金属纳米颗粒对中药有机成分蛇床子素和稀土离子(Eu~(3+))发光影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统介绍了金属纳米颗粒的制备、表征以及应用,回顾了研究金属纳米颗粒局域表面等离子体共振特性常用的理论模型、理论方法和模拟软件做了简要的回顾。金属的材料特性、形状、尺寸等都是影响金属纳米颗粒光学特性的关键因素,纳米颗粒和荧光物质之间的距离也是影响荧光物质发光强度的主要参数。荧光物质的选择又分为有机物和无机物。本文在研究金属纳米颗粒局域表面等离子体共振(LSPR)特性的基础上,就金属纳米颗粒对中药有机成分蛇床子素的荧光淬灭现象,金属纳米颗粒对稀土离子铕离子的发光影响,从理论和实验两个方面做了系统的研究和分析。其主要内容如下:
     一:我们先用FDTD软件模拟了金属银纳米颗粒的LSPR特性,就颗粒的尺寸、形状、外界折射率等几个方面分析了影响银纳米颗粒局域表面等离子体共振特性变化的因素。同时指出,颗粒的形状对影响金属纳米颗粒LSPR共振峰位置的影响远大于其它几个因素。根据银纳米颗粒的LSPR特性,我们模拟了不同外界折射率条件下,半径为12nm的球形银纳米颗粒共振峰的变化,说明纳米颗粒作为LSPR探测器的探测潜力。
     研究了不同浓度下白芷水溶液的荧光光谱以及不同pH值下白芷荧光光谱的变化。在白芷稀溶液的浓度由0.075mg/ml变化为2.5mg/ml的范围内,荧光强度和浓度呈线性正比关系。通过不同pH值下白芷溶液荧光现象的分析,验证了香豆素类化合物是白芷的主要荧光成分。计算了荧光量子产率,为白芷以后的研究提供了一个定量分析数据。研究了在球形银纳米颗粒存在条件下,中药白芷的荧光淬灭现象,并对现象产生的原因给出了简单解释,就淬灭现象得出更大范围内荧光强度和浓度的线性关系。
     二:通过荧光光谱、吸收光谱以及时间积分荧光光谱实验,研究了在银纳米颗粒的尺寸由5nm增加到25nm的过程中,中药有机成分蛇床子素荧光淬灭程度的变化。随着银纳米颗粒尺寸的增加,荧光分子荧光淬灭程度逐渐减弱。从辐射和无辐射衰减速率的角度出发对此现象做出了合理解释,利用Gersten-Nitzan模型从理论上分析了纳米颗粒对荧光分子发光强度的改变,实验和理论一致性很好。研究表明:动态淬灭和静态淬灭都是造成荧光分子荧光淬灭的原因。
     三、研究了半径为12nm的球形银颗粒和半径为20nm的球形金颗粒对稀土复合物Eu(TTFA)3发光的影响。当入射光波长为350nm时,掺杂银纳米颗粒的铕离子在612nm处的发光强度可增加2.5倍。除了满足纳米颗粒局域场增强外,纳米颗粒局域表面等离子体共振光谱和荧光分子吸收光谱的重叠度也是激发场增强荧光物质发光的另一个重要因素。通过准静态近似理论模拟了在平面波照射下单个金属纳米颗粒周围的场分布情况。当入射光波长等于金属纳米颗粒局域表面等离子共振波长时,场增强因子可最大。
In this work, we firstly introduced the preparation, characterization and application of the metal nanoparticles, and then made a brief review on the theoretical models, theoretical methods and simulation software to study metal nanoparticles localized surface plasmon resonance characteristics. Metallic material properties, shape, size, etc. are the key factors for affecting the optical properties of metal nanoparticles. The distance between the fluorescent substances and nanoparticles are also the main parameters to affect the fluorescence emission intensity of fluorescent substances. The selection of the fluorescent substance is divided into organic and inorganic. Based on the study of the localized surface plasmon resonance(LSPR) characteristics of the metal nanoparticles, we made a systematic theoretical and experimental study for the fluorescence quenching phenomenon of the Chinese organic ingredients osthole, and the luminescence of europium ion under the presence of the nanoparticles. The main contents are as follows:
     (1) We firstly simulated the LSPR characteristics of the silver metallic nanoparticles by FDTD software, and analysed the changes of the localized surface plasmon resonance of the silver nanoparticles from the particle size, shape, the external refractive index and other aspects. We also pointed out that the effect of particle shape on the metal nanoparticle LSPR peak position is much larger than several other factors. According to LSPR characteristics of the silver nanoparticles, we simulated the formants change of spherical silver nanoparticles with the radius of12nm under the different external refractive index, indicating the detect potential for the nanoparticles as LSPR detector.
     In this paper, fluorescence spectra of Angelica aqueous solution with different concentrations and different pH values were carefully studied. The fluorescence intensity of the Angelica dilute solutions were linearly proportional to concentration from0.075to2.5mg/ml. Through the analysis of fluorescence phenomena of Angelica solutions with different pH values, the main active ingredient coumarin compounds of Angelica are the main source of fluorescence. The value of the fluorescence quantum yield of Angelica aqueous solution provides a quantitative reference for future study of Angelica. Finally, the fluorescence quenching phenomenon of Angelica luminescent molecules were researched in the presence of the spherical silver nanoparticles. This provides a new idea for the traditional Chinese medicine as a fluorescent probe applied to biology study. The fluorescence spectrometric method is expected to analyze various traditional Chinese medicines, and it can be applied to many different biomedical applications and provide a new platform for the examination and development of raditional Chinese medicines.
     (2) By means of absorption and fluorescence spectroscopic experiments, as well as time-resolved fluorescence experiments, we investigated the luminescence properties of osthole in the presence of spherical silver nanoparticles (AgNPs) with sizes ranging from5to25nm. Quenching of the fluorescence of osthole has been found to increase with the decrease of the sizes of the silver nanoparticles. We make a reasonable explanation for this phenomenon from the perspective of the radiation and non-radiation decay rate. Using the Gersten-Nitzan model, the experimental and theoretical results were compared, and the results are in good unity. Both dynamic quenching and static quenching mechanisms exist between osthole molecules and silver nanoparticles.
     (3) We studied the influence of20nm spherical gold nanoparticles(AuNPs) and12nm spherical silver nanoparticles (AgNPs) on the luminescence of europium complex Eu(TTFA)3. The maximum enhancement factor of the complexes mixed with AgNPs is about2.5at the wavelength of612nm, while350nm is chosen as the incident light. Besides the enhancement of the localized field, the overlap between the absorption band of fluorescent molecules and the localized surface plasmon resonance spectra of nanoparticles is another important factor for excitation field enhancement. By means of the quasi-static approximation theory, we calculated the distribution of the electric field around a single spherical metallic nanopaticle illuminated by plane wave. The simulation results show that the field enhancement effect is more obvious when the incident light is close to the resonance of the metallic nanoparticle.
引文
[1]Xue C, Han Q, Wang Y, et al. Amperometric detection of dopamine in human serumby electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers. Biosens Bioelectron,2013,49(15):199-203
    [2]Yan W, Feng X M, Chen X J, et al. A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material. Biosens Bioelectron,2008,23(7):925-931
    [3]Vasimalai N, Abraham John S. Biopolymer capped silver nanoparticles as fluorophore for ultrasensitive and selective determination of malathion. Talanta,2013,115(15):24-31
    [4]Gurin V S, Alexeenko A A, Kaparikha A V. Fabrication and optical features of the sol-gel derived silica glasses doped with copper oxide nanoparticles and europium. Mater Lett,2011, 65(15-16):2442-2444
    [5]Wei H, Hao F, Huang Y, et al. Polarization dependence of surface-enhanced raman scattering in gold nanoparticles-nanowire systems. Nano Lett,2008,8(8):2497-2502
    [6]Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997,277(5329):1078-1081
    [7]Stewart M E, Anderton C R, Thompson L B, et al. Nanostructured plasmonic sensors. Chem Rev,2008,108(2):494-521
    [8]Prakasham R S, Kumar B S, Kumar Y S, et al. Characterization of silver nanoparticles synthesized by using marine isolate streptomyces albidoflavus. J Microbiol Biotechn,2012,22(5): 614-621
    [9]Suman T Y, Rajasree,S R R, Kanchana A, et al. Biosynthesis, characterization and cytotoxic effect of plant mediated silvernanoparticles using Morinda citrifolia root extract. Colloid Surface B,2013,106:74-78
    [10]Andrew Murray W, Suckling J R, Barnes W L. Overlayers on silver nanoparticles:field confinement and spectral positon of localized surface resonanses. Nano Lett,2006,6(8):1772-1777
    [11]Mie G Contributions to the optics of turbid media, especially colloidal metal solutions. Ann Phys,1908,25(3):377-445
    [12]Mafune F, Kohno J, Takeda Y,et al. Dissociation and aggregation of gold nanoparticles under laser irradiation. J Phys Chem B,2001,105(38):9050-9056
    [13]Turkevich J, Stevenson P C, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc,1951,11:55-75
    [14]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.nature physical science,1973,241(1):20-22
    [15]Silvert P Y, Herrera-Urbona R, Duvauchelle N, V. et al. Preparation of colloidal silver dispersions by the polyol process. Part 1—Synthesis and characterization. J Mater Chem,1996,6: 573-577
    [16]Wiley B J, Sun Y G, Mayers B, et al. Shape-Controlled synthesis of metal nanostructures:the case of silver. Chem Eur J,2005,11(2):454-463
    [17]Jin R C, Cao Y W, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science,2001,294(5548):1901 - 1903
    [18]Heo J, Jeon Y M, Mirkin C A. Reversible interconversion of homochiral triangular macrocycles and helical coordination polymers. J Am Chem Soc,2007,129(25):7712-7713
    [19]Paul A, Kenens B, Hofkens J, et al. Excitation polarization sensitivity of plasmon-mediated silver nanotriangle growth on a surface. Langmuir,2012,28(24):8920-8925
    [20]Correia-Ledo D, Gibson K. F, Dhawan A, et al. Assessing the location of surface plasmons over nanotriangle and nanohole arrays of different size and periodicity. J Phys Chem C,2012, 116(12):6884-6892
    [21]Grzelczaka M, Perez-Juste J, Mulvaney P, et al. Shape control in gold nanoparticle synthesis. Chem Soc Rev,2008,37(9):1783-1791
    [22]Siekkinen A R, McLellan J M, Chen J Y, et al. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem Phys Lett,2006,432(4-6):491-496
    [23]Kim J W, Lee S W, Lee Y, et al. Synthesis of Ag nanowires for the fabrication of transparent conductive electrode. J Nanosci Nanotechno,2013,13(9):6244-6248
    [24]Kan C X, Zhu J J, Zhu X G. Silver nanostructures with well-controlled shapes:synthesis, characterization and growth mechanisms. J Phys D Appl Phys,2008,41(15):155304
    [25]Brodard P, Bechelany M, Philippe L, et al. Synthesis and attachment of silver nanowires on atomic force microscopy microscopy cantilevers for tip-enhanced Raman spectroscopy.2012, 43(6):745-749
    [26]Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods(NRs) using seed-mediated growth method. Chem Mater,2003,15(10):1957-1962
    [27]Kim M J, Cho Y S, Huh Y D. Synthesis of silver nanowires by reduction of silver-pyridine complexes. B Kor Chem Soc,2012,33(5):1762-1764
    [28]Kundu S, Wang K, Lau S, et al. Photochemical synthesis of shape-selective palladium nanocubes in aqueous solution. J Nanopart Res,2010,12(8):2799-2811
    [29]Iyer K S, Raston C L, Saunders M. Continuous flow nano-technology:manipulating the size, shape.agglomeration, defects and phases of silver nano-particles. Lab Chip,2007,7(12):1800-1805
    [30]Nunokawa K, Ito M, Sunahara T, et al. A new 19-metal-atom cluster [(Me2PhP)10Au12Ag7(NO3)9] with a nearly staggered-staggered M5 ring configuration. Dalton Trans,2005,16:2726-2730
    [31]Kou X S, Sun Z H, Yang Z,et al. Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres. Langmuir,2009,25(3):1692-1698
    [32]Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc,2004,126(28):8648-8649
    [33]Zhu J, Li J J, Zhao J W. Obtain quadruple intense plasmonic resonances from multilayered gold nanoshells by silver coating:application in multiplex sensing. Plasmonics,2013,8(3): 1493-1499
    [34]Oldenburg S J, Jackson J B, Westcott S L, et al. Infrared extinction properties of gold nanoshells. Appl Phys Lett,1999,75(19):1063-1065
    [35]Li Z Q, Chen S, Li J J, et al. Plasmon-enhanced upconversion fluorescence in NaYF4:Yb/Er/Gd nanorods coated with Au nanoparticles or nanoshells. J Appl Phys,2012,111(1): 014310
    [36]Jiang Z J, Liu C Y. Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. J. Phys. Chem. B,2003,107(45):12411-12415
    [37]Wu, C Y, Yu C, Chu M Q. A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. Int J nanomed,2011,6:807-13
    [38]Ding H, Yong K T, Roy I, et al. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J Phys Chem C,2007,111(34):12552-12557
    [39]Wu D J, Liu X J. Optimization of silica-silver-gold layered nanoshell for large near-field enhancement. Appl Phys Lett,2010,96(15):151912
    [40]Lu Z H, Prouty M D, Guo Z H, et al. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir,2005,21(5):2042-2050
    [41]Binnig G, Quate C F. Atomic force microscope. Phys Rev Lett,1986,56(9):930-933
    [42]Meyer E. Atomic force microscopy. Prog Surf Sci,1992,41:3-49
    [43]Unakar N J, Tsui J Y, Harding C V. Scanning ectron microscopy. Ophthalmic Res,1981, 13(1):20-35
    [44]Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B,2000,104(6):1153-1175
    [45]Maslov K, Stoica G, Wang L V. In vivo dark-field reflection-mode photoacoustic microscopy. Opt Lett,2005,30(6):625-627
    [46]Link S, Wang Z L, El-Sayed M A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B,1999,103(18): 3529-3533
    [47]Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science,1997,275(5303):1102-1106
    [48]Huang J, Li Q B, Sun D H, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology,2007,18(10):105104
    [49]王世平,王静,仇厚援等.现代仪器分析原理与技术[M].哈尔滨工程大学出版社,1999
    [50]Saboktakin M, Ye, X C, Oh S J, et al. Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation. Acs Nano,2012,6(10):8758-8766
    [51]Lee SM, Choi K C. Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles. Opt Express,2010,18(2):12144-12152
    [52]Baldo M A, Thompson M E, Forrest S R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature,2000,403(6771):750-753
    [53]Avnir D, Kaufman V R, Reisfeld R. Organic fluorescent dyes trapped in silica and silica-titania thin films by the sol-gel method. Photophysical, film and cage properties. J Non-cryst solids,1985,74(2-3):395-406
    [54]Deng Y H, Wang H, Zhong L, et al. Trace determination of short-chain aliphatic amines in biological samples by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. Talanta,2009,77(4):1337-1342
    [55]Kenmoku S, Urano Y, Kojima H, et al. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J Am Chem Soc,2007,129(23):7313-7318
    [56]Ray D, Bharadwaj P K. A coumarin-derived fluorescence probe selective for magnesium. Inorg Chem,2008,47(7):2252-2254
    [57]Hayashi M, Sofuni T, Ishidate M. An application of acridine orange fluorescent staining to the micronucleus test. Mut Rese Lett,1983,120(4):241-247
    [58]Kaiser C, Schmiedel A, Holzapfel M, et al. Long-Lived Singlet and Triplet Charge Separated States in Small Cyclophane-Bridged Triarylamine-Naphthalene Diimide Dyads. J Phys Chem C,2012,116(29):15265-15280
    [59]Netzel T L, Nafisi K, Zhao M. Base-content dependence of emission enhancements, quantum yields, and lifetimes for cyanine dyes bound to double-strand DNA:photophysical properties of monomeric and bichromophoric DNA stains. J Phys Chem,1995,99:17936-17947
    [60]Buschow K H J. Chapter 4 Rare earth compounds. Handbook of Ferromagnetic Materials, 1980,1:297-414
    [61]Wernick J H, Geller S. Transition element-rare earth compounds with Cu5Ca structure. Acta Cryst,1959,12(9):662-665
    [62]Coey J M D. Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia. J Magn Magn Mater,1990,87(3):L251-L254
    [63]Uwamino Y, Ishizuka T. X-ray photoelectron spectroscopy of rare-earth compounds. J Electron Spectrosc,1984,34(1):67-78
    [64]Busch G. Magnetic properties of rare-earth compounds. J Appl Phys,1967,38(3):1386-1394
    [65]Buschow K H J. Intermetallic compounds of rare-earth and 3d transition metals. Rep Prog Phys,1977,40(10):1179
    [66]Yue C Y, Lei X W. Syntheses and structures of Sc2Nb4-xSn5, YNb6Sn6, and ErNb6Sn5: exploratory studies in ternary rare-earth niobium stannides. Inorg Chem.,2012,51 (4):2461-2471
    [67]Venturini G., Lemoine P, Malaman B.119Sn Mossbauer spectroscopy study of the magnetic properties of the HfFe6Ge6-type compounds:SmMn6Sn4Ge2 and GdMn6Sn4Ge2. J Alloy Compd,2011,509(14):4660-4669
    [68]Jiang J Z, Dennis K P Ng. A decade journey in the chemistry of sandwich-type tetrapyrrolato-rare earth complexes. Acc Chem Res,2009,42(1):79-88
    [69]Rybak J C, Meyer L V, Wagenhoefer J, et al. Homoleptic Lanthanide 1,2,3-Triazolates ∞2-3[Ln(Tz*)3] and Their Diversified Photoluminescence Properties. Inorg Chem,2012,51 (24):13204-13213
    [70]Li Y, Zhao Y L. Intramolecular energy transfer and co-luminescence effect in rare earth Ions (La, Y, Gd and Tb) doped with Eu3+β-diketone complexes. J Fluoresc,2009,19(4):641-647
    [71]Ishii M, Harako S, Zhao X, et al. Observation of charge transfer process for optical emission of rare-earth dopant using electric probing technique. J Lumin,2012,132(12):3129-3132
    [72]Liu D, Wang Z QYu H, et al. Fluorescence properties of novel rare earth complexes using carboxyl-containing polyaryletherketones as macromolecular ligands. Eur Polym J,2009,45(8): 2260-2268
    [73]Lakowicz J R. Radiative decay engineering:biophysical and biomedical applications. Anal Biochem,2001,298(1):1-24
    [74]Lakowicz J R, Shen Y B, D'Auria S. Radiative decay mgineering:2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem,2002, 301(2):261-277
    [75]Lakowicz J R. Radiative decay engineering 5:metal-enhanced fluorescence and plasmon emission. Anal Biochem,2005,337(2):171-194
    [76]Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles:radiative and nonradiative Effects. Phys Rev Lett,2002,89(20):203002
    [77]Dulkeith E, Ringler M, Klar T A, et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett,2005,5(4):585-589
    [78]Kuhn S, Hikanson U, Rogobete L,et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett,2006,97(1):017402
    [79]Chen Y, Munechika K, Ginger D S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Letters, 2007,7(3):690-696
    [80]Fu Y, Zhang J, Lakowicz J R. Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle.J Fluoresc,2007,17(6):811-816
    [81]Ringler M, Schwemer A, Wunderlich M, et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett,2008,100(20):203002
    [82]Zin M T, Leong K, Wong, N Y, et al. Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers. Nanotechnology,2009, 20(1):015305
    [83]Munechika K, Chen Y, Tillack A F, et al. Spectral Control of Plasmonic Emission Enhancement from Quantum Dots near Single Silver Nanoprisms. Nano Lett,2010,10(7): 2598-2603
    [84]Levchenko V, Grouchko M, Magdassi S, et al. Enhancement of luminescence of rhodamine B by gold nanoparticles in thin films on glass for active optical materials applications. Opt Mater, 2011,34(2):360-364
    [85]Kim W, Ozdemir S K, Zhu J G, et al. Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator. Opt Express, 2012,20(28):29426-29446
    [86]Hayakawa T. Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass. Appl Phys Lett,1999,74(11):1513-1515
    [87]Zhu J. Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles. Mater Lett,2005,59(11):1413-1416
    [88]Mertens H, Polman A. Plasmon-enhanced erbium luminescence. Appl Phys Lett, 2006,89(21):211107
    [89]Aisaka T, Fujii M, Hayashi S, et al. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Appl Phys Lett,2008,92(13):132105
    [90]Hou X R, Zhou S M, Jia T T, et al. Investigation of up-conversion luminescence properties of RE/Yb co-doped Y2O3 transparent ceramic (RE=Er, Ho, Pr, and Tm). Physica B,2010,406(20): 3931-3937
    [91]Zhang D K, Hu X Y, Ji R N, et al. Influence of Ag nanoparticles on luminescent performance of SiO2:Tb3+ nanomaterials. J Non-Cryst Solids,2012,358(20):2788-2792
    [92]Horisberger M, Rosset J. Colloidal gold, a useful marker for transmission and scanning electron microscopy. J Histochem Cytochem,1977,25(4):295-305
    [93]Marinakos S M, Chen S H, Chilkoti A. Plasmonic detection of a model analyte in serum by a gold nanorod Sensor. Anal Chem,2007,79(14):5278-5283
    [94]Stonehuerner J G, Zhao J, O'Daly J P, et al. Comparison of colloidal gold electrode fabrication methods:the preparation of a horseradish peroxidase enzyme electrode. Biosens Bioelectron,1992,7(6):421-428
    [95]Fu Y, Lakowicz J R. Enhanced fluorescence of cy5-labeled oligonucleotides near silver island films:A distance effect study using single molecule spectroscopy. J Phys Chem B,2006,110(45):22557-22562
    [96]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382(6592):607-609
    [97]Wang H F, Huff T B, Zweifel D A, et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods.P Natl Acad Sci Usa,2005,102(44):15752-15756
    [98]Durr N J, Larson T, Smith D K,et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett,2007,7(4):941-945
    [99]Wong M S, Sun D S, Chang H H. Bactericidal Performance of Visible-Light Responsive Titania Photocatalyst withSilver Nanostructures. Plos One,2010,5(4):e10394
    [100]Han J, Zhuo Y, Chai Y Q, et al. A signal amplification strategy using the cascade catalysis of gold nanoclusters and glucose dehydrogenase for ultrasensitive detection of thrombin. Biosen Bioelectron,2013,50:161-166
    [101]Deng D W, Zhang D Y, Li Y, et al. Gold nanoparticles based molecular beacons for in vitro and in vivo detection of the matriptase expression on tumor. Biosen Bioelectron,2013, 49(15):216-221
    [102]Catchpole K R, Pillai S. Surface plasmons for enhanced silicon light-emitting diodes and solar cells. J Lumin,2006,121(2):315-318
    [103]Shukla V K, Yadav R S, Yadav P, et al. Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water. J Hazard Mater,2012,213:161-166
    [104]Chatterjee A, Santra M, Won N, et al. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J Am Chem Soc,2009,131(6): 2040-2041
    [105]Yin J J, He X X, Jia X K, et al. Highly sensitive label-free fluorescent detection of Hg2+ions by DNAmolecular machine-based Ag nanoclusters. Analyst,2013,138(8):2350-2356
    [1]Neufeld J, Ritchie R H. Passage of charged particles through plasma. Phys Rev,1955,98(6): 1632-1642
    [2]Morrison M A, Collins L A. Exchange in low-energy electron-molecule scattering: Free-electron-gas model exchange potentials and applications to e-H2 and e-N2 collisions. Phys Rev A,1978,17(3):918-938
    [3]Ritchie R H, Marusak A L. The surface plasmon dispersion relation for an electron gas. Surf Sci,1966,4(3):234-240
    [4]Raether H. Surface plasma oscillations as a tool for surface examinations. Surf Sci,1967, 8(1-2):233-246
    [5]Lambrecht B, Leitner A, Aussenegg F R. Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles. Appl Phys B,1997, 64(2):269-272
    [6]Hayakawa T, Selvan S T, Nogami M. Enhanced fluorescence from Eu3+owing to surface plasma oscillation of silver particles in glass. J Non-Cryst Solids,1999,259(1-3):16-22
    [7]Ba2ant Z, Xiang Y. Size effect in compression fracture:splitting crack band propagation. J Eng Mech,1997,123(2):162-172
    [8]Pattnaik P. Surface plasmon resonance. Appl Biochem Biotech,2005,126(2):79-92
    [9]Homola J, Yee S S, Gauglitz G Surface plasmon resonance sensors:review. Sens Actuators B Chem,1999,54(1-2):3-15
    [10]Willets K A, Duyne R P V. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem,2007,58:267-297
    [11]Jensen T R, Malinsky M D, Haynes C L, et al. Nanosphere Lithography:Tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B,2000,104(45): 10549-10556
    [12]E1-Sayed I H, Huang X H, El-Sayed M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett,2005,5(5):829-834
    [13]Sherry L J, Chang S H, Schatz G C, et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett,2005,5(10):2034-2038
    [14]Klar T, Perner M, Grosse S, et al. Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett,1998,80(19):4249-4252
    [15]Sherry L J, Jin R C, Mirkin C A, et al. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett,2006,6(9):2060-2065
    [16]Link S, El-Sayed M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B,1999,103(40): 8410-8426
    [17]Kurihara K, Suzuki K. Theoretical understanding of an absorption-based surface plasmon resonance sensor based on kretchmann's theory. Anal Chem,2002,74(3):696-701
    [18]Shin H, Fan S H. All-Angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. Phys Rev Lett,2006,96(7):073907
    [19]Hovel H, Fritz S, Hilger A, et al. Width of cluster plasmon resonances:Bulk dielectric functions and chemical interface damping. Phys Rev B,1993,48(24):18178-18188
    [20]Jensen T R, Duval M L, Kelly K L,et'al. Nanosphere lithography:effect of the External dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B,1999,103(45):9846-9853
    [21]Prodan E, Radloff C, Halas N J, et al. A hybridization model for the plasmon response of complex nanostructures. Science,2003,302(5644):419-422
    [22]Etchegoin P G, Ru E C L, Meyer M. An analytic model for the optical properties of gold. J Chem Phys,2006,125(16):164705
    [23]Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B,1999,103(21):4212-4217
    [24]Brendel R. Bormann D. An infrared dielectric function model for amorphous solids. J Appl Phys,1992,71(1):1-6
    [25]Lamoureux G, MacKerel A D, Roux B. A simple polarizable model of water based on classical Drude oscillators. J Chem Phys,2003,119(10):5185
    [26]Mie G. Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys,1908,25(3):377-445
    [27]Lance Kelly K, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B,2003,107(3):668-677
    [28]Link S, Wang Z L, El-Sayed M A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B,1999,103(18): 3529-3533
    [29]吴大建,刘晓峻.金纳米球壳光学吸收的Mie理论分析.物理学报,2008,57(8):5138-5142
    [30]Liu X, Atwater M, Wang J H, et al. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloid Surface B,2007,58(1):3-7
    [31]Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:applications in biological imaging and biomedicine. J Phys Chem B,2006,110(14):7238-7248
    [32]Scaffardi L B, Pellegri N, Sanctis O, et al. Sizing gold nanoparticles by optical extinction spectroscopy. Nanotechnology,2005,16(1):158-163
    [33]Purcell E M, Pennypacker C R. Scattering and absorption of light by nonspherical dielectric grains. Astrophysical J,1973,186:705-714
    [34]Drain B T, Flatau P J. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A,1994,11(4):1491-1499
    [35]Sarkar P, Bhui D K, Bar H, et al. DDA-Based simulation of uv-vis extinction spectra of Ag nanorods synthesized through seed-mediated growth process. Plasmonics,2011,6(1):43-51
    [36]Sarkar P, Pyne S, Sahoo G P, et al. Solution-phase synthesis of silver nanodiscs in HPMC-matrix and simulation of UV-vis extinction spectra using DDA based method. Spectrochim Acta A,2011,82(1):368-374
    [37]Curtis D B, Aycibin M, Young M A, et al. Simultaneous measurement of light-scattering properties and particle size distribution for aerosols:Application to ammonium sulfate and quartz aerosol particles. Armos Environ,2007,41(22):4748-4758
    [38]阮立明,齐宏,王圣刚.采用DDA方法分析非球形粒子辐射特性.哈尔滨工业大学学 报,2008,40(3):413-418
    [39]Garcia-Lopez A C, Snider A D, Garcia-Rubio L H. Rayleigh-Debye-Gans as a model for continuous monitoring of biological particles:Part Ⅰ, assessment of theoretical limits and approximations. Opt Express,2006,14(19):8849-8865
    [40]Azarian A, Irajizad A, Dolati A, et al. Time dependence of the surface plasmon resonance of copper nanorods. J Phys:Condens Matter,2007,19:446007
    [41]Homyak G L, Patrissi C G, Martin C R. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites:the nonscattering Maxwell-Garnett limit. J Phys Chem B,1997,101(9):1548-1555
    [42]Ruppin R. Evaluation of extended Maxwell-Garnett theories. Opt Commun,2000,182(4-6): 273-279
    [43]Levy O, Stroud D. Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers. Phys Rev B,1997,56(13):8035-8046
    [44]Marton J P, Chan E C. Surface roughness interpretation of ellipsometer measurements using the generalized Maxwell Garnett theory. J Appl Phys,1974,45(11):5008-5014
    [45]Sipe J E, Boyd R W. Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model. Phys Rev A,1992,46(3):1614-1629
    [46]Yee K S, Chen J S. The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations. IEEE T Antenn Propag,1997, 45(3):354-363
    [47]Taflove A, Umashankar K R, Beker B, et al. Detailed FD-TD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens. IEEE T Antenn Propag,1988,36(2):247-257
    [48]Zivanovic S S, Yee K S, Mei K K. A subgridding method for the time-domain finite-difference method to solve Maxwell's equations. IEEE T Microw Theory,1991, 39(3):471-479
    [49]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2005
    [50]Lloyd N. Trefethen and Laurence HalpernWell-posedness of one-way wave equations and absorbing boundary conditions. Math Comp,1986,47:421-435
    [51]Li C L, Liu C W, Chen S H. Optimization of a PML absorber's conductivity profile using FDTD. Micro Opt Techn Lett,2003,37(5):380-383
    [52]Anonymous. FEMLAB changes to COMSOL Multiphysics. Corros Eng Sci Techn,2005, 40(4):273-274
    [53]Margaret A L, Hoffmana M D, Jacobson S C. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices. Lab Chip,2008,8(2):316-322
    [54]van Schijndel A W M, Schellen H L. Teaching heat and moisture transport modeling for building physics engineering with COMSOL. Int J Eng Educ,2009,25(6):1145-1157
    [55]Qi H, Glembocki O J, Prokes S M. Plasmonic properties of vertically aligned nanowire arrays, J Nanomater,2012,2012:843402
    [56]Khoury C G, Norton S J, Vo-Dinh T. Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. Acs Nano,2009,3(9):2776-2788
    [57]臧克宽,孙晓红,李大海.基于comsol软件的光子晶体通信器件模拟.光电技术应用,2010,25(5):51-53
    [1]Hao F, Nordlander P. Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem Phys Lett,2007,446(1-3):115-118
    [2]Tanev S, Tuchin V V, Paddon P. Light scattering effects of gold nanoparticles in cells:FDTD modeling. Laser Phys Lett,2006,3(12):594-598
    [3]Grand J, Adam P M, Grimault A S, et al. Pascal royer optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles:experiments and theory. Plasmonics,2006,1(2-4): 135-140
    [4]Hohenau A, Joachim R, Beermann K J, et al. Spectroscopy and nonlinear microscopy of Au nanoparticle arrays:Experiment and theory. Phys Rev B,2006,73(15):155404
    [5]Sun X, Wang N, Li H. Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS). Appl Surf Sci,2013,28(4):549-555
    [6]Sun Y G, Xia Y N. Shape-Controlled synthesis of gold and silver nanoparticles. Science, 2002,298(5601):2176-2179
    [7]Steinbruck A, Stranik O, Csaki A. Wolfgang fritzsche sensoric potential of gold-silver core-shell nanoparticles. Anal Bioanal Chem,2011,401(4):1241-1249
    [8]Moirangthem R S, Chang Y C, Wei P K. Investigation of surface plasmon biosensing using gold nanoparticles enhanced ellipsometry. Opt Lett,2011,36(5):775-777
    [9]Matsui J, Akamatsu K, Hara N, et al. Sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Anal Chem,2005,77(13): 4282-4285
    [10]Lin T J, Huang K T, Liu C Y. Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens Bioelectron,2006,22(4):513-518
    [11]Mock J J, Smith D R, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett,2003,3(4):485-491
    [12]Jensen T R, Duval M L, Kelly K L, et al. Nanosphere lithography:effect of the external dielectric medium on the surface plasmon Resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B,1999,103(45):9846-9853
    [13]刘建科.决定介质折射率因素的经典计算.光学技术,2005,31(4):557-562
    [14]张志伟,尹卫峰,温廷敦,等.溶液浓度与其折射率关系的理论和实验研究.中北大学学报,2009,30(3):281-285
    [15]Iadicicco A, Cusano A, Cutolo A,et al. Thinned fiber bragg gratings as high sensitivity refractive index sensor. IEEE Photonic Tech L,2004,16(4):1149-1151
    [16]Guirgis B S S, Cunha C S E, Gomes I, et al. Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Anal Bioanal Chem,2012,402(3):1019-1027
    [17]Wei F, Lam R, Cheng S, et al. Rapid detection of melamine in whole milk mediated by unmodified gold nanoparticles. Appl Phys Lett,2010,96(13):133702
    [18]Masuko M, Ohichi S, Ohtani K S H, et al. Fluorescence resonance energy transfer from pyrene to perylene labels for nucleic acid hybridization assays under homogeneous solution conditions. Nucleic Acids Res,2000,28(8):655-661
    [19]Yang M, Ren L Q, Huang M, et al. A DNA assay based on fluorescence resonance energy transfer and DNA triplex formation. Anal Biochem,1998,259(2):272-274
    [20]Wang H Y, Chen D L, Wei Y J, et al. A simple and sensitive assay of gallic acid based on localized surface plasmon resonance light scattering of silver nanoparticles through modified tollens process. Anal Sci,2011,27(9):937-941
    [21]Wang H Y, Chen D L, Wei Y J, et al. A localized surface plasmon resonance light scattering-based sensing of hydroquinone via the formed silver nanoparticles in system. Spectrochim Acta A,2011,79(5):2012-2016
    [22]吴媛媛,蒋桂华,马逾英等.白芷的药理作用研究进展.时珍国医国药,2009,20(3):625-627
    [23]Xie Y, Zhao W Q, Zhou T T, et al. An Efficient strategy based on MAE, HPLCDAD-ESI-MS/MS and 2D-prep-HPLC-DAD for the rapid extraction, separation, identification and purification of five active coumarin components from radix angelicae dahuricae. Phytochem Anal,2010,21 (5):473-482
    [24]Chen Q H, Li P, He J, et al. Supercritical fluid extraction for identification and determination of volatile metabolites from Angelica dahurica by GC-MS. J Sep Sci,2008,31(8):3218-3224
    [25]Tang Y P, Zhu M, Yu S, et al. Extraction, chemical analysis of Angelica sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia-reperfusion rats. Mol, 2010,15(1):341-351
    [26]Liu S, Yi L Z, Liang Y Z, et al. Traditional Chinese medicine and separation science. J Sep Sci,2008,31(11):2113-2137
    [27]Zhang S, He B, Ge J B, et al. Extraction, chemical analysis of Angelica sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia-reperfusion rats. Int J Biol Macromol,2010,47(4):546-550
    [28]王梦月,贾敏如.白芷的化学成分研究进展.中药材,2002,26(6):446-449
    [29]赵兴增,贾晓东,陈军等.白芷化学成分研究.时珍国医国药,2008,19(8):2000-2002
    [30]黄远征,徐成基,马最瑶.川白芷挥发油化学成分的研究.四川日化,1989,1:16-18
    [31]张国彬,尚尔宁.杭白芷挥发油成分的研究.宁夏医学院学报,1997,19(4):7-8
    [32]Blumberg J B, Chen C Y P, Cho S M, et al. A fluorometric assay to determine antioxidant activity of both hydrophilic and lipophilic components in plant foods. J Nutr Biochem,2009, 20(3):219-226
    [33]Bark K M, Gil E M, Han K D, et al. Evaluation of the phototoxic potential of plants used in oriental medicine. J Ethnopharmacol,2010,127(1):11-18
    [34]Sun H W, Qiao F X, Suo R, et al. Simultaneous determination of trace arsenic(III), antimony(III),total arsenic and antimony in Chinese medicinal herbs by hydride generation-double channel atomic fluorescence spectrometry. Anal Chim Acta,2004,505(2): 255-261
    [35]Yang F, Zhou B R, Zhang P, et al. Binding of ferulic acid to cytochrome c enhances stabilityof the protein at physiological pH and inhibits cytochrome c-induced apoptosis. Chem Biol Interact,2007,170 (3):231-243
    [36]陈国珍,黄贤智,郑朱梓等.荧光分析法(第二版).北京:科学出版社,1990:1-100
    [37]袁瑜,张良,李玉锋等.渗漉法提取白芷总香豆素的工艺研究.时珍国医国药,2008,19(2):302-303
    [38]孙文基,沙振方,高海.蛇床子中蛇床子素和欧前胡素的荧光薄层扫描法测定.药学学报,1990,25(7):530-533
    [39]Jiang T F, Lv Z H, Wang Y H, et al. Biomed Chromatogr,2010,24(6):581-587
    [40]孔令义.香豆素化学.北京:化学工业出版社,2008:1-65
    [41]张英华.中药前胡、常山及水杨酸、原儿茶酸的荧光光谱研究:[硕士学位论文].河北:河北师范大学,(2006)
    [42]徐辉,朱拓,虞锐鹏等.几种醇类物的荧光效率及荧光寿命研究.食品与生物技术学报,2007,26(4):56-61
    [43]Jin R, Cao Y, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science,2001,294(5548),1901-1903
    [44]Haynes C L, Van Duyne R P. Nanosphere lithography:a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B,2001,105(24):5599-5611
    [45]Mock J J, Barbic M, Smith D R, Schultz D A, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys,2002,116(15):6755-6762
    [46]Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles:radiative and nonradiative effects. Phys Rev Lett,2002,89(20):203002
    [1]Mariam J, Dongre P M, and Kothari D C. Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluoresc,2011,21(6):2193-2199
    [2]Guo L Q, Zhong J H, Wu J M, et al. Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer. Analyst,2011136:1659- 1663
    [3]Zimecki M, Artym J, Cisowski W, et al. Immunomodulatory and anti-inflammatory activity of selected osthole derivatives. Z Naturforsch B,2009,64:361-368
    [4]Zhang J J, Xue J, Wang H B, et al. Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress. Phytother Res,2011,25(5):638-643
    [5]Chen X H, Pi R B, Zou Y, et al. Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin. Eur J Pharmacol,2010,629(1-3):40-46
    [6]Mao X X, Yin W, Liu M F, et al. Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats. Brain Res,2011,1385(18):275-280
    [7]Yang K Y, Choi K C, and Ahn C W. Surface plasmonenhanced spontaneous emission rate in an organic light emitting device structure:cathode structure for plasmonic application. Appl Phys Lett,2009,94(17):173301
    [8]Shang L and Dong S J. Sensitive detection of cysteine based on fluorescent silver clusters. Biosens Bioelectron,2009,24(6):1569-1573
    [9]Wang W J, Chen C L, Qian M X, et al. Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem,2008,373(2):213-219
    [10]Lakowicz J R. Principles of Fluorescence Spectroscopy. Springer,2006
    [14]Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles:radiative and nonradiative effects. Phys Rev Lett,2002,89(20):203002
    [15]Soller T, Ringler M, Wunderlich M, et al. Radiative and nonradiative rates of phosphors attached to gold nanoparticles. Nano Lett,2007,7(7):1941-1946
    [16]Umadevi M, Vanelle P, Terme T, et al. Fluorescence quenching of 1,4-dihydroxy-2, 3-dimethyl-9,10-anthraquinone by silver nanoparticles:size effect. J Fluoresc,2009,19(1):3-10
    [17]Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles:radiative and nonradiative effects. Phys Rev Lett,2002,89(20):203002
    [18]Soller T, Ringler M, Wunderlich M, et al. Radiative and nonradiative rates of phosphors attached to gold nanoparticles. Nano Lett,2007,7(7):1941-1946
    [19]Umadevi M, Vanelle P, Terme T, et al. Fluorescence quenching of 1,4-dihydroxy-2, 3-dimethyl-9,10-anthraquinone by silver nanoparticles:size effect. J Fluoresc,2009,19(1):3-10
    [20]Mariam J, Dongre P M, and Kothari D C. Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluoresc,2011,21(6):2193-2199
    [21]Guo L Q, Zhong J H, Wu J M, et al. Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer. Analyst,2011136:1659-1663
    [22]Zimecki M, Artym J, Cisowski W, et al. Immunomodulatory and anti-inflammatory activity of selected osthole derivatives. Z Naturforsch B,2009,64:361-368
    [23]Zhang J J, Xue J, Wang H B, et al. Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress. Phytother Res,2011,25(5):638-643
    [24]Chen X H, Pi R B, Zou Y, et al. Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin. Eur J Pharmacol,2010,629(1-3):40-46
    [25]Mao X X, Yin W, Liu M F, et al. Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats. Brain Res,2011,1385(18):275-280
    [26]Wang H Y, Chen D L, Wei Y J, et al. A simple and sensitive assay of gallic acid based on localized surface plasmon resonance light scattering of silver nanoparticles through modified Tollens process. Anal Sci,2011,27(9):937-941
    [27]Gersten J and Nitzan A, Spectroscopic properties of molecules interacting with small dielectric particles—appendix. J Chem Phys,1981,75(3):1139-1192
    [28]刘美辰.吖啶橙分子在银纳米体系中的表面增强荧光效应:[硕士学位论文].陕西:陕西师范大学,2011
    [29]Rycenga M, Kim M H, Camargo P H C, et al. Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver. J Phys Chem A,2009,113(16):3932-3939
    [30]Kim M H, Lu X M, Wiley B, et al. Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HauC14. J Phys Chem C,2008,112(21):7872- 7876
    [31]李晓霞.蛇床子素的荧光性质及其在中药分析中的应用研究:[硕士学位论文].河北:河北师范大学,2009
    [32]陈国珍,黄贤智,郑朱梓,等.荧光分析法(第二版).北京:科学出版社,1990
    [33]Benes H A and Hildebrand J H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc,1949,71:2703-2707
    [1]Guo X M, Guo H D, Fu L S, et al. Synthesis, spectroscopic properties, and stabilities of ternary europium complex in SBA-15 and periodic mesoporous organosilica:A comparative study. J Phys Chem C,2009,113 (6):2603-2610
    [2]Kamruzzaman M, Alam A M, Kim K M, et al. Enhanced luminescence of lanthanide complexes by silver nanoparticles for ciprofloxacin determination. J Nanosci Nanotechnol,2012, 12 (7):6125-6130
    [3]Zhu X J, Wang X L, Jiang C Q, et al. Spectrofluorimetric determination of heparin using a tetracycline-europium probe. Anal Biochem,2005,341 (2):299-307
    [4]Lamture J B, Wensel T G. Intensely luminescent immunoreactive conjugates of proteins and dipicolinate-based polymeric Tb (III) chelates. Bioconjug Chem,1995,6(1):88-92
    [5]Eliseeva S V, Bunzli J C G. Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev,2010,39 (1):189-227
    [6]Liu N, Zhao D, Zhang D S, et al. One-Step Synthesis and enhanced luminescence of Eu-Doped BaF2 nanocubes. J Nanosci Nanotechnol,2011,11(11):9502-9505
    [7]Pandya S, Yu J H, Parker D. Engineering emissive europium and terbium complexes for molecular imaging and sensing. Dalton Trans.2006,23,2757-2766
    [8]Zhang K, Holloway T, Pradhan A K, et al. Synthesis and optical properties of Eu3+ and Tb3+ doped Gd2O3 nanotubes. Sci Adv Mater,2012,4 (5-6):649-655
    [9]Fang X N, Song H W, Xie L P, et al. Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles. J Chem Phys,2009,131: 054506
    [10]Abdallah T, El-Brolosy T A, Mohamed M B, et al. Effect of shape and interstice on surface enhanced Raman scattering (SERS) of molecules adsorbed on gold nanoparticles in the near-dipole and quadrupole regions. J Raman Spectrosc,2012,43(12):1924-1930
    [11]Ling Q D, Yang M J, Zhang W G, et al. PL and EL properties of a novel Eu-containing copolymer. Thin Solid Films,2002,417 (1):127-131
    [12]Park S J, Sohee J, Park H H, et al. Optimized film processing of nanosilver colloids for photoluminescence enhancement. J Nanosci Nanotechnol,2011,11 (1):422-426
    [13]Kaur G, Verma R K, Rai D K, et al. Plasmon-enhanced luminescence of Sm complex using silver nanoparticles in Polyvinyl Alcohol. J Lumin,2012,132 (7):1683-1687
    [14]Kuhn S, Hakanson U, Rogobete L, et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett,2006,97:017402
    [15]Nabika H, Dekia S. Surface-enhanced luminescence from Eu3+ complex nearby Ag colloids. Eur Phys J D,2003,24 (1):369-372
    [16]Liu F, Aldea G, Nunzi J M. Metal plasmon enhanced europium complex luminescence. J Lumin,2010,130 (1):56-59
    [17]Kassab L R P.de Assumpcao T A A, Czaja P, et al. PbO-GeO2 rare earth doped glasses with silver nanoparticles as materials for IR laser triggers. J Mater Sci Mater Electron,2012,23 (5) 1122-1125
    [18]Wang Q R, Song F, Lin S X, et al. Optical properties of silver nanoprisms and their influences on fluorescence of europium complex.Opt Express,2011,19 (8):6999-7006
    [19]Wu S, Sun Y Y, Wang X, et al. Radiative properties of rare earth complexes/silver nanoparticles nanocomposite. J Photoch Photobio A,2007,191 (2):97-103
    [20]Wang P, Zou Y J, Zhang Y, et al. Investigation of the effect of nano silver on fluorescence properties of norfloxacin. Nanosci Nanotechnol Lett,2012,4 (8):854-858
    [21]Gao G H, Lei Y H, Dong L H, et al. Synthesis of nanocomposites of silver nanoparticles with medical stone and carbon nanotubes for their antibacterial. Applications. Mater Express,2012,2 (2):85-93
    [22]Desai R, Mankad V, Gupta S K,et al. Size distribution of silver nanoparticles:UV-visible spectroscopic assessment. Nanosci. Nanotechnol Lett,2012,4 (1):30-34
    [23]Nabika H, S. Deki. Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase. J Phys Chem B,2003,107 (35):9161-9164
    [24]Wang Q R, Lin S X, Ming C G, et al. Plasmon-enhanced luminescence of Eu complex by using silver nanocubes for different excitations. Mater Lett,2011,65 (5):905-907
    [25]Wang Y H, Zhou J, Wang T. Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles. Mater Lett,2008,62 (12):1937-1940
    [26]Wiley B, Sun Y G, Mayers B, et al. Shape-controlled synthesis of metal nanostructures:The case of silver. Chem Eur J,2005,11 (2):454-463
    [27]Ma Y Y, Zeng J, Li W Y, et al. Seed-Mediated synthesis of truncated gold decahedrons with a AuCl/Oleylamine Complex as Precursor. Adv Mater,2010,22 (17):1930-1934
    [28]Zhang Y J, Zhang R Y, Wang Q R, et al. Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle. Opt Express,2010,18 (5) 4316-4328
    [29]Johnson P B, Christy R W. Optical Constants of the Noble Metals. Phys Rev B,1972,6(12): 4370

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700