蚜总科内系统地位存疑的姐妹群间的系统发育关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚜总科昆虫隶属于同翅目Homoptera蚜虫类Aphidinea,是同翅目中较大的一个类群。在蚜总科昆虫科级分类单元向系统发育研究中,目前存在不少问题。例如,刺蚜亚科Cervaphidinae属于毛管蚜科Greenideidae还属于群蚜科Thelaxidae;粉毛蚜亚科Pterocommatinae目前暂放在蚜科Aphididae内,但无论从形态学还是生物学、寄主植物等方面该亚科与毛蚜科Chaitophoridae有许多相似之处.从形态学等角度不能对上述问题得到圆满解答。因此,本研究拟将形态学特征与分子数据结合起来寻找最有效的解决方法。
     rDNA是编码核糖体RNA的基因,18SrDNA被认为是研究高级分类阶元演化关系比较有效的基因,常用于科级水平的系统发育分析。本研究以越南、北京地区的蚜总科内代表蚜虫为主要研究对象,在依据外部形态分类鉴定的基础上,应用DNA序列测定技术于蚜总科昆虫系统学研究,通过PCR扩增获得蚜虫18SrDNA基因序列,应用Clustal W程序进行同源对比,采用MEGA 2.1数据分析软件,构建蚜总科蚜虫分子系统树,探讨这些类群这间的分类地位和亲缘关系,这在国内外尚属首次。
     本研究通过对蚜总科内6科(4亚科)13种蚜虫18SrDNA基因序列的测定和分析,初步得出以下结论:
     1、刺蚜亚科18SrDNA基因797bp的DNA序列中,A+T的平均含量为56.6%,群蚜科、刺蚜科和毛管蚜科的A+T含量分别为:52.5%、66.6%和51.9%,18SrDNA基因序列长分别为1100bp、760bp、1100bp。表明群蚜科与毛管蚜科近似。
     2、MEGA2.1数据分析软件中构建的UPGMA、NJ、ME和MP分子系统树一致支持群蚜科和毛管蚜科形成一单系群,这二者相聚后与刺蚜亚科互为姐妹群。分子数据提示刺蚜亚科独立为一科。
     3、蚜科内蚜亚科和长管蚜亚科的分化大于蚜科与毛蚜科之间的遗传分化。本研究选取扩增18SrDNA的600bp—1700bp这一区段不能完全解决粉毛蚜亚科的系统分类地位的归属。此1100bp序列在蚜科昆虫中变异程度比较大,包含一个高变区E21。
Aphidinea are group of famous insects. They are harmful to agricultural plant. In the taxonomic study of Aphidiodea insects, there are some questions about them. In order to clarify the arguments for the phylogenetic relationships of Aphidinea insects, we determined a partial (HOObp) sequence of the 18S ribosomal DNA for 13 aphid species (4 subfamilies , 6 families) at the first time. They distributed mostly in China. In this study we studied the phylogenetic relationships of the two groups: Cervaphidinae and Pterocommatinae using the PCR product direct sequencing method. The respective outgroups Acyrthosium pisum and Lygus heperus Knight are the new gene informations for the International Biology Gene Bank.
    Here we got the ISSrDNA sequence data of the Aphidiodea, which were firstly aligned by Clustal W and then used to construct phylogenetic tree by MEGA 2.1. The result of Cervaphinae revealed that:㏕he sequence included 797bp in length. The average transition: transversion ratio was 1.0 which indicated the genetic differentiation was great. The ration was 2 in nuclear DNA gene. As a rule the ts:tv ratio decreased with the increasing genetic distance. ㏕he average A+T content is 56.6%. Among Thelaxiade .. Cervaphididinea and Greenideidae ,the A+T contained is 52.5?cK 66.6% and 51.9%,the length of the partial ISSrDNA was 1100bp> 760bp and llOObp respectively. It was found that a decreased in A+T content may has been accompanied by an increasing in length of the whole ISSrDNA gene sequence. (3)The phylogenetic tree by the method of UPGMAN MP> NJ and ME shows Thelaxiade is similar to Greenideidae and Cervaphidinae is a independent group.
    The studies on Pterocommatinae revealed that: The content of A+T in Aphididae is very variable. It was from 39.6% of A.pisum to 60.4% of Thxoptera odinae. It is clear that Pterocommatinae is closer to A.pisum. But there is ambiguously taxonomic position between Chaitophoridae and Aphidinae. The genetic distance of Aphididae and Macrosiphinae in Aphididae is more diverged than that of between Chaitophoridae and Aphididae. The 600bp-1700bp region of ISSrDNA gene maybe unsuitable to Aphididae, it includes a helix E21. The rate of evolution of in the region is a bit fast. It is necessary for the phylogenetic analysis that selecting suitable gene region, increasing the number of taxon and comparing more molecular markers.
引文
[1]成新跃,周红章,张广学.分子生物学技术在昆虫系统学研究中的应用.动物分类学报,2000,25(2):121-133.
    [2]张亚平.熊超科DNA序列进化及其保护生物学意义.见:中国科学技术协会第二届青年学术年会论文集.中国科学技术出版社.1995,462-467.
    [3]张亚平.从DNA序列到物种树.动物学研究,1996,5(1):1-10,
    [4]李明,王小明.分子系统学及其应用.大自然探索,1997,16(59):48-51
    [5]杨效文,张孝曦,陈晓峰等.不同寄主植物上烟蚜DNA多态性的RAPD-PCR分析.植物保护学报,1999,26(2):147-152.
    [6]赵惠燕,袁锋,张改生.现代生物技术与蚜虫种下分类.西北农业大学学报 1995,23(5):115-120.
    [7]常青,周开亚.分子进化研究中系统发生树的重建.生物多样性,1998,6(1):55-62.
    [8]黄原,袁锋,顾小军.蚜虫的分子系统学研究概况.昆虫知识,1996,33(5):306-310.
    [9]鲁亮,归鸿.RAPD技术的特点及其在昆虫分类中的应用.昆虫学报,1995,38(1):117-122.
    [10]Aoki S, von Dohlen CD, Kurosu U. Revision of the Japanese species of Aphid Genus Hamamelistes (Hemiptera, Aphididae, Hormaphidinae) based on the Mitochondrial DNA sequence data. Entomo. Sci., 2001, 4(1): 59-67.
    [11]Atkinson L, Adams ES. Double-Strand conformation plomorphism (DSCP). Analysis of the mitochondrial control region generates highly variable markers for population studies in a social insect. Insect. Mol. Biol., 1997, 6(4): 369-376.
    [12]Barrette RJ et al. Mitochondrial DNA diversity in the pea aphid. Acyrthosiphonpisum. Genome, 1994, 37: 858-865.
    [13]Black WC IV, DuTeau NM, Puterka G.J, Nechols JR, Pettorini JM.. Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to detect DNA polymorphisms in aphids (Homoptera: Aphididae).Bull. Ent. Res., 1992, 82: 151-159.
    [14]Black, W. C. et al.. Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to detect DNA polymorphisms in
    
    aphids. Bull. Entomol. Res. 1989, 82:151-159.
    [15] Borner C. Europae centralis Aphides. Mitt. Thur. Bot. Ges. Beiheft 3, Weimar. 1952, 488pp.
    [16] Campbell BC, Steffen-Campbell JD, Werren JH. Phylogeny of the Nasonia species complex ( Hymenoptera: Pteromalidae ) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Mol. Biol., 1993, 2: 225-237.
    [17] Campbell BCJ, Steffen-Campbell D, Gill, RJ. Evolutionary origin of whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) inferred from 18S rDNA sequences. Insect Mol. Biol., 1994, 3. 73-88.
    [18] Campbell BCJ, Steffen-Campbell D, Sorensen JT et al. Paraphyly of Homoptera and Auchennrrhyncha inferred from 18S rDNA sequences. Syst. Ent., 1995, 20: 175-194.
    [19] Carvalho G.R, Maclean N, Wratten SD, Carter RE et al. Differentiation of aphid clones using DNA fingerprints from individual aphids. Proc. R. Soc. Lond.B, 1991, 243: 109-114.
    [20] Cech TR. Conserved sequences and structures of group I introns:building an active site for RNA catalysis-a review . Gem, 1988, 73: 259-271.
    [21] Cenis Jl et al.. Identification of aphid (Homoptera: Aphididae) species and clones by random amplified polymorphic DNA. Ann. Entomo. Soc. Amer. 1993, 86(5) : 545-550.
    [22] Chalwatzis N, Hauf J, Van de Peer Y et al.. 18S ribosomal RNA genes of insects: Primary structure of the genes and molecular phylogeny of the Holometabola. Ann. Ent. Soc. Am., 1996 , 89(6) : 788-803.
    [23] De Barro PJ, Sherratt TM, Carvalho G.R, Nicol D.. Geographic and microgeographic genetic differentiation in two aphid species over southern England using the multilocus (GATA) 4 probe. Mol. Eco., 1995, 4(3) : 375-384.
    [24] De Barro PJ, Sherratt TM, Carvalho GR et al. An analysis of secondary spread by putative cloned of Sitobion avenae within a Hampshire wheat field using the multilocus (GATA) 4 probe. Ins. Mol. Bio., 1994, 3(4) : 253-260.
    [25] Felsenstein J. Phylogenies from molecular sequences: inferences and reliability. Annu. Rev. Genet. , 1988, 22: 521-565.
    [26] Flook PK, Rowell CHF, Gellissen G.. The sequence, organization and
    
    evolution of the Locusta migratoria mitochondrial genome. J. Mol. Evol., 1995, 41:928-941.
    [27] Flook PK, Rowell CHF.. Inferences about orthopteroid phylogeny and molecular evolution from small subunit nuclear ribosomal DNA sequences. Insect Mol. Biol., 1998 , 7(2) : 163-178.
    [28] Foottit R, Galvis C, Bonen L. The application of mitochondrial DNA analysis in aphid systematics. Ada Phytopathologica el Entomologica Hunarica, 1990, 25:211-219.
    [29] Gatesy, J., DeSalle, R.and Wheeler, W. Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Mol. Phylogemt. Evol. 1993, 2: 152-157.
    [30] Ghosh AK. The fauna of India and Adjacent countries. Homoptera Aphidoidea Part I. General introduction and subfamily Chaitophorinae. Zool. Survey India, 1980, IX: 1-124.
    [31] Ghosh AK. The fauna of India and Adjacent countries. Homoptera Aphidoidea. Part 6. Subfamily Greenideidae. Zool Survey India, 1993, XIV: 1-330.
    [32] Gimeno C, Belshaw R, Quicke DLJ. Phyolgenetic relationships of the Alysiinae/Opiinae (Hymenoptera: Braconidae) and the utility of cytochrome b, 16S and 18S D2 rRNA. Insect Mol. BioL, 1996, 6(3) : 273-284.
    [33] Harris H. Enzyme polymorphism in man. Proc. Royal Soc. London B, 1997, .164:298-310.
    [34] Heie OE. Studies on fossil aphids (Homoptera: Aphidoidea), especially in the Copenhagen collection of fossils in Batic amber. Spolia Zool. Mus. Haun., 1967, 26.
    [35] Heie OE.. The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. I. Fauna Entomo. Acand., 1980, 9:1-236.
    [36] Heie OE. The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. II. The family Drepanosiphidae. Fauna Entomo. Acand., 1982, 11: 1-176.
    [37] Heie OE. The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. III. The family Aphididae: subfamily Pterocommatinae and tribe Aphidini of subfamily Aphidinae. Fauna Entomo. Acand, 1986, 17:1-314.
    [38] Higuchi H. A taxonomic study of the subfamily Callipterinae in Japan (Homoptera: Aphididae). Ins. Mat., 1972, 35(2) : 19-126.
    
    
    [39] Hillis D M, Moritz C. A overview of applications of molecular systematics. In: Hillis DM, Mortitz C eds. Molecular systematics. Sunderland, Massachusetts: Sinauer Associates Inc. 1990, 502-515.
    [40] Hillis DM, Dixon T. Ribosomal DNA: molecular evolution and phylogenetic inferences. Quart. Rev. Biol, 1991, 66: 411-453.
    [41] Kim J.. Improving the accuracy of phylogenetic estimation by combining different methods. Syst. Biol., 1993, 42: 331-340.
    [42] Kuperus WR, Chapco W. Usefulness of internal transcribed spacer regions of ribosomal DNA in Melanopline (Orthoptera: Acrididae) systematics. Ann. Ent. Soc. Am., 1994, 87: 752-758.
    [43] Kwon OY, Kimihiro OGINO et al. The longest 18S ribosomal RNA ever known nucleotide sequence and presumed secondary structure of the 18S rRNA of the pea aphid, Acyrthosiphpn pisitm. Eur. J. Biochem., 1991, 202: 827-833.
    [44] Lewentin RC.. A molecular approach to the study of genetic hetrozygosity in natural populations. II. Amount of variation and degree of hetrozygisity in natural populations of Drosphila pseudoobscura. Genetics, 1966, 54: 595-609.
    [45] Liu H, Beckenbach AT. Evolution of the mitochondrial oxidase II gene among 10 orders of insects. Mol. Phyl. Evol., 1992, 1: 41-52.
    [46] Lupoli R et al. A ribosomal DNA probe to distinguish populations of Rhopalosiphum maidis (Homoptera: Aphididae). Ann. Appl. Biol.,, 1990,117: 3-8.
    [47] Martin JA, Pashley DP. Molecular systematic analysis of butterfly family and some subfamily relationships (Lepidoptera: Papilionidae). Ann. Ent Soc. Am., 1992, 85: 127-135.
    [48] Martinez D et al. Mitochondrial DNA variation in Rhopalosiphnm padi (Homoptera: Aphididae) populations from four Spanish localities. Ann. Entomo. Soc. Amer., 1992, 85: 241-246.
    [49] Miller BR, Crabtree MB, Savage HM. Phylogenetic relationships of the Culicomorpha inferred from 18S and 5. 8S ribosomal DNA sequences (Diptera: Nematocera). Insect Mol Biol, 1997, 6(2) : 105-114.
    [50] Miyamoto MM, Cann L, Allen D et al. Phylogenetic relationships of humans and African apes as ascertained from DNA sequences (7. 1 kilobase pairs) of
    
    the globin region. Science, 1987, 238:369-373.
    [51] Moran NA, Kaplan ME, Gelsey MJ et al. Phylogenetics and evolution of the aphid genus Uroleucon based on mitochondrial and nuclear DNA sequences. Syst.Ent., 1999, 24:85-93.
    [52] Nei M.. Molecular Evolutionary Genetics .Columbia University Press, New York. 1987.
    [53] Nuttall, G.HF. Blood Immunity and Blood Relationship. Cambridge University Press, Cambridge. 1904.
    [54] Paskewitz SM, Wesso DM, Collins FH. The internal transcribed spacers of ribosomal DNA in five members of Anopheles gambiae species complex. Insect Mol. Biol, 1993, 2: 247-257.
    [55] Porter C H, Collins FH.. Species-diagnostic differences in a ribosomal DNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi ( Diptera: Culicidae). Am. J. Med Hyg., 1991, 45: 271-279.
    [56] Powers TO.et al. Mitochondrial DNA divergence among greenbug (Homoptera: Aphididae) biotypes. Ann. Ent. Soc. Am. 1989, 82: 298-302.
    [57] Puterka G. J et al. Genetics variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers. Heredity 1993, 70:604-618.
    [58] Remaudiere G, Remaudiere M. Catalogue of the world's Aphididae. INRA, Paris, 1997, 1-473.
    [59] Simon C, Frati F, Beckenbac A, Cresp HB, Liu B, Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequence and a compilation of conserved chain reaction primers. Mol. Biol. Evol., 1994, 4: 406-425.
    [60] Sogin ML. Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs. Amer. Zool., 1989, 23: 53-60.
    [61] Tautz D, Hancock JM, Webb D et al. Complete sequences of the rRNA genes of Drosophila melanogaster. Mol. Biol. Evol., 1988, 5(4) : 336-376.
    [62] Tomiuk J et al. Enzyme variability in populations of aphids. Theor. Appl. Gen., 1980, 57:125-127.
    
    
    [63] Vanlerebrghe-Masutti F et al. Hostbased genetic differentiation in the aphid, Aphid gossypii, evidenced from RAPD fmgerpints. Mol. Eco. 1998, 7(7) : 905-914.
    [64] Von Dohlen CD, Moran NA, Von Dohlen CD. Molecular phylogeny of the Homptera : A paraphyletic taxon. J. Mol. EvoL, 1995, 44(2) : 211-223.
    [65] Vos P , Rogers, Reijians RM, M., Lee, T. V. de, Homes, M.,Frijters ,A., Pot, J., Peleman, J., Kuiper ,M.,Azbeau,M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Reseach, 1995, 23(21) : 4407-4414.
    [66] Vossbrinck CR, Friedman S. A 28S ribosomal RNA phylogeny of certain cyclorrhaphous Diptera based upon a hypervariable regions. Syst. Ent., 1989, 14:417-431.
    [67] Wainright PO, Hinkle G., Sogin ML, Stickel SK. Monophyletic origins of the Metazoa: an evolutionary link with fungi. Nature, 1993, 260: 340-342.
    [68] Weller SJ, Friedlander TP, Martin JA et al. Phylogenetic studies of ribosomal RNA variation in higher moths and butterflies (Lepidoptera: Ditrysia). Mol. Phyl. Evol., 1992, 1:312-337.
    [69] Williams JG.K et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 1990, 18: 6531-6535.
    [70] Woese C R. Bacterial evolution. Microbio. Rev., 1987, 51: 221-271.
    [71] Zhang GX, Zhong TS. Economic insect fauna of China. Fasc. 25: Homoptera: Aphidinea, Part I. Beijing: Science Press, 1983, 387pp.
    [72] Zhang YP, Ryder OA. Mitochondrial DNA sequence evolution in the Arctoidea. Proc. Natl. Acad. Sci. USA, 1994, 90: 9557-9561.
    [73] Zhang YP, Ryder OA. Phylogeny relationships of bears (the Ursidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol., 1994, 3: 351-359.
    [74] Zou CH, Yang XW et al. Repeat sequence primer-PCR study on DNA polymorphism of geographic populations of cotton aphid, Aphid gossypii in China. Entomo. Sin., 2000, 7(4) : 315-321.
    [75] Zuckerkandi E, Pauling , L. Molecular disease, evolution and genie heterogeneity. In M.Kasha & B.Pullman eds. "Horizons in Biochemistry". Academic Press, New York. 1962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700