角倍蚜线粒体基因组全序列及进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
五倍子蚜属于昆虫纲Insecta同翅目Homoptera瘿绵蚜科Pemphigidae五节根蚜亚科Fordinae昆虫,是具有重要经济意义的蚜虫。其生活周期为转主寄生,且寄主较为单一,寄生性较强。五倍子蚜的夏寄主为漆树科盐肤木属植物,它们为盐肤木、青麸杨和红麸杨;冬寄主以苔藓类植物为主,其中以匐灯藓科、青藓科等苔藓植物居多。五倍子蚜在东亚及北美均有分布,其中在我国分布有6属14种。而角倍蚜Schlechtendalia chinensis是五倍子蚜分布最广、产量最多、应用最广的蚜虫类群,其夏寄主仅为盐肤木一个种,冬季主是以侧枝匐灯藓为主的匐灯藓科苔藓。角倍蚜在分子水平的研究较少,还未见有对其线粒体DNA全基因组序列的研究报道。
     线粒体是生物体中重要的细胞器,它与有氧呼吸、细胞衰老、能量代谢和细胞凋亡等过程。动物线粒体基因组通常为一个闭合状的环状DNA链,大小通常在15-20kb左右。线粒体基因组通常包含蛋白质编码基因(PCG)、转运RNA(tRNA)、核糖体RNA(rRNA)、非编码控制区(Control Region)或者A+T富含区(A+T-rich region),其中部分蛋白质编码区和A+T富含区较为保守,因此线粒体DNA全基因组的测定对该物种分子方面的研究有着重要意义。
     本研究以角倍蚜为实验材料,利用常规PCR技术与克隆技术对其线粒体DNA全基因组进行测定,主要结果如下:
     1.测得角倍蚜线粒体DNA全基因组序列长为15,568bp(其中一段序列还未测通),为一个闭合的环状双链DNA分子。该线粒体基因组含有37个基因,其中包括了13个蛋白质编码区基因、22个tRNA基因、2个rRNA基因以及A+T富含区。在各个编码区域中,AT%的含量也有不同,但是从总体情况来看,AT%的含量还是比较高的,达到了83%,这是昆虫线粒体DNA基因的共有特征。从各个编码区的组成看,非编码区(A+T rich)的AT%为88.6%,是所有编码区中最高的,即使是AT%含量最少的蛋白质编码区也达到了78.0%。
     2.在角倍蚜线粒体DNA蛋白质编码区中,均是由ATA、ATG、ATT和TAA作为起始密码子,而终止子也是有T、TAA和ATG三种,其中终止密码子T会在转录过程中补全,形成一个完整的密码子。在所有的编码区中,Cytb、COⅠ、COⅡ、 COⅢ保守性较好。
     3.在rRNA序列中,碱基含量占到线粒体基因组碱基总量的6.5%。利用tRNAscan-SE在线预测得到的角倍蚜线粒体DNA基因组中含有22个tRNA,与其他蚜虫含量一致。在测得到的tRNA中,长度大概在60-70bp之间,总量占到全基因组的14.5%。在所有的tRNA中有5个tRNA基因(Asp、Ala、Glu、 Thr和Trp)定位在轻链(L)上。它们均可折叠为三叶草结构。
     4.从GenBank下载豌豆蚜与麦二叉蚜线粒体DNA全基因组序列,与角倍蚜进行比较分析,结果显示:在基因组长度结构方面,豌豆蚜全线粒体基因组比角倍蚜和麦二叉蚜长,原因为豌豆蚜线粒体基因组分散着两个A+T富含区;在结构组成方面,比较明显是ND2位置的不同以及豌豆蚜含有两个A+T富含区;在碱基含量方面,三种蚜虫的含量也基本保持一致;在蛋白质编码区的起始、终止密码子方面,三种蚜虫的起始密码子大部分是ATA、ATG、TAA和ATT四种,而终止密码子除了均含有是TAA与ATG两种外,角倍蚜的ND1和ND2还含有T为终止密码子,这也符合昆虫线粒体DNA的特征。对三种蚜虫结构的进化分析得出,最早进化的豌豆蚜含有两个A+T富含区,但在蚜虫在长期的进化过程中编码区发生了缺失,由此造成了进化时间较晚的角倍蚜缺失了一个A+T富含区。另外,ND2和部分tRNA的位置转换也可以对物种的进化起到促进作用。
The Rhus gall aphids (Insecta, Homoptera, Pemphigidae, section five root aphid subfamily Fordinae) is the important economic aphids for their applications in the area of medical and chemical industry. In their life cycles, the Rhus gall aphids transfer hosts between the primary hosts-Rhus species and the secondary hosts-moss species. This aphid group includes6genus14species, and mostly distribute in East-Asia exception for one species in North Amarica, among which the species Schlechtendalia chinensis is widely distributed. Its primary host is Rhus chinensis, and the secondary host is Mniaceae. Until now, the research on the complete mitochondrial genome of Schlechtendalia chinensis has not been reported.
     In cell biology, a mitochondrion (plural mitochondria) is a membrane enclosed organelle found in most eukaryoticcells, whose size is around15-20kb. Mitochondria are sometimes described as "cellular power plants" because they generate most of the cell's supply ofadenosine triphosphate (ATP), used as a source of chemical energy. Mitochondrial genome usually contain protein coding genes (PCG), transfer RNA (tRNA), ribosomal RNA (rRNA), Control Region or A+T rich. The part of the protein coding region and A+T rich area is more conservative, so the complete mitochondrial genome has important significance for the research of molecular.
     In this study, we sequenced the complete mitochondrial genome sequence of Schlechtendalia chinensis by PCR technology and cloning method. The main results are as following:
     1. The whole mitochondrial genome sequence of Schlechtendalia chinensis is15,568bp (one fragment was not obtained), which is a closed circular double-stranded DNA structure. The mitochondrial genome contains37genes, including13protein coding genes,22tRNA genes,2rRNA gene and an A+T rich. In the coding region, the content of AT%is high (reaching83%), which comform the common characteristic of insect mitochondrial gene. From the composition of protein coding region, the AT%of A+T rich is88.6%, which is the highest of the coding regions.
     2. All the13protein coding genes are observed to use ATA, ATG, ATT and TAA as initiation codon. And the terminators are T, TAA and ATG, respectively. In the coding regions, Cytb, COI, COII, COIII are conserved. The rRNA sequences account for6.5%of the total mitochondrial genome.
     3. Using the tRNAscan-SE online, the22tRNA are consistent with other aphids. The length of tRNA is about60-70bp. In all the tRNA, there are5tRNA genes (Asp, Ala, Glu, Thr and Trp) positioned in the light chain (L). All the tRNAs are folded in the form of a typical clover leaf structure.
     4. From the GenBank, we download the whole mitochondrial genome sequences of the two aphids species Acyrthosiphon pisum and Schizaphis graminum. Comparing with the two sequences, the following results were obtained:First, the length of Acyrthosiphon pisum mtDNA genome sequence is longer than the other two. Second, the A+T rich region and ND2of Schlechtendalia chinensis is different with other aphids. Finally, in case of the initiation and termination codon, the three species of aphids are the same, except for the ND1and ND2of Schlechtendalia chinensis using T as termination codon. The genome organization of Acyrthosiphon pisum is different from Schlechtendalia chinensis, suggesting that the evolution of Acyrthosiphon pisum is earlier than others. In addition, the location of ND2and tRNA also played a positive role in the evolution of aphids.
引文
[1]Gabaldon T., Huynan M. A. Reconstruction of the proto-mitochondrial metabolism[J]. Science,2003,301(33):609-609.
    [2]Wei Y. H., Lee H. C. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging 1[J]. Experimental Biology and Medicine,2002, 227(9):671-682.
    [3]Brand M. D. Regulation analysis of energy metabolism[J]. Journal of Experimental Biology,1997,200(2):193-202.
    [4]Kroemer G., Dalleporta B., Resche-Rigon M. The mitochondrial death/life regulator in necrosis and apoptosis[J]. Annual Reviews of Physiology,1998,60:619-642.
    [5]Nass M. M. K., Nass S. Intramitochondrial fibers with DNA characteristics[J]. The Journal of Cell Biology,1963,19(3):593-611.
    [6]Crozier R. H., Crozior Y. C. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome ogrnaization[J]. Genetics,1993,113:97-117.
    [7]Anderson S. Sequences and organization of the human mitochondrial genome[J]. Nature,1981,29:457-465.
    [8]Jeyaprakash A., Hoy M. A. The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda:Chelicerata:Acari:Phytoseiidae) is unexpectedly large and contains several novel features[J]. Gene,2007, 391(1-2):264-274.
    [9]Okimoto R., Macfarlane J. L., Clary D. O., Wholstenholme D. R. The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum[J]. Genetics Society of American,1997,130(3):471-498.
    [10]Wolstenholme D. R., MacFarlan J. L., Okimoto R., Clary D. O., Wahleithner J. A. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms[J]. Proc. Nat.l Aead. Sci,1987,84:1324-1328.
    [11]Valverde J. R., Marco R., Garesse R. A conserved heptamer motif for ribosomal RNA transcription termination in animal mitochondria[J]. Proc. Natl. Acad. Sei., 1949,91:368-371.
    [12]Liu H., Tzeng C. S., Tang H. Y. Sequence variations in the mitochondrial DNA control region and their implications for the phylogeny of the Cypriniformes[J]. Candian Journal of Zoology,2002,80(3):569-581.
    [13]Crochet P. A. Desmarais E. Slow rate of evolution in the mitochondrial control region of Gulls(Aves:Laridae). Molecular Biology and Evolution,2000,17(12):1797-1806.
    [14]Anderson S., De Burjin M. H. L., Coulson A. R. Complete sequence of bovine mitochondrial DNA[J]. J. Mol. Biol.,1982,156:683-717.
    [15]Bibb M. J., Van Etten R. A., Wright C. Sequence and gene organism of mouse Mitochondrial DNA[J]. Cell,1981,26:167-180.
    [16]Brown W. M., Geroge M., Wilson A. C. Rapid evolution of animal mitochondrial DNA[J]. Proc. Natl. Acad. Sei.,1979,76(4):1967-1971.
    [17]Oliveira M. T., Barau J. G., Junquaira A. C. M., Feijao E. C., da Rosa A. C., Abreu C. E., Azeredo-Espin A. M. L., Lessinger A. C. Structure and evolution of the mitochondrial genomes of Haematobia irritans and Stomoxys calcitrans: The Muscidae (Diptera:Calyptratae)perspective[J]. Molecular Phylogenetics and Evolution,2008b,48(3):850-857.
    [18]Bailard J. W. O., James A. C. Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global abundance and population history in Drosophila siraulans[J]. Proc. Natl. Acad. Sei.,2004,271(144):1197-1201.
    [19]Brown W. M. Restriction endonuclease cleavage map of animal mitochondrial DNAs[J]. Proc. Natl. Acad. Sci.,1974,71:4617-4634.
    [20]Bresch H. E. Hybridization and introgression among species of sunfish (Lepomis): analysis by mitochondrial DNA and allozyme markers[J]. Genetics,1984,108: 237-255.
    [21]Michaclis G. S. Mitochondrial DNA copy number in a bovine ocytes and somatic cell[J]. Dev Biol,1982.97:246-51.
    [22]Avise J. C. and Lansmen R. A. Polymorphism of mitochondrial DNA in populations of high animal. In:Nei M and Koehnl, R K(eds.)Evolution of genes and proteins[J]. Sinacer Associates. Sunderland. Mass.,1983,65:138.
    [23]Fisher C., Skibinski D. Sex-biased mitochondrial DNA heteroplasmy in the marine mussel Mytilus[J]. Proc R Soc LondB,1990,242:387-395.
    [24]Marco P., Vilerio S., Gender-associated mitochondfial DNA heteroplasmy in the venefid clam Tapes philippinarum (Mullusca Bivalvia) [J]. Curt Genet,2001,39: 117-124.
    [25]张亚平,施立明.动物线粒体DNA多态性的研究概况[J].动物学研究,1992,13(3):289-298.
    [26]Lavrov D. V., Boore J. L., Brown W. M. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rear rangements:Duplication and nonrandom loss[J]. Mol. Biol. Evol,2002,19(2):163-169.
    [27]Moritz C., Brown W. M. Tandem dupfieations in animal mitochondrial DNA: Variations in incidence and gene content among lizards[J]. Proc. Natl. Acad. Sci., 1987,84:183-187.
    [28]Boore J. L., Brown W. M. Big flees from little genomes:mitochondrial gene order as aphylogenetictool[J]. Curr. Opin. Genet,1998,8:668-674.
    [29]Dowton M., Castro L. R., Campbell S. L., Bargon S. D., Austin A. D. Frequent mitochondrial gene rearrangements at the hymenopterart ND3-ND5 junction[J]. J. Biol. Evol,2003,56:517-526.
    [30]Cantatore P., Gadelata M. N., Roberti M., Sacone C, Wilson A. C. Duplication and remoulding of tRNA genes during the evolutionary rearranegemnt of mitochondrial genomes[J]. Nature,1987,29:853-855.
    [31]Dowton M., Campbell N. J. H. Intramitochondrial recombination:Is it why some mitochondrial genes sleep around[J]. Trends Ecol. Evol.,2001,16(6):269-271.
    [32]卜云,郑哲民.Coll基因在昆虫分子系统学研究中的作用和地位[J].昆虫知识,2005,42:18-22.
    [33]陈丽梅,孔晓瑜,喻子牛,等.3种蛏类线粒体16S rRNA和COI基因片段的序列比较及其系统学初步研究[J].海洋科学,2005,29(8):27-32.
    [34]Thao M. L., Bauman L., Bauman P. Organization of the mitoehondrial genomes of whites, aphids, and psyllids (Hemiptera, ternorrhyncha)[J]. BMC Evol Biol,2004, 25(4):23-27.
    [35]Steward J. B., Beckenbach A. T. Insect mitochondrial genomics:the complete mitochondrial genome sequence of the Philaenus spumarius (Hemiptera:Auchenorrhyncha:Cercopoidae)[J]. Genome,2005,48(1):46-54.
    [36]Apostolos E., Zissis M., Costas T. Phylogenetic relationships among four species of Mullidae (Perciformes) inferred from DNA sequences of mitochondrial cytochrome b and 16s rRNA genes[J]. Biochemical Systematics and Ecology,2007,29:901-909.
    [37]刘亚军,喻子牛,姜艳艳.扇贝16S rRNA基因片段序列的多态性研究[J].海洋与湖沼,2002,33(5):477-483.
    [38]Anne L., McMillen-Jaekson, Theresa M. Genetic diversity in the mtDNA conffol region and population slructure in the pink shrimp Farfantepenaeus duorarum[J]. Journal of Crustacean Biology,2004,24(1):101-109.
    [39]Charrias, Papetti, Lukas R., Tomaso P., Rafael Z. Antarctic Fish Mitochondrial Genomes LackND6 Gene[J]. J. Mol Evol,2006,65:519-528.
    [40]Wood A. R., Apte S., MacAvoy E. S. A molecular phylogeny of the marine mussel genus Perna (Bivalvia:Mytilidae) based on nuclear (ITS 1&2) and mitochondrial (COI) DNA sequences[J]. Mol Phylogenet Evol,2007,44(2):685-698.
    [41]Ripan S., Malhi, Gillian R., Alison M. Mitochondrial DNA evidence of an early Hoiocene population expansion of threespine sticklebacks from Scotland[J]. Mol Phylogenet Evol,2006,40(1):148-154.
    [42]张广学,钟铁森.中国经济昆虫志[M],第25册,同翅目,蚜虫类.北京:科学出版社,1983:3一19.
    [43]张广学,陈小琳.瘿绵蚜科的系统发育研究(同翅目:蚜总科)[J].昆虫学报,1999,42(2):1-11.
    [44]夏定久,李志国.倍蚜寄主植物名录[J],林业科技通讯,1993,11:28-29.
    [45]张光学.乔格侠,钟铁森,张万玉.中国动物志[M],昆虫纲,第十四卷,同翅目,纩蚜科,瘿绵蚜科.北京:科学出版社,1999,256-273.
    [46]李永民.北美的五倍子[J].贵州农学院学报,1994,13(1):24-27.
    [47]朴春梅.五倍子的研究近况[J].中国民间疗法,2005,2:63-65.
    [48]唐觉.五倍子及其繁殖增产的途径[J].昆虫学报,1976,3:282-296.
    [49]张薇,徐景轶,武斌.高纯食品鞣酸的中试工艺研究[J].贵州工业大学学报(自然科学版),2008,5:74-77.
    [50]丘凤波.角倍蚜生物学观察[J].广西植保,1994,4:14-17.
    [51]杨子祥.五倍子(Homoptera:Aphididae)蚜虫的系统发育研究.中国林业科学研究院博士论文,2006,7.
    [52]Takagi G. life-cycle of Schlechtendalia chinensis (Bell) and its gall-formation by artificial inoculation with the stem-mother[J]. Zool. Mag.,1934,46:473-481.
    [53]Takada H. Does the Sexual Female of Schlechtendalia chinensis (BELL) (Homoptera:Pemphigidae) "Viviparously" Produce the Fundatrix[J]. Appl. Ent. Zool,1991,1:117-121.
    [54]Shaposhnikov G. Suborder Aphidinea-Aphids[J]. Bei Bienko's Keys to the Insects of the European Parts of the USSR,1964,1:489-616.
    [55]张广学.西北农林蚜虫志(昆虫纲,同翅目,蚜虫类)[M].北京:中国环境科学出版社,1999,1-563.
    [56]Von Dohlen C. D. and Moran N. A. Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation [J]. Biol. J. Linn. Soc,2000, 71:689-717.
    [57]Benjamin, Ortiz-Rivas, Andres M. Martinez-Torres, D. Molecular systematics of aphids (Homoptera, Aphididae), new insights from the long-wavelength opsin gene[J]. Mol. Phylogenet. EvoL,2004,30:24-37.
    [58]Moran NA. A 48-million-year-old aphid-host plant association and complex life cycle:Biogeographic evidence[J]. Science,1989,245:173-175.
    [59]邱明生,赵志模,徐学勤,等.角倍蚜与其寄主间营养关系的研究[J].西南农业大学学报,1996,6:613-617.
    [60]王定卿,王贤斌,明安觉,等.角倍蚜人工培育技术[J].湖北林业科技,2007,143:70-71.
    [61]Moran A. A 48-million-year-old aphid-host plant association and complex life cycle: Biogeographic evidence[J]. Science,1989,245:173-175.
    [62]杨子祥,陈晓鸣,冯颖,等.倍蚜种间亲缘关系及角倍蚜种群分化的RAPD分析[J].林业科学,2007,7:43-50.
    [63]Ren ZM, Zhu B, Zhong Y et al. Comparative population structure of Chinese sumac aphid Schlechtendalia chinensis and its primary host-plant Rhus chinensis[J]. Genetica,2008,132:102-112.
    [64]李继变,任竹梅.角倍蚜mtDNA Cyt b基因遗传多样性分析[J].复旦学报(自然科学版),2009,3:59-65.
    [65]田英芳,黄刚,郑哲民.一种简易的昆虫基因组DNA提取方法[J].陕西师范大 学学报(自然科学版),1999,4:82-84.
    [66]杨子祥,冯颖,陈晓鸣.一种有效的蚜虫基因组DNA提取方法[J].林业科学研究,2005,5:641-封三.
    [67]Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res., 1994,22:4673-4680.
    [68]Tamura K., Dudley J., Nei M. MEGA4:Molecular Evolutionary Genetics Analysis(MEGA)software version 4.0[J]. Mol. Biol. Evol,2007,24:1596-1599.
    [69]张方,米志勇.动物线粒体DNA的分子生物学研究进展[J].生物工程进展,1998,18(3):25-31.
    [70]Hua J., Li M., Dong P., Cui Y., Xie Q., Bu W. Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha(Insecta:Hemiptera: Heteroptera)[J]. Genomics,2008,9:610.
    [71]Shi Y. F., Shan X. N., Li J., Sequence and organization of the complete mitochondrial genome of the Indian muntjac(Muntiacus muntjak)[J]. Acta Zool. Sinica,2003,49:629-636.
    [72]Wolstenholme D. R. Animal mitochondrial DNA:structure and evolution[J]. International Review of Cology,1992,141:173-216.
    [73]Cao S Y, Wu X B, Yan P. Complete nucleotide sequences and gene organization of mitochondrial genome of Bufo gargarizans[J]. Mitochondrion,2006,6:185-193.
    [74]Boore J. L. Complete mitochondrial genome sequence of the polychete annelid Platynereis dumerilii[J]. Mol. Biol. Evol,2001,18:1413-1416.
    [75]汪泰初,刘朝良,肖林珍.线粒体基因组(mtDNA)的研究进展[J].安徽农业科学,2006,34(10):2068-2071.
    [76]陈复生,付承玉,汪泰初.动物线粒体基因分子系统学研究进展[J].安徽农业科学,2003,31(4):596-598.
    [77]Zardoya R. The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout, Oncorhynchus mykiss[J]. J. Mol. Evol.,1995,41(6):943-952.
    [78]任珊珊,姜丽云,乔格侠.蚜虫系统发育研究进展[J].动物分类学报,2006,31(2):304-410.
    [79]Jankerk A., Erpenbeck D., Nilsson M. et al. The mitochondrial genomes of the [guana(Iguana iguana)and the caiman(Caiman crocodylus):implications for amniote phylogey[J]. Proc. R. Soc. Lond. B.,2001,268:623-631.
    [80]Morrison C. L., Harvey A. W., Lavery Y.S., Cunningham C. K.. Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form[J]. Proc. R. Soc. Lond,2002,269:345-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700