硅镁吸附材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在实验室前期工作基础上,以硅酸钠和氯化镁为原料,经过溶胶-凝胶法和水热法,控制合成条件,制备出11种新型的硅镁胶。采用差热分析(DTG-DTA)、红外光谱(FT-IR)、X射线衍射光谱(XRD)、比表面及孔结构分析等现代仪器分析手段对硅镁胶材料进行了结构表征和性质测定。探讨硅镁胶对水溶液中的亚甲基蓝和弱酸性红的吸附性能。考察吸附时间、吸附剂投加量、溶液的初始pH值、温度、初始浓度等因素对吸附性能的影响,计算该新型吸附剂的吸附等温线和动力学方程。
     溶胶-凝胶法和水热法制备的硅镁胶都是白色的无定形态颗粒,分散性和化学稳定性较好,表面含有丰富的硅羟基活性基团,氮气吸附脱附曲线都有明显的滞后环,易发生毛细凝结现象;溶胶-凝胶法制备的硅镁胶的比表面积介于120.22~330.39m2·g-1之间,水热法制备的硅镁胶的比表面积可达560.40m2·g-1,在温度为110℃和水热12h的条件下制备出的硅镁胶具有最大的比表面积,焙烧温度对样品的比表面积和孔结构的影响很大。
     利用溶胶-凝胶法制备的8种硅镁胶对亚甲基蓝和弱酸性红的吸附实验,结果发现镁硅比为1:5的硅镁胶对亚甲基蓝吸附效果最好,吸附量为80mg·g-1;镁硅比为3:1的硅镁胶对弱酸性红的吸附效果最好,吸附量为200mg·g-1。Langmuir吸附模型能够很好描述硅镁胶对两种染料的吸附,伪二级动力学方程能够很好地描述两种染料的吸附行为,吸附平衡在很短的时间内完成。
     经高温焙烧,将海泡石、凹凸棒石和商品硅酸镁进行了改性处理。通过研究海泡石、凹凸棒石和商品硅酸镁对系列有机酸的吸附过程,确定硅酸镁材料对有机酸的吸附脱除效果。通过测定海泡石、凹凸棒石和商品硅酸镁对系列有机酸的吸附性能发现,等温线为S型、C型、H型和L型。经过计算,Freundlich吸附等温模型能够较好的描述系列有机酸在凹凸棒石、海泡石和硅酸镁上的的吸附过程,硅酸镁系列材料对有机酸有较好的吸附处理效果。
     在此基础上,研究了11种新型硅镁胶和3种商品硅酸镁等全部硅镁吸附材料对生物柴油中有机酸的吸附性能,考察了吸附时间、吸附剂投加量等条件对吸附性能的影响。发现水热法制备的9:1的硅镁胶有最好的吸附效果,最佳吸附条件是:焙烧温度为450℃,焙烧时间为4h,吸附时间为6h,吸附剂投加质量为0.50g·L-1,吸附温度为25℃,硅镁胶的最大吸附量可达980mg·g-1,等温吸附过程更符合Freundlich吸附等温式。
     通过上述实验发现,硅镁胶作为一种新型的硅镁吸附材料,对于染料废水有较好的处理效果,对于有机酸的吸附处理,生物柴油的精制过程同样具有较为理想的处理结果,是一种可以广泛应用的优良、高效、经济的新产品。
In this paper, on the basis of previous work in the laboratory,11new typemagnesium silica gels were synthetized by using sodium silicate and magnesiumchloride through Sol-gel method and hydrothermal method. Magnesium silica gelswere characterized by analytical methods of scanning electron microscopy analysis,fourier transform infrared spectroscopy analysis, hermogravimetry and differentialscanning calorimetry analysis and X-ray powder diffraction analysis. The adsorptionperformance of Magnesium silica gel adsorbed methylene blue and weak acid red wasstuyed. The adsorption time, adsorbent additive amount, initial solution pH value,temperature, the effect of initial concentration, the adsorption isotherm and kineticsequation were stuyed on adsorption performance.
     Magnesium silica gel that synthetized through Sol-gel and hydrothermal arewhite functional particles, dispersion and chemical stability is good, active group isalso rich in surface, nitrogen adsorption stripping curve has obvious hysteresis loop,prone to capillary condensation phenomenon. The specific surface of magnesiumsilica gel by Sol-gel method is between120.22~330.39m2·g-1, the hydrothermalpreparation specific surface is560.40m2·g-1, with the temperature110℃andhydrothermal12h the magnesium silica gel has the largest specific surface.Roasting temperature has an important influence of specific surface and porestructure.
     Through the experiment of eight kinds of sol-gel method sythtized magnesiumsilica gel adsorbed methylene blue and weak acid red, the results showed that1:5magnesium silica gel had the best adsorption effect of methylene blue, the adsorptionquantity is80mg·g-1.3:1magnesium silica gel had the best adsorption effect of weakacid red best, the adsorption quantity is200mg·g-1. Langmuir adsorption model candescribe the adsorption well, the adsorption is monolayer adsorption; Pseudo secondary dynamics equation can effectively describe the adsorption behavior, theadsorption equilibrium in was arrived in a very short period of time.
     Through high temperature roasting, sepiolite, attapulgite, and commoditymagnesium silica gel were modified. By measuring the organic acid adsorption ofsepiolite, attapulgite and commodity, found that isotherm included S, C, H and L type,the Freundlich adsorption isothermal model can better describe the adsorption processof series of organic acid of attapulgite, sepiolite and magnesium silica gel, magnesiumsilica gel series materials have good adsorption treatment effect on organic acid.
     On this basis, study the adsorption with11new type magnesium silica gel and3goods silicon magnesium adsorption materials of organic acids in biological diesel oil,research adsorption time, adsorbent dosing quantity and other conditions on theinfluence of adsorption performance, found that the9:1hydrothermal preparation ofmagnesium silica gel has the best adsorption, the optimum adsorption conditions is:the calcination temperature is450℃, roasting time is4h, adsorption time is6h,adsorbent additive quality is0.50g·L-1, adsorption temperature is25℃, themaximum adsorption quantity of magnesium silica gel can be up to980mg·g-1, theisothermal adsorption process accords with the Freundlich adsorption isotherm well.
     Through the above experiment process, as a new adsorbent, magnesium silica gelhas good treatment effect on the adsorption of printing and dyeing wastewater,organic acids and refining process of biodiesel, is a widely used, high efficiency andlow cost product.
引文
[1]殷建华.世界镁工业的发展与前景.世界有色金属,2005,7:59
    [2]乌志明,马培华.镁、镁资源与镁质材料概述.盐湖研究,2007,15(4):65-72
    [3]黄西平,张琦,郭淑元,等.我国镁资源利用现状及开发前景.海湖盐与化工,2004,33(6):1-6
    [4]王海增,郭鲁钢,于红.絮凝吸附法脱除盐湖卤水中的有色物质.海湖盐与化工,2003,32(1):22-24
    [5]徐丽君,于银亭,殷丽,等.我国21世纪海水化学资源综合利用技术发展战略.海湖盐与化工,1999,28(6):21-25
    [6]张保全.柴达木盆地盐湖镁盐工业的发展及对策.镁盐工业,2001,2:94-99
    [7]李华.柴达木盆地盐湖开发中镁资源利用的几点思考.有色金属,2000,8:33-34
    [8]黄西平,张琦,郭淑元,等.我国镁资源利用现状及开发前景.海湖盐与化工,2004,33(6):1-6
    [9]向兰,刘峰,金永成,等.试论我国西部盐湖镁资源的高度利用对策.海湖盐与化工,2002,31(4):24-28
    [10]熊长军.凹凸棒石与锌的水热作用研究:[硕士学位论文].合肥:合肥工业大学,2009
    [11]宾晓蓓,曹宏.活化处理中坡缕石结构变化与性能关系的研究.矿物岩石地球化学通报,2005,24(l):62-66
    [12]王丽.凹凸棒土对海水中主要离子交换能力的研究:[硕士学位论文].天津:天津科技大学,2008
    [13]韩玉琦.凹凸棒石复合材料的制备及其吸附性能研究:[硕士学位论文].兰州:兰州大学,2010
    [14]杨智宽.蛇纹石粉矿综合利用研究.环境科学进展,1997,5(2):32-36
    [15]刘琨.氧化硅纳米线及其一维银纳米壳层的制备、表征与消光性能研究:[硕士学位论文].长沙:中南大学,2007
    [16]马国华.蛇纹石结构纳米材料的可控合成与生长机理研究:[博士学位论文].北京:中国工程物理研究院,2009
    [17]魏林.滑石粉对重金属离子的吸附性研究:[硕士学位论文].西安:长安大学,2009
    [18]侯立臣,王继徽.活化海泡石吸附性能研究.污染防治技术,1999,21(3):113-114
    [19]凤迎春,何少华,高伟,李红霞.海泡石对废水中有机物和重金属的吸附.净水技术,2006,2(25):6
    [20]凤迎春.凹凸棒石与锌的水热作用研究:[硕士学位论文].西安:长安大学,2009
    [21]陈淑英.六硅酸镁的合成工艺研究.四川化工与腐蚀控制,2000,3(5):3-6
    [22]胡庆福,李保林,李国庭.医用三硅酸镁的制备.无机盐工业,1995,4:33-34
    [23] Ibrahim M. El-Naggar, Mamdouh M. Abou-Mesalam. Novel inorganic ion exchangematerials based on silicates; synthesis, structure and analytical applications of magneso-silicateand magnesium alumino-silicate sorbents. Journal of Hazardous Materials,2007,149:686–692
    [24] Filip Ciesielczyk, Andrzej Krysztafkiewicz, Teofil Jesionowski. Physicochemical studies onprecipitated magnesium silica gels. J Mater Sci,2007,42:3831–3840
    [25] K. Speakman, A. J. Majumdar. Synthetic 'deweylite'. Mineralogical magazine,1971,38:225-34
    [26] Elena V. Kalinkina, Alexander M. Kalinkin Willis Forsling, Victor N. Makarov. Sorption ofatmospheric carbon dioxide and structural changes of Ca and Mg silicate minerals during grindingII. Enstatite, akermanite and wollastonite. Int. J. Miner. Process.,2001,61:289-299
    [27] Andrzej Krysztafkiewicz, Lidia Karolina Lipska, Filip Ciesielczyk, Teofil Jesionowski.Amorphous magnesium silica gel-synthesis, physicochemical properties and surface morphology.Advanced Powder Technol.,2004,15(5):549-565
    [28] Saka, Kusdiana D. biodiesel fuel from rapeseed oil asprepared in supercfitical methanol[J].Fuel,2001,80(2):225
    [29]高荫榆,陈文伟,阮榕生,等.生物柴油研究进展.可再生能源,2004,115(3):69
    [30]闵恩泽,张利.生物柴油产业链的开拓—生物柴油炼油化工厂,第1版.北京:中国石化出版社,2006
    [31]蒋剑春,杨凯华,聂小安,等.生物柴油研究进展.中国能源,2006,28(2):36
    [32]谭艳来.生物柴油的制备技术及其副产物甘油的精制工艺研究:[硕士学位论文].广州:暨南大学,2007.
    [33]阎杰.均相碱催化制备生物柴油中粗酯的精炼技术.中国油脂,2011,36(7):50
    [34]陈志锋,吴虹,宗敏华.固定化脂肪酶催化高酸废油脂酯交换生产生物柴油.催化学报,2006,27(2):146
    [35]孟祥梅,李维尊,陈冠益,等.废油脂制取生物柴油的工艺优化及其品质提升.可再生能源,2007,25(1):36
    [36] Gurutze A, Idoia C, Eider A N, Maialen S. Synthesis of biodiesel from sunflower oil withsilica-supported NaOH catalysts. J Chem Tech Biotech,2008,83:862
    [37] Gizelle I, Almerindo, Luiz F. D.ProbstMagnesium oxide prepared via metal–chitosancomplexation method:Application as catalyst for transesterification of soybean oil and catalystdeactivation studies. J Pow Sou,2011,196:8057
    [38] Yan H Z, Jian y T, Wan C Z, et al. Graphite oxide-supported CaO catalysts fortransesterification of soybean oil With methanol. B Tech,2011,102:8939
    [39] Naomi S K, Takahiro T. Biodiesel Production from Waste Cooking Oil UsingAnion-Exchange Resin As Both Catalyst and Adsorbent. Bio Res,2011,10:1007
    [40] Stavarache C, Vinatoru M, Maeda Y. Aspects of ultrasonically assisted transesterification ofvarious vegetable oils with methanol. Ult Sonochemistry,2007,14:380
    [41]龙川,柯水洲,洪俊明,等.含油废水处理技术的研究进展.工业水处理,2007,27(8):4
    [42]周洪洋,侯影,李春虎,等.吸附剂在含油废水处理中的应用研究进展.工业水处理,2009,29(2):1
    [43]卢碧林.化学法生物柴油生产工艺改进研究.中国油脂,2009,34(5):47
    [44] Ivan J N, Mat as D. Continuous Lipase-Catalyzed Alcoholysis of Sunflower Oil: Effect ofPhase-Equilibrium on Process Efficiency. J Am Oil Chem Soc,2010,87:45
    [45] Izabelly L L, Rosana M A. SaboyaOleic acid esterification with ethanol under continuouswater removal conditions. Fuel,2011,90:902
    [46] Al-Ghout M A, Khraisheh M A M, Allen S J, et al., The removal of dyes from texitilewastewater: a study of the physical characteristic and adsorption mechanisms of diatomaceousearth, J. Environ. Manage.,2003,69:229-238
    [47] Pearce C I, Lloyd J R, Guthrie J T. The removal of colour,from textile wastewater usingwhole bacterialcells: a review. Dyes Pigments,2003,58:179-196
    [48] Wesenberg D, Kyriakides L, Agathos S N. White-rot fungi and their enzymes for thetreatment of industrial dye effiuents, Bioteehnology Advanees2003,22:161一187
    [49] Caizares P, Martinez F, Jiménez C, et al. Coagulation and electrocoagulation of wastespolluted with dyes, Environ. Sci. Technol.,2006,40:6418–6424
    [50] Liu P, Zhang L X, Adsorption of dyes from aqueous solutions or suspensions with claynano-adsorbents, Sep. Purif. Technol.,2007,58:32-39
    [51] Mohammad A A-G, Juiki L, Yousef S, et al. Adsorption mechanisms of removing heavymetals and dyes from aqueous solution using date pits solid adsorbent, J. Hazard. Mater.,2010,176:510–520
    [52] Razo-Flores E, Luijten M, Donlon B A. Complete biodegradation of the azo dyeazodisalicylate under anaerobic onditions. Environ. Sci. Technol.,1997,31:2098–2103
    [53] Marto J, Marcos P S, Trindade T, Photocatalytic decolouration of Orange II by ZnO activelayers screen-printed on ceramic tiles. J. Hazard. Mater.,2009,163:36–42
    [54] Flory P J. Disc Faraday Soc,1974,57:7
    [55]杨华.硅镁胶的制备表征及其吸附性能研究:[博士学位论文].青岛:中国海洋大学,2013
    [56] Giles C H, Mac Evan T H, Nakhawa S W, et al. Studies in adsorption. Part XI. A system ofclassification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanismsand in measurement of specific specific surfaces of solids. J. Chem. Soc.,1960,3973-3993
    [57] Lagergren S, Svenska B K, Zur theorie der sogenannten adsorption geloester stoffe,Veternskapsakad Handlingar,1898,24(4):1–39
    [58] Weber W J, Morris J C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div.Am. Soc. Civ. Eng.1963,89:31–60
    [59] McKay G, Otterburn M S, Aja J A. Fuller's earth and fired clay as adsorbents for dyestuffsWater Air Soil Pollut,1985,24(2):307
    [60] Mohana S V, Raoa N C, Karthikeyan J. Adsorptive Removal of Direct Azo Dye fromAqueous Phase onto Coal Based Sorbents: a Kinetic and Mechanistic Study. Hazardous Materials,2002, B90:189-204.
    [61]朱培怡.含镁多孔性材料的制备与性能研究:[博士学位论文].青岛:中国海洋大学,2009
    [62]孟令芝,龚淑玲,何永炳.有机波谱分析.武汉:武汉大学出版社,2003.9
    [63]冯凌.改性三硅酸镁多孔吸附剂的制备及其表征:[硕士学位论文].北京:北京化工大学材料学系,2009
    [64]赵振国.吸附作用应用原理.北京:化学工业出版社,2005.9
    [65] Maliyekkal S M, eds. Enhanced fluoride removal from drinking water by magnesia-amendedactivated alumina granules. Chemical Engineering Journal,2008, doi:10.1016/j.cej.2007.09.049
    [66] Kavith D, Namasivayam C. Experimental and kinetic studies on methylene blue adsorptionby coir pith carbon. Bioresource Technology,2007,98:14-21
    [67] Al-Ghout M A, Khraisheh M A M, Allen S J, et al., The removal of dyes from texitilewastewater: a study of the physical characteristic and adsorption mechanisms of diatomaceousearth, J. Environ. Manage.,2003,69:229-238
    [68] Allen S J, Mckay G, Porter J F. Adsorption isotherm models for basic dye adsorption by peatin single and binary component systems. Journal of Colloid and Interface Science,2004,280(2):322-333
    [69] Dudkin B N, Vasyutin O A, Synthesis of Magnesium silica gel by Heat Treatment of Sols andMechanical Activation of Solid Components. Russian Journal of Applied Chemistry,2011,84(5):751-755
    [70] Jesionowski T, Ciesielczyk F, Krysztafkiewicz A, Influence of precipitation parameters onphysicochemical properties of magnesium silica gels. Physicochemical Problems of MineralProcessing,2004,38:197-205
    [71]耿叔怡,李宝生.硅酸镁吸附碳酸钾中微量铁研究.河北化工,1990,3:33-34
    [72]邓炜霖.利用硅酸镁作氧漂稳定剂解决纯棉织物破洞等问题.印染助剂,1993,10(2)
    [73]工振东,张志祥.印染废水的污染与控制阴.环境科学与技术,2001,4(l):21-23
    [74]李家珍.染料、染色工业废水处理.北京:化学工业出版社,1997
    [75]肖羽堂,王继徽.纺织印染废水的吸附脱色技术研究进展.重庆环境科学,1998,18(5):24-29
    [76] Fouad H K, Bishay A F. Uranium uptake from acidic solutions using synthetic titanium andmagnesium based adsorbents. J Radioanal Nucl Chem2010,283:765–772
    [77]美国达拉斯集团公司.通过连续的再生吸附方法纯化生物柴油:中国,CN101939068A[P]2009-02-06
    [78]格雷斯股份有限两合公司.应用吸附剂颗粒生产生物柴油燃料的物理加工方法:中国,CN101454428A[P]2009-06-10
    [79] Dmytryshyn S L, Dalai A K, Chaudhari S T, et al. Synthesis and characterization of vegetableoil derived esters: evaluation for their diesel additive properties. Bioresource Technology,2004;92:55-64
    [80] Medeni M. Halil I B. The recovery of used sunflower seed oil utilized n repeated deep-fatfrying process. Europe Food Research Technology,2003,218:26-31
    [81] Wang Y, Wang X, Liu Y, et al. Refining of biodiesel by ceramic membrane separation. FuelProcess Technology,2009,90:422-427
    [82]韩文军,王海增,李春丽.新型硅镁胶(MgO2.4SiO2)对亚甲基蓝的吸附性能.盐业与化工,2012,41(6):19-23
    [83]孙爱华.对酸催化制备生物柴油技术工艺的探讨.大科技,2012(10):275-276
    [84]张丽丽.硅镁胶的合成与吸附性能:[硕士学位论文].青岛:中国海洋大学,2010
    [85] Sharma Y C, Srivastava V, Upadhyay S N, et al. Alumina nanoparticles for the removal ofNi(II) from aqueous solutions, Ind. Eng. Chem. Res.2008,47:8095–8100
    [86] Min S W, Hasnat M A, Rahim A A, et al. Optimisation of the batch reactor for the removal ofcobalt ions from chloride media, Chemosphere2013,90:674–682
    [87]仇立干,王茂元.改性凹凸棒土对磷酸根吸附性能的研究.化学研究与应用(ChemicalResearch and Application)2012,22(8):1009-1014
    [88] Hall K R, Eagleton L C, Acrivos A, et al. Pore and solid diffusion kinetics in fixed bedadsorption under constant pattern conditions. Ind. Eng. Chem. Fund,1966,5:212-219
    [89]熊春华,吴香梅.大孔膦酸树脂对镉(II)的吸附性能极其机理.环境科学学报,2000,20(5):627-630
    [90]夏畅斌,黄念东,何湘柱.碳黑泥吸附铬(VI)的热力学研究.水处理技术,27(3):156-158
    [91]彭书传,王诗生,陈天虎.坡缕石吸附水中阳离子桃红FG染料的热力学研究.矿物学报,2005,25(2):113-117
    [92]王重,史作清.酚醛型吸附树脂吸附VB12的热力学研究.功能高分子学报,2003,16(1):1-5
    [93] Noureddini H, Gao X, Phikana R S. Immobilized Pseudomonas cepacia lipase for biodieselfuel production from soyabean oils. Bioresource Technology,2005,96:769-777
    [94]王巍杰,杨永强,吴尚卓.脂肪酶催化合成生物柴油的研究进展.生物技术通报,2010(3):54-57
    [95] Kusdiana D, Saka S. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol.Fuel,2001,80(20):225-231
    [96]郑青荷.生物酶法制备生物柴油研究综述.江西林业科技,2012,(1):59-61
    [97]肖敏,银建中,宋吉彬.超临界甲醇法制备生物柴油.现代化工,2006,26增刊(2):301-303
    [98]朱凤,劳文艳,杨庆利,等.废弃油脂超临界法制备生物柴油研究.现代化工,2008(2):90-94
    [99]安文杰,许德平,田中坤.超临界法制备生物柴油.天然气化工,2006,31:20-23
    [100] Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol.Fuel,2001,80:225-231
    [101]王巍杰,杨永强,吴尚卓.脂肪酶催化合成生物柴油的研究进展.生物技术通报,2010(3):54-57
    [102]高静,王芳,谭天伟,等.固定化脂肪酶催化废油合成生物柴油.化工学报,2005,56(9):1727-1730

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700