固始鸡、丝毛乌鸡和鸵鸟中性粒细胞中抗菌肽分离纯化和部分性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采集新鲜固始鸡、丝毛乌鸡和鸵鸟血液,用0.83%氯化铵反复裂解红细胞,得到白细胞;采用腹腔注射酪蛋白生理盐水的方法,从固始鸡和丝毛乌鸡腹水中得到白细胞。将收集的白细胞,通过超声波充分破碎、乙酸浸提、低温高速离心、旋转蒸发除去乙酸、冷冻干燥等方法,得到固始鸡血液(GX)、丝毛乌鸡血液(WX)、鸵鸟血液(TX)、固始鸡腹水(GF)和丝毛乌鸡腹水(WX)抗菌肽粗提物。将得到的各粗提物,经过CM-Sepharose Fast Flow弱酸性阳离子交换层析和反相高效液相色谱(RP-HPLC)进一步纯化后,收集各组分并使用微量琼脂糖弥散法检测各组分的抗菌活性和最小抑菌浓度。
     粗提物抑菌试验结果表明,在固始鸡、乌鸡和鸵鸟中性粒细胞中存在天然抗菌物质,并表现出对金黄色葡萄球菌(革兰氏阳性菌)、大肠杆菌(革兰氏阴性菌)和真菌(白色念珠菌)较强的抑制作用;从腹水中提取的抗菌肽比血液中的抗菌肽表现较强的抗菌活性;乌鸡中性粒细胞抗菌肽表现出比固始鸡和鸵鸟中性粒细胞抗菌肽强的抑制作用;
     离子交换层析产物的抑菌试验结果表明,乌鸡、固始鸡和鸵鸟中性粒细胞中的抗菌物质是阳离子性质;和其它动物不同的是禽类阳离子抗菌肽主要作用于细菌,尤其是金黄色葡萄球菌(革兰氏阳性菌),对白色念珠菌(真菌)的抑制作用较大肠杆菌(革兰氏阴性菌)强;取离子交换层析产物(有活性的峰2),在沸水中处理5min~20min,在70℃~130℃处理30min,检测其对鸡大肠杆菌E.coli 078的抗菌活性。结果表明,固始鸡、乌鸡和鸵鸟中性粒细胞抗菌肽在100℃加热不同的时间,其抑菌圈直径没有明显的变化,在80~130℃条件下加热处理30min仍保持良好的抗菌活性,具有很好的热稳定性。
     RP-HPLC纯化后抑菌试验结果表明,从固始鸡和乌鸡中性粒细胞中提取得到抗菌肽,有较强的抗白色念珠菌(真菌)和金黄色葡萄球菌(革兰氏阳性菌)的作用,而对大肠杆菌(革兰氏阴性菌)的抑制作用,则需要较大的浓度;固始鸡中性粒细胞抗菌肽对白色念珠菌(真菌)的抑制作用要大于黄色葡萄球菌(革兰氏阳性菌),而乌鸡中性粒细胞抗菌肽对白色念珠菌(真菌)的抑制作用要小于黄色葡萄球菌(革兰氏阳性菌);与已报道的鸵鸟中性粒细胞抗菌肽相比,本研究从得到的鸵鸟中性粒细胞抗菌肽显示出更强的抑菌活性;
The fresh red blood cells of Gushi chicken, Wu chicken and ostrich were lysed by addition of 0.83% ammonium chlorid solution to the blood. Sterile peritoneal exudates were harvested from Gushi chicken and Wu chicken 6h after injecting saline witn starch, then the white blood cells were collected. The white blood cells were sonicated to release the neutrophil granules, these granules were suspended in acetic acid and mixed overnight to extract the antimicrobial peptides. The solution containing the peptides was seperated from the granules, freeze-dried and the crude extraction of Gushi chicken blood neutrophil antimicrobial peptides, Wu chicken blood neutrophil antimicrobial peptides, ostrich blood neutrophil antimicrobial peptides, Gushi chicken peritoneal neutrophil antimicrobial peptides and Wu chicken peritoneal neutrophil antimicrobial peptides were obtained. Iox-exchange chromatography and reversed phase high performance liquid chromatography (RP-HPLC) were used to seperated the components present in the crude extract. To determine whether the ion-exchange and RP-HPLC fractions displayed antimicrobial activity and the minimum inhibitory concentrations (MICs) the radial diffusion plate assay method was used.Use the radial diffusion plate assay method, the crude extracts' antimicrobial activity against Escherichia.coli 078, Staphylococcus.aureus 1056MRSA and Candida.albicans ATCC10231 were revealed. The results showed that there were antimicrobial matters in Gushi chicken, Wu chicken and ostrich neutrophil, and there were strongly active against all the bacteria strains above. The antimicrobial activity of antimicrobial peptides in peritoneal were stronger than that in blood, the antimicrobial activity of Wu chicken neutrophil antimicrobial peptides were stronger than Gushi chicken and ostrich neutrophil antimicrobial peptides.Use the radial diffusion plate assay method, the iox-exchange chromatography fractions' antimicrobial activity against Escherichia.coli 078, Staphylococcus.aureus 1056MRSA and Candida.albicans ATCC10231 were revealed. The results showed that Gushi chicken, Wu chicken and ostrich neutrophil antimicrobial peptides were cationic molecules. Different to other animals the avian cationic antimicrobial peptides were active against the bacteria, especially the Staphylococcus.aureus 1056MRSA, and the antimicrobial activity of the iox-exchange chromatography fractions against the Candida.albicans ATCC10231 were stronger than that against Escherichia.coli O78. The iox-exchange chromatography fractions (the active fraction 2) were dealed 5~20min at 100℃and 30min at 70℃~130℃, use the radial diffusion plate assay method, antimicrobial activity against Escherichia.coli O78 was tested.. The results showed that the clear zone of Gushi chicken, Wu chicken and ostrich neutrophil antimicrobial peptides had no distinctly changes at 100℃in different time, and the antimicrobial activity was still strong when the fractions were treated 30min at 70~130℃. The results indicated that the antimicrobial peptides have good character of hot stabilization.
     Use the radial diffusion plate assay method, the reversed phase high performance liquid chromatography (RP-HPLC) fractions' antimicrobial activity against Escherichia.coli O78, Staphylococcus.aureus 1056MRSA and Candida.albicans ATCC10231 were revealed. The results showed that Gushi chicken and Wu chicken neutrophil antimicrobial peptides had stronger activity against Staphylococcus.aureus 1056MRSA and Candida.albicans ATCC10231, but the activity against Escherichia.coli O78 need high concentration. The antimicrobial activity of Gushi chicken neutrophil antimicrobial peptides against Candida.albicans ATCC10231 were stronger than that of Staphylococcus.aureus 1056MRSA. But the antimicrobial activity of Wu chicken neutrophil antimicrobial peptides against Candida.albicans ATCC10231 were weaker than that of Staphylococcus.aureus 1056MRSA. Compared with the reported ostrich neutrophil antimicrobial peptides, the peptides of our research obtained have stronger activity.
引文
[1] Milner SM, Ortega MR. Reduced antimicrobial peptide expression inhumanbum wounds.Burns[J],1999;25(5):411-413.
    [2] Bals R, Wang X,M eegalla RL, et al. Mouse beta-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect Immun [J], 1999; 67(7): 3542-3547).
    [3] Bellm L, Lehrer RI Ganz T. Protegrins:new antibiotics of mammalian origin. Expert Opin Investig Drugs [J], 2000; 9 (8): 1731-42.
    [4] Hancock RE. Cationic an timicrobial peptides: towards clinical applications. Expert Opinlnvestig Drugs[J], 2000;9(8):1723-1729).
    [5] Boman H G, Nilsson I, Rasmuson B. Inducible antibacterial defense system in Drosophial [J]. Nature,1972,237:232-235.
    [6] Hultmark D, Engstrom A, Boman H G, et al. Inset immunity:Isolution and structure of cecropin D and four minor antibacterial components from cecropia pupae[J]. Eur J Biochen, 1982,127:207-217.
    [7] Boman H G, Wade D, Boman I A.Antibacterial and antimalaria properties of peptides that are cecropin-melittin hybrids[J]. FEBS Lett, 1989,259:103-106).
    [8] Robert EW Hancock. Cationic peptides:effectors in innate immunity and novel antimicrobials[J]. The Lancet infectious disease, 2001,1:156-164).
    [9] Robert EW Hancock, Gill Diomand. The role of cationic antimicrobial peptides in innate host defences[J]. Trends in Microbiology, 2000,1:156-164.
    [10] Hancock REW, Scoot MG. The role of antimierobial peptides in animal defences[J]. Proc Natl Acad Sci USA, 2000, 97: 8856-8861.
    [11] 马卫明,佘锐萍.抗菌肽的免疫机理及应用前景[J].世界农业.,2003,294(10):41-43).
    [12] Hancock REW, Lehrer RI. Cationic peptides: a new sourse of antibiotics[J]. Trends Biotechnol, 1998, 16(2):82-88.
    [13] 李恩民,刘维全,殷震.抗菌肽的特性及其应用前景[J].中国药理学通报,1998,14(3):209-211.
    [14] 马卫明,中国农业大学博士学位论文,2004.5,54-55.
    [15] Hoffrnan JA. Innate immunity in high insect[J]. Curr Opin Immunol.,1996,8(1):8-13.
    [16] Boman H G. Gene-encoded peptide antibiotics ang the concept of innate immunity: an update review[J]. Scand J Immunol. 1998,48(1):15-25.
    [17] Boman H G. Steiner H. Curr Top Microbiol Imuniol, 1981,94-95:75.
    [18] Steiner H D, Hultmark A, Engstrom H, et al. Sequence and specificity of two antibacterial involved insect immunity[J]. Nature, 1981, 292:246-248.
    [19] 黄自然,王少颐.注射大肠杆菌诱导柞蚕蛹血淋巴产生抗菌物质[J].华南农学学报,1981,2(2):65-68.
    [20] Qu XW, Steiner H, Engstrom H, et al. Insect Immunity: Isolation and structure of cecropin B nd D from pupae of the Chinese oak silkmoth[J], Antheraea pemnyi. Eur. J. Biochem, 1982,127:219-224.
    [21] 张双全,屈贤铭,戚正武等.昆虫免疫应答及抗菌肽应用前景[J].生物化学杂志,1987,3(1):11-18.
    [22] Morishima I, Suginaka S, et al. Comp. Biochem. Physiol. 1990,95B(3):551-554.
    [23] Lockey TD, Oouth DD. Formation of poles in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis vires larvae[J]. Eur J Biochem., 1996,236:263-271).
    [24] 郭华荣,张士璀,孔杰,等.中国家蚕抗菌肽基因的PCR扩增、克隆和序列测定[J].山东农业大学学报,1998,29(3):351-355.
    [25] 贾红武,张双全,戴祝英.家蚕抗菌肽对癌细胞的杀伤作用及其超微结构的观察.动物学研究[J],1996,18(3):325-331.
    [26] Hoffman, J.A., J.M. Reichart. Drosophila immunity[J]. Cell Biol., 1997,7:309-316.
    [27] 许玉澄,张双全,戴祝英.家蚕抗菌肽的抗癌作用[J].动物学研究,1998,19(4):263-268.
    [28] 戴祝英,张双全.昆虫抗菌肽研究进展[J].南京师大学报,1999,22(抗菌肽专集):2-15.
    [29] 陈留存,王金星,刘瑶,等.家蝇抗菌肽的分离纯化及性质研究[J].山东大学学报(自然科学版),2001,36(3):351-357.
    [30] Boman H G, Faye I, Lee J, et al. Eur. J. Biochem. FEBS,1991,201:23-31.
    [31] Salal H G, Pag U, Bonness S, et al. Mammalian defensins:structures and mechanism of antibioti cactivity[J]. J Leukoc Biol, 2005, 77:1-10.
    [32] Chang T L, Klotman M E. Defensins: natural anti-HIV peptides[J]. AIDS Rev, 2004,6(3):161-168.
    [33] Ganz T., Selsted M E., Lehrer R I. Defensins. Eur. J. Haematol, 1991, 44:1-8.
    [34] Gill Diomand, Michael Zmloff, Howard ECK, et al. Tracheal antimicrobial peptides, a cysteine-rich peptides from mammalian tracheal mucosa. Proc[J]. Natl. Acad. Sci. USA,1991,88:3952-3956.
    [35] Tang Y Q, Yaun J, Osapay G, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins[J]. Sience, 199,286:498-502.
    [36] 许琴英,朱家勇.防御素的研究及应用[J].药物生物技术,2005,12(2):121-124.
    [37] Dimarcq JL, Bulet P, Hetru C, et al. Cysteine-rich antimicrobial peptides in invertebrates[J]. Biopolymers (Peptide Science), 1998,47(6):465.
    [38] Bulet P, Hetru C, Dimarcq JL, et al. Hofmann Antimicrobial peptides insects: structure and function[J]. Dev Comp Immuno, 1999,23(4-5):329.
    [39] Fernandez de Caleya, R., B. Gonzalez-Pascual, F. Garcia-Olmedo, and P. Carbonero. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro[J]. Appl. Microbiol., 1972.23:998-1000.
    [40] Broekaert W. F., B. P. A. Cammue, M. F. C. Debolle, K. Thevissen, G. W. Desamblanx, and R. W. Osborn.. Antimicrobial peptides from plants[J]. Crit. Rev. Plant Sci., 1997,16:297-323.
    [41] Thevissen K, Warnecke DC, Francois IE, Dedensins from insects and plants interact with fungal glucosylceramides[J]. Biol Chem, 2004,279(6):3900.
    [42] Thevissen K, Osborn RW, Acland DP, et al. Specific binding sites for an antifungal plant defensin from uhlia (Uhlia merckii) on fungal cells are required for antifungal activity[J]. Mol Plant-Microbe Interact, 2000,13(1):54.
    [43] Thomma BP, Cammue BP, Thevissen K. Mode of action of plant defensins suggests therapeutic potential[J]. Curr Drug Targets Infect Disor,2003,3(1):1.
    [44] Anastasi A, Erspamer V, Bucci M, et al. Isolation and structure of bombesin and alytesin, two analogous active peptides from the skin of the European amphibian and alytes[J]. Experientia, 1971,27(2):166-167.
    [45] Preston SR, Woodhouse LF, Gokhale J, et al. Characterization of a bombesin/gastrin-releasing peptides receptor on a human gastriccancer cell line[J]. Intern J Cancer,1994,57(5):734-741.
    [46] Rinaldi A C. Antimicrobial peptides from amphibian skin: an expanding scenario ,Curr.Opin. Chem. Biol. 2002. 6:799-804.
    [47] 韦柳婵.抗菌肽的作用机理及其在畜牧生产中的应用[J].中国饲料,2004,5:32-33.
    [48] Conlon J M, Kolodziejek J, Nowotny N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents[J]. Biochim Biophys Acta, 2004,1696:1-14.
    [49] 过为,刘景晶.蛙皮素及其样肽与肿瘤的关系[J].药学进展,2005,29(10):453-458.
    [50] 王东旺.蛙皮素及其同类物与肿瘤的关系[J].现代诊断与治疗,2005,16(4):225-227.
    [51] 王硕丰,杨本明,李立标等.蜂毒素的药理作用研究及展望[J].天津药学,2003,15(4):53-57.
    [52] Haryadi Sugiarto, Pak-Lam, et al. Avain antimicrobial peptides: the defense role of β-defensins[J]. Biochemical and Biophysical Communications ,2004,323:721-727.
    [53] K.L. Donovan, N. Topley, What are renal defensins defending? [J] Nephron Exphrol. 2003,93:125-128.
    [54] G. Zasloff, Antimicrobial peptides of multicellular organisms, Molecular cloning and tissue expression of porcine β-defensin-1[J], FEBS Lett. 1998,424:37-40.
    [55] Evans E W, Beach G G, Wunderlich J, et al .Isolation of antimicrobial peptides from avian heterophils [J].J Leukoc Biol, 1994,56(5):661-665.
    [56] Harwig S S, et al. Primary structure of Gallinacin-1, an antimicrobial β-Defensins from chicken leukocytes[J]. Techniques in Protein Chemistry, 1994, (1): 81-88.
    [57] P.L. Yu, S.D. Choudhury, K. Ahrens, Purification and characterization of antimicrobial peptides, ostricain[J]. Biotechnol. Lett. 2001,23:207-210.
    [58] Zhao C, Nguyen T, Liu L, et al. Gallinacin-3, an inducible epthelial beta-defensin in the chicken[J]. Infect Immun,2001,69(4):2684-2691.
    [59] C. Thouzeau, Y. Le Maho, G. Froget, L. Sabatier, C. Le Bohec, J.A.. Hffmann, P. Bulet, Sphenicins, avian beta-defensin in preserved stomach contents of the king penguin, Aptenodytes patagonicus[J]. Biol. Chem. 2003,278:51053-510058.
    [60] Brockus C W, M W Jackwood, B G Harmon. Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow[J]. Anim. G enet, 1998.29: 283-289.
    [61] B.G. Harmon, Avain heterophils in inflammation and disease resistance[J]. Poult. Sci. 1998,77:972-977.
    [62] Clague MJ, Cherry RJ, A comparative study of band 3 aggregation in erythrocyte membranes by melittin and other cationic agents[J]. Biochem. Biophys. Acta, 1989,980:93-99.
    [63] Shai Y. Molecular recognition between membrane-spanning polypeptides[J]. Trends Biochem. Sci., 1994,20:460-464.
    [64] Harwig S S, K M Swiderek, V N Kokryakov, et al. Gallinacins:cysteine-rich antimicrobial peptides of chicken leukocytes[J]. FEBS Lett, 1994,342:281-285.
    [65] 张辉华,曹永长,毕英佐,等.鸡β-防御素cDNA的克隆与序列分析[J].中国预防兽医,2004,26(3):185-187.
    [66] P.L. Yu, S.D. Choudhury, K. Ahrens, Purification and characterization of the antimicrobial peptides, ostricacin[J]. Biotechnol. Lett, 2001,23: 207-210.
    [67] ugiarto H, Park-Lam Yu. Identification of three novel ostricacins: an update on the phylogenetic perspective of β-defensins[J], Antimicrob Agents. 2006,27(3): 229-235.
    [68] 安贤惠,吕毅,李卫国等.中国对虾PC-Ⅲ系列抗菌肽的分离纯化及活性.动物学研究,2005,26(4):410-415.
    [69] 谢智,黄颖桢,张洋等.沼水蛙皮肤中抗菌肽的分离纯化与活性测定.福州大学学报(自然科学版),2004,32(6):759-762.
    [70] 赵伟业,董碧蓉,周焱.兔防御素对耐药绿脓杆菌的抗菌活性及机制研究.四川大学学报 (医学版),2005,36(1):83-85.
    [71] 崔东波,郑彦杰,王运吉等.蚯蚓抗菌肽的分离.大连轻工业学院学报,2004,23(4):265-268.
    [72] 王莉莉,潘小玲,黄宁等.人子宫内膜粘液抗菌多肽的分离纯化.四川生理科学杂志,2004,26(1):5-6.
    [73] 刘静,王军,姚建铭等.枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化.微生物学报,2004,44(4):511-514.
    [74] 张希春,孙振钧,黄锦等.蚯蚓抗菌肽EABP-1的分离纯化及部分性质.应用环境生物学报,2002,9(1):36-38.
    [75] 盛长忠,安春菊,耿华等.一种家蝇幼虫热稳定抗菌肽的分离纯化.南开大学学报(自然科学),2002,35(4):6-10.
    [76] 王永杰,齐名.连续酸-尿素-聚丙烯酰胺凝胶电泳制备人和兔中性粒细胞防御素各组分.医学研究生学报,2001,14(2):106-109.
    [77] 蒋献,冉玉平,黄宁等.家兔中性粒细胞防御素的纯化及其对念珠菌抗菌活性的研究.四川大学学报(自然科学版),2001,38(2):239-242.
    [78] Michael. E. Sclsted, Yi-Quan Tang, Wcndy L. Morris et al. Purification, Primary Structures, and Antimicrobial Activities of β-Defensins, a New Family of Antimicrobial Pcptides from Bovine Neutrophils. The Journal of Biological Chemistry, 1993, 268(9):6641-6648.
    [79] Charlotte Troffers, Liying Chen, Rachel C et al. Isolation and characterization of anrimicrobial peptidcs from deer neutrophils. International Journal of Antimicrobial Agents,2005,26:165-169.
    [80] Steinberg DA, Hurst MA, Fujii CA, et al. Protegrin-1: broadspectrum, rapidly microbicidal peptide with in vivo activity[J]. Antimicrob Agents Chemother, 1997,41:1738-1742.
    [81] Kidkae T, Hirata M, Yamasu H, et al. Protective effects of a human 18-kilodalton cationic antimicrobial protein (CAP18)-derived peptide against murine endotoxemia[J]. Infect Immun, 1998, 66(5):1861-1868.
    [82] oury D, Embree JR, Steinberg DA, et al. Effect of local application of the antimicrobial peptide IB-367 on the incidence and severity of oral mucositis in hamsters[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1999,87(5):544-551.
    [83] Biragyn A, Surenhu M, Yang D, et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens[J]. J Immunol, 2001,167(11):6664-6653.
    [84] Yams S, Rosen JM, Cole AM,et al. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice[J]. Proc Natl Acad Sci, USA, 1996,93:14118-14121.
    [85] Jaynes JM, Nagpala P, Destefano Beltrant L. Expression of a Cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial With caused by Pseudomonas solanacearum[J]. Plant Sci., 1993, 89:43-53.
    [86] 温刘发,何丹林,张常明,等.抗菌肽酵母制剂的生产及其作饲料添加剂应用价值的探讨[J].广东蚕业,2001,35(2):34-36.
    [87] 温刘发,何丹林,张常明,等.抗菌肽酵母制剂作为饲料添加剂的应用前景[J].中国饲料,2001,23:22-23.
    [88] Lehrer R I, Rosenman M, Harwig SSL et al. Ulteasensitive assay for endogenous antimicrobial peptides[J]. J Immunol Meth, 1991, 137:167.
    [89] 汪家政,范明等.蛋白质技术手册,科学出版社,2000:189-197.
    [90] 马卫明,猪小肠抗菌肽分离鉴定及其生物活性研究,中国农业大学,博士学位论文,2004,5:53.
    [91] Steinberg DA, Lehrer RI. Designer assays for antimicrobial peptides.In: Shafer WM, editor. Methods in molecular biology, Vol.78: antimicrobial peptide protocols. Totowa, NJ: Humana Press Inc.;1997.
    [92] 程光潮,黄凡美,周勤宣等.中国地方鸡种种质特性[M],上海科技出版社,2000.10:166-167.
    [93] Boman H G. Antimicrobial peptides: key components needed in immunity[J]. Cell, 1991, 65:205-207.
    [94] Zasloff M. Antirnicrobial peptides as mediators of innate immunity[J], Curr Opin Immunol, 1992,(4):3-7.
    [95] Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel family with a common proregion and a variable C-terminal antimicrobial domain[J]. FEBS Letters, 1995, 374: 1-5.
    [96] Hancock R E, Diamond G. The role of cationic antimicrobial peptides in innate host defences[J], Trends in Microbiology, 2001, (9):402-410.
    [97] Raj D A, Dentino A R. Current status of defensins and their role in innate and adaptive immunity[J]. FEMS Microbiology Letters, 2002, 206: 9-18.
    [98] Hancock R E, Diamond G. Cationic antimicrobial peptides: towards clincle applications[J]. Exp Opin Ivert Drugs, 2000, 9:1723-1729.
    [99] 王俊,周红.生物抗菌肽及其抗菌活性与中和内毒素作用[J].四川生理科学杂志,2004,26(4):190.
    [100] Haryadi Sugiarto, Pak-Lam Yu, et al. Avain antimicrobial peptides: the defense role of β-defensins[J]. Biochemical and Biophysical Communications. 2004,323:721-727.
    [101] 李桂平,陈仪本.棉铃虫幼虫抗菌肽的初步研究[J].微生物学通报.2005,32(5):122-126.
    [102] 刘忠渊,张富春,蔡伦等.新疆家蚕抗菌肽(Cecropin-XJ)特性的研究[J].新疆农业科 学,2004,41(专刊):26-31.
    [103] 陈青,张源淑,王金生等.牛乳酪蛋白来源新型抗菌肽抗菌活性的初步研究[J].Animal Husbandry and Veterinary Medicine,2005,37(8):38-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700