态和主要天敌控制能力的研究[硕士学位论文].保定:河北农业大学,2005.
    46.彭素英,彭星海.红仿倍蚜生活史及生物学特性的观察研究.林业科技开发,1997,2:30~31.
    47.邱明生,赵志模.角倍蚜秋季迁飞和生殖能力的研究.西南农业大学学报,1995,17:39~41.
    48.邱式邦,杨怀文.生物防治--害虫综合防治的重要内容.植物保护,2007,33:1~6.
    49.尚素微.桃蚜有翅蚜迁飞传带病原真菌和寄生蜂的生物学研究[硕士学位论文].杭州:浙江大学,2006.
    50.宋敦伦,陈建新,王仕应,程登发,孙京瑞,田喆.蚜虫飞行能源物质的研究.植物保护,
    79世纪暨第三届全国青年植物保护科技工作者学术研讨会文集.中国农业科学技术出版社,1998,467~469.
    51.孙艳华,唐成霞,许丽艳.大豆蚜的发生与防治.实用技术,2008,33:48~49.
    52.唐超,彭正强,沈有孝,吕宝乾,符悦冠,万方浩.椰甲截脉姬小蜂对寄主龄期的选择性和适合性.热带作物学报,2006,27:78~80.
    53.万方浩,叶正楚,郭建英,谢明.我国生物防治研究的进展及展望.昆虫知识,2000,37:65~74.
    54.王成伦,相连英,张广学.大豆蚜的研究.昆虫学报,1962,11:31~34.
    55.王春荣,邓秀成,殷立娟等. 2004年黑龙江省大豆蚜暴发因素分析.大豆通报,2005:3:19~20.
    56.王方海,古德祥.寄生蜂作用于寄主的内部生理机制.中山大学学报论丛,1997,5:108~112.
    57.王清玲.台中地区大豆结荚期间之害虫调察.中华农研,1980,29:283~286.
    58.王素云,暴祥致,孙雅杰,陈瑞鹿,翟保平.大豆蚜对大豆生长和产量影响的试验.大豆科学,1996,15:243~247.
    59.王兴亚,李学军,张广学.谈蚜虫的行为.沈阳师范大学学报,2005,23:405~407.
    60.王永模,沈佐锐,高灵旺.微卫星标记及其在蚜虫种群生物学研究中的应用.昆虫学报,2007,50:621~627.
    61.王玉正,岳跃海.大豆玉米间作和同穴混播对大豆病虫发生的综合效应研究.植物保护,1998,24:13~15.
    62.翁文燊,黄玉清.捕食性天敌宽纹纵条瓢虫的初步研究.昆虫知识,1988,25:105~108.
    63.吴家荣.昆虫悬吊飞行装置的设计和应用.昆虫知识,1983,20:94~99.
    64.吴孔明,刘芹轩.棉蚜对杀虫剂抗性的稳定性.昆虫学报,1995,38:253~255.
    65.杨益众,张建军,戴志一,刘全.影响禾缢管蚜翅型分化的因子初探.江苏农业研究,1997,24:19~24.
    66.于海霞,赵萍,马忠孝.玛纳斯气象条件对棉蚜迁飞的影响及防治策略.新疆农业科技,2008,3:57~58.
    67.岳碧松,邹方东,孙奇志.有翅型萝卜蚜的产生及其生长繁殖研究.西南农业大学学报2002,24:17~20.
    68.张超,潘晓明,黄诚.棉蚜迁飞行为及能量物质利用的研究.安徽农学通报,1999,5:29~30.
    69.张广学,钟铁森.《中国经济昆虫志(第二十五册)》同翅目蚜虫,北京科学出版社.1983.
    70.张孝羲,王茂涛.桃蚜卵巢小管数目的变异与起飞的关系.植物保护学报,1991,18:161~166.
    71.张燕平,苏建荣,陈宝珊.角倍春迁蚜的迁飞期与生殖.林业科技开发,2000,14:23~24.
    72.张志涛.昆虫吊飞装置.植物保护,1982,8:30~32.
    73.赵惠燕,汪世泽,袁锋,董应才.不同温度下转换寄主对桃蚜生态学特征的影响.植物保护报,1997,24:19~24.
    74. Alleman, R.J., Grau, C.R., Hogg, D.B. . Soybean aphid host range and virus transmission efficiency. Proceedings of the Wisconsin Fertilizer, Aglime, and Pest Management Conference. Available online at http:// www.soils.wisc.edu/extension/FAPM/fertaglime02.htm 2002.
    75. Altizer, S.M., Oberhauser, K., Brower, L.P. . Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecological Entomology 2000, 25: 125~139.
    76. Arakaki, N., Wakamura, S., Yasuda, T. . Phoretic egg parasitoid, Telenomus euproctidis (Hymenoptera: Scelionidae) uses sex pheromone of tussock moth Euproctis taiwana (Lepidoptera: Lymantriidae) as a kairomone. Journal of Chemical Ecology 1996, 22: 1079~1085.
    77. Baguette, M., and Schtickzelle, N. . Negative relationship between dispersal distance and demography in butterfly metapopulations. Ecology 2006, 87: 648~654.
    78. Beerwinkle, K.R., Lopez, J.D.Jr., Cheng, D., Lingren, P.D., Meola, R.W. . Flight potential of feral Helicoverpa zea (Lepidoptera: Noctuidae) males measured with a 32-channel, computer-monitored, flight-mill system. Environmental Entomology 1995, 24: 1122~1130.
    79. Bellamy, D.E., Byrne, D.N. . Effect of gender and mating status on self-directed dispersal by whitefly parasitoid Eretmocerus ermicus. Ecological Entomology 2001, 26: 571~577.
    80. Blackmer, J.L., Lindley, V.A., Byrne, D.N. . Histological examination of flight muscle development and breakdown in Bemisia tabaci (Homoptera:Aleyrodidae):relationship to age and flight behavior. Journal of Morphology 1995, 226: 213~221.
    81. Bradley, C.A., Altizer, S. . Parasites hinder monarch butterfly flight: implications for disease spread in migratory hosts. Ecology Letters 2005, 8: 290~300.
    82. Brant, A.B., Sherman A., Phillips J.R. . Environmental Entomology 1991, 20: 344~348.
    83. Bulter, G. D., Henneberry, T. J., Clayton, T. E. . Bemisia tabaci (Homoptera: Aleyrodidae): Development, oviposition, and longevity in relation to temperature. Annuals of Entomological society of America 1983, 76: 310~313.
    84. Buschman, L.L., Whitcomb, W.H. . Parasites of Nezara viridula (Hemiptera: Pentatomidae) and other Hemiptera in Florida. Florida Entomologist 1980, 63: 154~162.
    85. Campos-Herrera, R., Trigo, D., Guttierez, C. . Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisenia fetida. Journal of Invertebrate Pathology 2006, 92: 50~54.
    86. Chacon, J., Heimpel, G.E. . Density-dependent apparent competition between an aphid and its parasitoid. Ecology Letters 2008, submitted.
    87. Chang, Y. D., Lee, J. Y. and Youn, Y. N. . Primary parasitoids and hyperparasitoids of the soybean aphid, Aphis glycines (Homoptera: Aphididae). Kor. Journal of Applied Entomology 1994, 33: 51~55.
    88. Chapman1, J.W., Reynolds, D.R., Smith, A.D., Smith, E.T., Woiwod, I.P. . An aerial netting study of insects migrating at high altitude over England. Bulletin of Entomological Research 2004, 94:123~136.
    89. Chen, B., Li, Z.Y., Feng, M.G. . Occurrence of entomopathogenic fungi in migratory alate aphids in Yunnan Province of China. Biocontrol 2008, 53: 317~326.
    90. Chen, C. & Feng, M. . Experimental simulation of transmission of an obligate aphid pathogen with aphid flight dispersal. Environmental Microbiology 2006, 8: 69~76.
    91. Christansen-Wenige, P. . Morphological observations on the preimaginal stages of Aphelinus varipes (HYM., Aphelinidae), and the effects of this parasitoid on the aphid Rhopalosiphum padi (HOM., Aphididae). Entomophaga 1994, 39: 267~274.
    92. Christiansen-Weniger, P., Hardie, J. . The influence of parasitism on wing development in male and female pea aphids. Journal of Insect Physiology 2000, 46: 861~867.
    93. Christiansen-Weniger, P., Hardie, J. . Wing development in parasitized male and female Sitobion fragariae. Physiological Entomology 1998, 23: 208~213.
    94. Clark, A. J., Perry, K. L. .Transmissibility of field isolates of soybean viruses by Aphis glycines. Plant Disease 2002, 11: 1219~1222.
    95. Cockbain, A. J. . Fuel utilization and duration of tethered flight in Aphis fabae Scop. Journal of Experimental Biology 1961a, 38: 163~174.
    96. Cockbain, A. J. . Viability and fecundity of alate alienicolae of Aphis fabae Scop. after flights to exhaustion. Journal of Experimental Biology 1961b, 38: 181~187.
    97. Cockbain, A. J. . Water relationships of Aphis fabae Scop. during tethered flight. Journal of Experimental Biology 1961c, 38: 175~180.
    98. Cole, L.C. . The population consequences of life history phenomena. Quarterly Review of Biology 1954, 29: 103~137.
    99. Coll, M., Yuva, B. . Larval food plants affect flight and reproduction in an oligophagous insect herbivore. Environmental Entomology 2004, 33: 1471~1476.
    100.Coll, M., Yuval, B. . Larval food plants affect flight and reproduction in an oligophagous insect herbivore. Enviromental Entomology 2004, 33:1471~1476.
    101.Dedryver, C.A., Hulle, M.L. Gallic, J.F. . Coexistence in space and time of sexual and asexual populations of the cereal aphid Sitobion avenae. Oecologia 2001, 128: 379~388.
    102.Demmon, A. S., Nelson, H. J., Ryan, P. J., Ives A. R., Snyder, W.E. . Aphidius ervi (Hymenoptera: Braconidae) increases its adult size by disrupting host wing development. Environmental Entomology 2004, 33: 1523~1527.
    103.Desneux, N., Barta, R.J., Delebecque, C.J., Heimpel, G.E. . Transient host paralysis by a koinobiont endoparasitoid(unpublished).
    104.Dingle, H. . Migration: The biology of life on the move. Oxford University Press, Oxford, U.K. 1996.
    105.Dixon, A. F. G. . Aphid ecology. Chapman & Hall, London, U.K. 1998.
    106.Dixon, A. F. G., Howard, M.T. . Dispersal in aphids: a problem in resource allocation, pp.
    145-151. In: Danthanarayana, W. (Ed.), Insect Flight: dispersal and migration. Springer, New York. 1986.
    107.Dixon, A.F.G., Horth, S., Kindlmann, P. . Migration in insects - cost and strategies. Journal of Annimal Ecology 1993, 62: 82~190.
    108.Dixon, A.F.G., Kindlmann, P. . Cost of flight apparatus and optimum body size of aphid migrants. Ecology 1999, 80:1678~1690.
    109.Dixon, A.F.G., Wratten, S.D. . Laboratory studies on aggregation, size and fecundity in the black bean aphid, Aphis fabae Scop. Bulletin of Entomological Research 1971, 61: 97~111.
    110.Dixon, A.F.G. . Fecundity of brachypterus and macropterous alatae in Drepanosiphum dixoni (Callaphididae: Aphididae). Entomologia Experimentalis et Applicata 1972, 15: 335~340.
    111.Dixon, A.F.G. .Seasonal development in aphids. In: Minks, A. K. & Harrewijn, P. A. (eds.), Aphids, their biology, natural enemies and control. Elsevier, The Netherlands, 1987.
    112.Elton, C.S. . The dispersal of insects to Spitzbergen. Transactions of the Royal Society of London 1925, 73: 289~299.
    113.Eng, M.S., Preisser, E.L., Strong, D.R. . Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non-host organism, the isopod Porcellio scaber. Journal of Invertebrate Pathology 2005, 88: 173~176.
    114.Fagan, W.F., Lewis, M.A., Neubert, M.G., van den Driesche, P. . Invasion theory and biological control. Ecology Letters 2002, 5: 148~157.
    115.Fatouros, N.E., Huigens, M.E., Van Loon, J.J.A., Dicke, M., Hilker, M. . Butterfly anti-aphrodisiac lures parasitic wasps. Nature 2005, 433: 704.
    116.Feng M., Chen, C., Shang, S., Ying, S., Shen, Z., Chen, X. . Aphid dispersal flight disseminates fungal pathogens and parasitoids as natural control agents of aphids. Ecological Entomology 2007, 32: 97~104.
    117.Feng, M., Chen, C., Chen, B. . Wide dispersal of aphid-pathogenic entomophthorales among aphids relies upon migratory alates. Environmental Microbiology 2004, 6: 510~516.
    118.Fox, T.B., Landis D.A., Cardoso, F.F., DiFonzo, C.D. . Predators suppress Aphis glycines Matsumura population growth in soybean. Environmental Entomology 2004, 33: 608~618.
    119.Gatehouse, A.G. . Insect migration: Variability and success in a capricious environment. Research in Population Ecology 1994, 36: 165~171.
    120.Guerra, P. A., Pollack, G.S. . A life history trade-off between flight ability and reproductive behavior in male field crickets (Gryllus texensis). Journal of Insect Behavior 2007, 20: 377~387.
    121.Hafiz, N.A. .Use of life table to asses host plant resistance in cowpea to Aphis Craccivora Koch (Homoptera: Aphididae). Bulletin of Entomological Research 2006, 9: 1~5.
    122.Halbert, S.E., Zhang, G.X., Pu, Z.Q. . Comparison of sampling methods for alate aphids and observations on epidemiology of soybean mosaic virus in Nanjing, China. Annals of Applied Biology 1986, 109: 479~483.
    123.Hanski, I., Saastamoinen, M., Ovaskainen, O. . Dispersal-related life history trade-offs in a butterfly metapopulation. Journal of Annimal Ecology 2006, 75~100.
    124.Hardie, J., Powell, G. .Video analysis of aphid flight behaviors. Electronic Agriculture 2002, 35: 229~242.
    125.Hardie, J.J. . The photoperiodic control of wing development on the black bean aphid, Aphis fabae. The Journal of Insect physiology 1987, 33: 543~549.
    126.Havella, J., Zemek, R. . Life table parameters and oviposition dynamics of various population of the predacious gall-midge Aphidoletes aphidimyza. Entomologia Experimentalis et Applicata 1999, 91: 481~484.
    127.Heimpel , G.E., Lee, J.C., Wu, Z., Weiser, L., Wackers, F. & Jervis, M.A. . Gut sugar analysis in field-caught parasitoids: adapting methods originally developed for biting flies. International Journal of Pest Management 2004a, 50: 193~198.
    128.Heimpel , G.E., Ragsdale, D.W., Venette, R.C., Hopper, K.R., O’Neil, R.J., Rutledge, C.E., Wu. Z. . Prospects for importation biological control of the soybean aphid: anticipating potential costs and benefits. Annuals of Entomological Society of America 2004b, 97: 249~258.
    129.Heraty, J.M., Woolley, J.B., Hopper, K.R., Hawks, D.L., Kim, J.W. & Buffington, M. . Molecular phylogenetics and reproductive incompatibility in a complex of cryptic species of aphid parasitoids. Molecular Phylogenetics and Evolution 2007, 45: 480~493.
    130.Hodgson, E.W., Burkness, E.C., Hutchison, W.D., Ragsdale, D.W. . Enumerative and binomial sequential sampling plans for soybean aphid (Homoptera: Aphididae) in soybean. Journal of Economic Entomology 2004, 97: 2127~2136.
    131.Hodgson, E.W., Venette, R.C., Abrahamson, M.., Ragsdale, D.W. .Alate production of soybean aphid (Homoptera: Aphididae) in Minnesota. Environmental Entomology 2005, 34: 1456~1463.
    132.Hopper, K.R., Roush, R.T. . Mate finding, dispersal, number released, and the success of biological control introductions. Ecological Entomology 1993, 18: 321~331.
    133.Huang, Z.., Feng, M.., Chen, X., Liu, S. . Pathogenic fungi and parasitoids of aphids present in air captures of migration alates in the low-latitude plateau of Yunnan, China. Environmental Entomology 2008, 37: 1264~1271.
    134.Huberty, A.F., Denno, R.F. . Trade-off in investment between dispersal and ingestion capability in phtophagous insects and its ecological implications. Oecologia 2006, 226~234.
    135.Hughes, C.L., Hill, J.K., Dytham, C. . Evolutionary trade-offs between reproduction anddispersal in populations at expanding range boundaries. Proceedings of the Royal Society B-Biological Sciences 2003, 270: S147~S150.
    136.Irwin, M.E., Thresh, J.M. . Long-range aerial dispersal of cereal aphids as virus vectors in North America. Philo. Transactions of the Royal Society Series B 1988, 321: 421~446.
    137.Isard, S.A., Gage, S.H. . Flow of life in the atmosphere: an airscape approach to understanding invasive organisms. Michigan State University Press, East Lansing, MI, USA. 2001.
    138.Isard, S.A., Irwin, M.E. . Formulating and evaluating hypotheses on the ascent phase of aphid movement and dispersal. In: Proceedings of the Twelfth Conference on Biometeorology and Aerobiology. American Meteorological Society, Boston, MA, USA. 1996.
    139.Johnson C.G. . Nature 1963, 198: 423~427.
    140.Johnson, B. . Effect of parasitization by Aphidius platensis Brethes on the developmental physiology of its host, Aphis craccivora Koch. Entomologia Experimentalis et Applicata 1959, 2: 82~99.
    141.Johnson, C.G. . Migration and dispersal of insects by flight. Methuen, London, U.K. 1969.
    142.Johnson, C.G. . Aphid migration in relation to weather. Biological Reviews 1954, 29: 87~118.
    143.Jonsen, I.D., Bourchier, R.S., Roland, J. . Influence of dispersal, stochasticity, and an Allee effect on the persistence of weed biocontrol introductions. Ecological Modelling 2007, 203: 521~526.
    144.Kennedy J.S. . Migration: Mechanisms and adaptive significance. Contributions in Marine Science 1985, 27: 7~26.
    145.Kennedy, J.S., Booth, C.O. . Co-ordination of successive activities in an aphid. The effect of flight on the settling response. Journal of Experimental Biology 1963, 40: 351~369.
    146.Kennedy, J.S., Booth, C.O. . Co-ordination of successive activities in an aphid. Depression of settling after flight. Journal of Experimental Biology 1964, 41: 805~824.
    147.Kring, J. B. . Flight behaviour of aphids. Annual Review of Entomology 1972, 17: 461~492.
    148.Lee, W.T.. Technical development of microencapsulated artificial diets for Mallada basalis Walker. Chinese Journal Entomology 1994, 14: 47~52.
    149. Liewellyn, K.S., Loxdale, H.D., Brookes, C.P. . Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Molecular Ecology 2003, 12: 21~34.
    150.Liquido, N.J., Irwin, M.E. . Longevity, fecundity, change in degree of gravidity and lipid content with adult age and lipid utilization during tethered flight of alates of the corn leaf aphid, Rhopalosiphum maidis. Annals of Applied Biology 1986, 108: 449~459.
    151.Liu J., Wu, K., Hopper, K. .Population Dynamics of Aphis glycines (Homoptera: Aphididae) and Its Natural Enemies in Soybean in Northern China. Annals of the Entomological Society 2004, 97:209~208.
    152.Llewllyn, K.S., Loxdale, H.D., Brookes, C.P., Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Molecular Ecology 2003, 12: 21~34.
    153.Ma, Z.Q., Zhang, J.M. . The strategy for controlling soybean pests in northern Shandong province, pp. 372-374. In S. Wong (ed.), Proceedings of the 2nd U.S.-China soybean symposium, 28 July-2 August 1984, Changchun, Jilin, China. 1984.
    154.Marko, N., Matti, L., Helenius, J. . Doppler radar detection of exceptional mass-migration of aphids into Finland. International Journal of Biometeorology 2000, 44:172~181.
    155.McCornack, B., Ragsdale, D.W., Venette, R.C. . Demography of the soybean aphid (Homoptera: Aphididae) at summer temperatures. Journal of Economical Entomology 2004, 97: 854~861.
    156.Miao, J., Wu, K., Hopper, K., Li, G. . Population Dynamics of Aphis glycines (Homoptera: Aphididae) and Impact of Natural Enemies in Northern China. Environmental Entomology 2007, 36: 840~848.
    157.O'Neal, M. . Soybean aphids on the go: Results from the suction trap network. (http://www.ipm.iastate.edu/ipm/icm/2006/suction.html) 2006.
    158.Ontario. Soybean aphid. http://www.omafra.gov.on.ca/english/crops/facts/04-059.htm#1. 2007.
    159.Orr, D.B. . Scelionid wasps as biological control agents: a review. Florida Entomologist 1988, 71: 506~527.
    160.Ostlie, K. . Managing soybean aphid. (http://www.soybeans.umn.edu/pdfs /SBAMgmtFact_2.pdf) Accessed on May 15, 2007. 2002.
    161.Parry, H.R., Evans, A.J., Morgan, D. . Aphid population response to agricultural landscape change: a spatially explicit, individual-based model. Ecology 2006, 199: 451~463.
    162.Parry, W.E. . Narrative of an attempt to reach the North Pole in the year 1827. John Murray, London. 1828.
    163.Ragsdale, D.W., McCornack, B.P., Venette, R.C., Potter, B.D., Macrae, I.V., Hodgson, E.W., O'Neal, M. E. . Economic threshold for soybean aphid (Hemiptera : Aphididae). Journal of Economic Entomology 2007, 100: 1258~1267.
    164.Ragsdale, D.W., Voegtlin, D.J., O’NEIL, R.J. . Soybean Aphid Biology in North America. Annuals of Entomological Society of America 2004, 97: 204~208.
    165.Rankin M.A., Burchsted, C.A. . The cost of migration in insects. Annual Review of Entomology 1992, 37: 533~539.
    166.Rankin, M.A., McAnelly, M.L., Bodenhamer, J.E. . The oogenesis-flight syndrome revisited. pp. 27-48 in Danthanarayana, W. (Ed.), Insect flight. Berlin, Springer Verlag. 1986.
    167.Rauwald, K.S., Ives, A.R. . Biological control in disturbed agricultural systems and the rapid re-establishment of parasitoids. Ecological Applications 2001, 11: 1224~1234.
    168.Riley, J.R., Downham, M.C.A., Cooter, R.J. . Comparison of the performance of Cicadulinaleafhoppers on flight mills with that to be expected in free flight. Entomologia Experimentalis et Applicata. 1997, 83: 317~322.
    169.Riley, J.R., Reynolds, D.R., Mukhopadhyay, S., Ghosh, M. R., Sarker, J.R. . Long-distance migration of aphids and other small insects in north-east India. European Journal of Entomology 1995, 92: 639~653.
    170.Robert, Y. . Dispersion and migration. In A. K. Minks and P. Harrewijn (ed.), Aphids, their biology, natural enemies and control. 1987.
    171.Roff, D. A. . Life history evolution. Sinauer Press, Sunderland, MA, USA. 2002.
    172.Rutledge, C. E., O’Neil, R.J. . Orius insidiosus (Say) as a predator of the soybean aphid, Aphis glycines Matsumura. Biological Control 2005, 33: 56~64.
    173.Rutledge, C.E., O’Neil, R.J., Fox, T.B., Landis D.A. . Soybean aphid predators and their use in integrated pest management. Annuals of Entomological Society of America 2004, 97: 24~248.
    174.Saastamoinen, M. . Mobility and lifetime fecundity in new versus old populations of the Glanville fritillary butterfly. Oecologia 2007, 153: 569~578.
    175.SAS Institute. SAS/STAT user's guide, release 6.03ed. SAS Institute, Cary, NC. 1988.
    176.SDSU Extension. SDSU research focuses on biocontrol for soybean aphid. (http://www.farmandranchguide.com/articles/2007/06/19/ag_news/production_news/prod05.txt) Accessed on June 10, 2007. 2007.
    177.Sequeira, R., Mackauer, M. . Nutritional ecology of an insect host–parasitoid association: the pea aphid–Aphidius ervi system. Ecology 1992, 73: 183~189.
    178.Sequeira, R., Mackauer, M. . Nutritional ecology of an insect host–parasitoid association: the pea aphid–Aphidius ervi system. Ecology 1992, 73: 183~189.
    179.Shirai, Y. . Laboratory evaluation of flight ability of the Oriental corn borer, Ostrinia furnacalis (Lepidoptera: Pyralidae). Bulletin of Entomological Research 1998, 88: 327~333.
    180.SigmaStat. SigmaStat statistical software user's manual, release 2.03 ed. SPSS Science, Chicago, IL. 1997.
    181. Simberloff, D., Stiling, P. . How risky is biological control? Ecology 1996, 77: 1965~74.
    182.Simmons, A.M., Rogers, C.E. . Disperal and seasonal occurrence of Noctuidonema guyanense an ectoparasitic nematode of adult fall armyworm Lepidoptera noctuidae in the United States. Journal of Entomological Science 1991, 26: 136~148.
    183.Slansky, F.J. . Food consumption and reproduction as accected by tethered flight in female milkweed bugs (Oncopeltus fasciatus). Entomologia Experimentalis et Aapplicata 1980, 28: 277~286.
    184.Solbreck, C. . Wing and flight muscle polymorphism in a lygaeid bug, Horvathiolus gibbicollis: determinants and life-history consequences. Journal of Ecological Entomology 1986, 11: 435~444.
    185.Steiner W.W., Voegtlin, D.J., Irwin, M.E. . Adaptation of Spodoptera exigua larvae to plantproteinase inhibitors by induction of gut proteinase activity insensitive to inhibitors. Annals of the Entomological Society of America 1985, 78:518~525.
    186.Tang, Y.Q., Yokomir, R.K. . Biology of Aphelinus spiraecolae (Hymenoptera: Aphelinidae), a parasitoid of the spirea aphid (Homoptera: Aphididae). Environmental Entomology 1996, 25: 519~523.
    187.Taylor, L.R., Woidow, I.P., Taylor, R.A.J. . Migratory ambit of the hop aphid and its significance in aphid population dynamics. The Journal of Animal Ecology 1979, 48: 955~972.
    188.Tyler, B.F., Douglas, A.L., Fernando, F.C. .Predators Suppress Aphis glycines Matsumura Population Growth in Soybean. Environmental Entomology 2004, 33: 608~618.
    189.Underwood, N. . Variation in and Correlation Between Rate of Increase and Carrying Capacity. Florida University. Seasonal flights and build-up of aphid population dynamics are affected by different environment factors including temperature, rainfall, wind velocity and direction, and the amount of vegetation. Available from: http://www.bio.fsu.edu.org. 2004.
    190.Van den Berg, H., Ankasah, D., Mahammad, A., Rusli, R., Widayanto, H.A., Wirasto, H.B., and Yully, I. . Evaluating the role of predation in population fluctuations of the soybean aphid Aphis glycines in farmer fields in Indonesia. Journal of Applied Ecology 1997, 34: 971~984.
    191.Venette, R.C., Ragsdale, D.W. . Assessing the invasion of the soybean aphid (Homoptera: Aphididae): where will it end? Annuals of Entomological Society of America 2004, 97: 219~226.
    192.Voegtlin, D.J., O’Neil, R.J., Graves, W.R., Lagos, D., Yoo, H.J.S. . Potential winter hosts of the soybean aphid. Annuals of Entomological Society of America 2005, 98: 690~693.
    193.Voegtlin, D.J., O’Neil, R.J., Graves, W.R.. Tests of suitability of overwintering hosts of Aphis glycines: identficationof a new host association with Rhamnus alnifolia L’Héritier. Annuals of Entomological Society of America 2004, 97: 233~234.
    194.Walters, K.F.A., Dixon, A.F.G. . Migratory urge and reproductive investment in aphids: Variation within clones. Oecologia (Berlin) 1983, 58: 70~75.
    195.Wang, X., Fang, C., Zheng, X., Lin, Z., Zhang, L., Wang, H. . A study on the damage and economic threshold of the soybean aphid at the seedling stage. Plant Protection 1994, 20: 12~13.
    196.Wheeler, D. . The role of nourishment in oogenesis. Annual Review of Entomology 1996, 41: 407~431.
    197.Willers, J.L., Schneider, J.C., Ramaswamy, S.B. . Fecundity, longevity and caloric patterns in female Heliothis virescens:changes with age due to flight and supplemental carbohydrate. Journal of Insect Physiology, 33: 803~808.
    198.Wratten, S.D. . Reproductive strategy of winged and wingless morphs of the aphids Sitobion avenae and Metopolophium dirhodum. Annals of Applied Biology 1977, 85: 319~331.
    199.Wu, Z., Heimpel, G.E. . Dynamic egg maturation strategies in an aphid parasitoid.Physiological Entomology 2007, 32: 143~149.
    200.Wu, H., Wu, K., Wang, D., Guo, Y. . Flight potential of pink bollworm. Pectinophora gossypiella Saunders (Lepidoptera: Gelechiidae). Environmental Entomology 2006, 35: 887~893.
    201.Wu, Z., Hopper, K.R., O'Neil, R.J., Voegtlin, D.J., Prokrym, D.R. & Heimpel, G.E. . Reproductive compatibility and genetic variation between two strains of Aphelinus albipodus (Hymenoptera: Aphelinidae), a parasitoid of the soybean aphid, Aphis glycines (Homoptera: Aphididae). Biological Control 2004b, 31: 311~319.
    202.Wu, Z., Schenk-Hamlin, D., Zhan, W., Ragsdale, D.W., Heimpel, G.E. . The soybean aphid in China: a historical review. Annuals of Entomological Society of America 2004a, 97: 209~218.
    203.Wyckhuys, K., Hopper, K.R., Wu, K., Straub, C., Gratton, C., Heimpel, G.E. . Predicting potential ecological impact of soybean aphid biological control introductions. CABI Biocontrol News and Information 2007b, 28: 30~34.
    204.Wyckhuys, K.A.G., Heimpel, G.E. . Response of the soybean aphid parasitoid Binodoxys communis to olfactory cues from target and non-target host-plant complexes. Entomologia Experimentalis et Aapplicata 2007b, 123: 149~158.
    205.Wyckhuys, K.A.G., Koch, R.L., Heimpel, G.E. . Physical and ant-mediated refuges from parasitism: implications for non-target effects in biological control. Biological Control 2007a, 40: 306~313.
    206.Wyckhuys, K.A.G., Stone, L., Desneux, N., Hoelmer, K.A., Hopper, K.R., Heimpel, G.E. . Parasitism of the soybean aphid, Aphis glycines, by Binodoxys communis (Hymenoptera: Braconidae): the role of aphid defensive behavior and parasitoid reproductive performance. Bulletin of Entomological Research 2008, 98: 361~370. 207.Zar, J.H. . Biostatistical analysis, 4th ed. Prentice Hall. Upper Saddle River, NJ. 1999.
    208.Zehnder, C.B., Hunter, M.D. . A comparison of maternal effects and current environment on vital rates of Aphis nerii, the milkweed-oleander aphid. Journal of Ecological Entomology 2007, 32: 172~180.
    209.Zera, A.J., Denno, R.F. . Physiology and ecology of dispersal polymorphisms in insects. Annual Review of Entomology 1997, 42: 207~231 .
    210.Zera, A.J., Harshman, L.G. . The physiology of life-history trade-offs in animals. Annual Review of Ecology and Systematics 2001, 32: 95~126.
    211.Zera, A.J., Zhao, Z. . Intermediary metabolism and life-history trade-offs: differential metabolism of amino acids underlies the dispersal-reproduction trade-off in a wing-polymorphic cricket. Natur. 2006, 167: 889~900.
    212.Zhang, Y., Wang, L., Wu, K., Wyckhuys, K.A.G., Heimpel, G. E. . Flight performance of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) under varying environmental conditions. Environmental Entomology 2008, 37:301~306.
    213.Zhang, Y., Wu, K., Wyckhuys, K.A.G., Heimpel, G.E. . Trade-offs between flight and reproduction in the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae). Journal of Economic Entomology 2009, 102: 133~138.
    214.Zhang, Y.B., Guo, Q., Hou, Z. . Olfactory orientation of parasitoid wasp Lysiphlebus fabarum to its host food plants. Acta Entomologica Sinica 1998, 5: 74~82.
    215.Zheng, X., Lin, Z., Zhang, L., Wang, H. . A study on the damage and economic threshold of the soybean aphid at the seedling stage. Plant Protection 1994, 20: 12~13.
    216.Zhu, M., Radcliffe, E. B., Ragsdale, D.W., MacRae, I.V., Seeley, M.W. . Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the US northern Great Plains. Agriculture and Forest. Meteorology 2006, 138: 192~202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700