磁性催化剂与磁稳定床中苯选择性加氢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环己烯作为一种重要的有机化工原料,广泛应用于医药、食品、农用化学品、饲料、聚酯材料及其它精细化工产品的生产,因此苯选择性加氢制备环己烯技术成为一个的重要研究方向。磁稳定床具有传质效率高、床层不易出现沟流、压降低、能控制相间返混、转化率高,易于控制反应时间等优点。本论文探索了纳米氧化铝球和核壳结构磁性纳米氧化铝球的制备过程,制备了三种磁性核壳结构氧化铝微球,评价了复合载体Al_2O_3-ZrO_2的苯选择性加氢性能;制备了兼具磁性和活性的钌基磁性催化剂,并将磁性钌基催化剂应用于磁稳定床中进行苯选择性加氢研究,开发了一种新的磁性催化剂和新的苯选择性加氢工艺。
     采用溶胶-凝胶法制备了纳米Al_2O_3球和磁性核壳结构纳米Al_2O_3球。在正丙醇的体系中,月桂酸为模板剂,采用一种简单有效的方法合成了纳米氧化铝球。该纳米氧化铝球是借助异丙醇铝水解,缩聚过程以及月桂酸的自组装作用合成的。该微球的粒径分布为80~120nm,粒径分布均匀,比表面积为550m~2/g,孔容为0.8cm~3/g,平均孔径为4.9nm。在此基础上,以α-Fe_2O_3为核,硬脂酸为模板剂,通过异丙醇铝水解,缩聚过程以及模板剂自组装合成了一种新型均一核壳结构氧化铁/氧化铝纳米球,然后通过H_2/N_2还原得到磁性氧化铝球。该纳米球具有均一壳层,厚度为30nm,比表面积为140m~2/g,孔容为0.22cm~3/g,比饱和磁化强度为50.2emu/g。
     采用油柱成型法制备了三种三重核壳结构磁性氧化铝微球。详细考察了不同磁核制备的氧化铝微球的磁性能。以针状γ-Fe_2O_3为磁核合成的γ-Fe_2O_3/SiO_2/γ-Al_2O_3磁性微球表面光滑,粒径分布为80~300μm,比表面积为200m~2/g,平均孔径为16.8nm,孔容为0.77cm~3/g,比饱和磁化强度较高(15.1emu/g),矫顽力和剩磁较低,该微球能够满足磁稳定床的要求。以Fe_3O_4为磁核,氧化硅为中间层,氧化铝为壳层的Fe_3O_4/SiO_2/γ-Al_2O_3磁性微球具有较强的超顺磁性。该磁性微球的比表面积为201.0m~2/g,孔容为0.76cm~3/g,平均孔径为17.0nm。粒径为80~300μm。分别以球状α-Fe_2O_3和针状α-Fe_2O_3为核制备了α-Fe_2O_3/SiO_2/γ-Al_2O_3微球,通过氢气还原得到了Fe_3O_4/SiO_2/γ-Al_2O_3和Fe/SiO_2/γ-Al_2O_3磁性微球。前者表现为顺磁性,比饱和磁化强度为14.0emu/g,后者表现为铁磁性,比饱和磁化强度为26.0emu/g,矫顽力为430 Oe。该磁性氧化铝微球的磁性能可通过调节还原温度和时间来控制。
     为了提高环己烯的选择性,对比考察了Al_2O_3和Al_2O_3-ZrO_2负载的Ru-Zn-B催化剂上苯的选择性加氢性能。采用硼氢化钠化学还原法分别制备了Ru-Zn-B/Al_2O_3和Ru-Zn-B/Al_2O_3-ZrO_2催化剂,并对这两种催化剂进行了苯选择性加氢评价研究。结果表明ZrO_2的引入显著提高了环己烯选择性,当Zr/Al原子比为0.1时,环己烯选择性最高。另外发现少量Zn的加入有利于提高Ru-Zn-B/Al_2O_3-ZrO_2催化剂的环己烯选择性。这是因为ZnSO_4水溶液使催化剂表面的亲水性增强,以及Zn~(2+)对Ru的稀释作用,提高了环己烯的选择性。
     设计建造了磁稳定床冷模实验装置,并以细小的铁粉颗粒为固相,氮气为气相,自来水为液相,通过冷模实验研究了液固和气液固三相系统的流动状态,确定了气液固三相之间传质效率高的链式操作状态,获得了磁稳定床的稳定操作区间。在此基础上,设计建造了磁稳定床加氢实验装置,以磁性氧化铝为载体,通过浸渍法制备了均匀型和蛋壳型分布的Ru钌基磁性Ru/γ-Fe_2O_3-γ-Al_2O_3微球催化剂,详细考察了磁性催化剂的制备参数、磁稳定床的操作参数和反应条件对苯选择性加氢的影响。结果表明磁稳定床的链式操作状态和Ru的蛋壳型分布提高了环己烯的选择性,证实了所研制的蛋壳型钌基磁性微球催化剂适用于磁稳定床中苯的选择性加氢工艺,具有较好的应用前景。
Cyclohexene is an important raw material, which can be widely used in production of medicine, pesticide, dye, washes, dynamite, feedstuff, polyester, and other fine chemicals. Selective hydrogenation of benzene to cyclohexene is becoming an important chemical process for production of cyclohexene. A magnetically stabilized bed (MSB) has many advantages of high mass-transfer efficiency, low pressure drop, high conversion, and easy to avoid channeling flow, interphase backmixing and residence time over conventional fixed bed and fluidized bed, since the magnetic catalyst particles are dispersed in a uniform and stable arrangement by the magnetic field. The preparation process of alumina nanospheres and the magnetic core-shell alumina nanospheres were explored in this paper. Selective hydrogenation of benzene on the Ru and Ru-Zn-B catalysts supported on Al_2O_3-ZrO_2 composite was investigated. Three kinds of magnetic core-shell alumina microspheres were prepared, which have both suitable magnetism and high activity for hydrogenation, therefore it is capable of applying to the MSB. The final goal of this paer is to develop novel magnetic catalysts and MSB technology for selective hydrogenation of benzene.
     Alumina nanospheres and magnetic core-shell alumina nanospheres were synthesized by sol-gel method. It presents a simple and efficient approach to synthesize alumina nanospheres, which can be produced using lauric acid as template in 1-propanol system. A novel and uniform alumina nanospheres with a size of 80–120 nm has been successfully prepared by lauric acid via combination of the sol-gel process with the surfactant self-assembly approach. The alumina nanospheres possess average pore diameter 4.9 nm, a large pore volume 0.8 cm~3/g, and a high specific surface area 550 m~2/g. On the basis of above method, well-structured nanospheres with a magnetic core/alumina shell (MFeCA) structure were obtained by self-assembly of stearic acid/alumina species complex in 1-propanol system. The thickness of alumina shell is very uniform (30nm). The surface area, pore volume and average pore size of the sample is 140m~2/g, 0.22 cm~3/g and 5.2 nm, respectively. The saturation magnetization values of the sample is as high as 50.2 emu/g.
     Magnetic alumina composite microspheres withγ-Fe_2O_3 core/Al_2O_3 shell structure were prepared by the oil column method. The results show that the specific surface area and pore volume of theγ-Fe_2O_3/SiO_2/Al_2O_3 composite microspheres calcined at 500℃were 200 m~2/g and 0.77cm~3/g, respectively. The saturation magnetization is 15.1emu/g. Magnetic alumina composite microspheres consisting of Fe_3O_4 core, an intermediate layer of SiO_2 and Al_2O_3 shell structure were also prepared by the oil column method. The sample is of uniform particle size and a strong superparamagnetic. The specific surface area, pore volume and average pore diameter of the microsphere were 201m~2/g, 0.76cm~3/g, 17nm, respectivly. The particle size distribution of the sample is 80~300μm. In addition,α-Fe_2O_3/SiO_2/γ-Al_2O_3 microspheres composed of the sphericalα-Fe_2O_3 or the needle type ofα-Fe_2O_3 were prepared by oil column method. Magnetic Fe_3O_4/SiO_2/γ-Al_2O_3 and Fe/SiO_2/γ-Al_2O_3 microspheres were obtained by hydrogen reduction. The former represents paramagnetic magnetization 14.0emu/g, while the latter shows the ferromagnetic saturation magnetization 26.0emu/g, coercivity 430 Oe. Therefore, it is easy to get different magnetic alumina carrier by controlling the reduction temperature and time.
     Ru-Zn-B/Al_2O_3-ZrO_2 and Ru-Zn-B/Al_2O_3 catalyst were prapared by chemical reduction method using sodium borohydride as chemical reductant. The performance of two catalysts was characterized using selective hydrogenation of benzene in autoclave reactor. The results show that ZrO_2 is favorable to increase the selectivity of cyclohexene on Ru-Zn-B/Al_2O_3 catalyst obviously, the highest selectivity of cyclohexene occurs when the Zr/Al atomic ratio is 0.1. Ru catalyst containing a small amount of zinc is in favor of improving selectivity of cyclohexene. The reason may be that ZnSO_4 solution enhances the hydrophily of the surface of the catalyst obviously, and Zn~(2+) dilutes Ru to increase the dispersion of Ru nanoparticles, therefore improves the selectivity for cyclohexene.
     A model MSB unit was designed and constructed, and was used to investigate the flow state with Fe fine particles as model catalyst, nitrogen as gas and water as liquid. The results indicated that the high mass-transfer efficiency is obtained when the magnetically stabilized bed is in the state of chain operation. On the basis, Ru-based magnetic microspheres (Ru/γ-Fe_2O_3-SiO_2-γ-Al_2O_3) catalysts with uniform and egg-type distribution of Ru on catalyst pellets were prepared by impregnation method, respectively. A MSB unit for hydrogenation was designed and constructed, and used to characterize the selective hydrogenation of benzene. The effects of catalyst preparation parameters and reaction conditions on the selective hydrogenation of benzene were investigated in detail. The results show that the state of chain operation in MSB and the egg-type distribution of Ru on catalyst pellets increase the selectivity for cyclohexene obviously, this verify that the magnetic ruthenium-based catalysts and magnetically stabilized bed have a good prospect of industrial applications.
引文
[1]贾继飞,张涛.苯选择性加氢制环己烯的研究进展[J].精细石油化工, 1997, (3): 46-50
    [2]Haretog F., wietering P. Z. Olefins as intermediates in the hydrogenation of aromatic hydrocarbons[J]. Journal of Catalysis, 1963, 2(1): 79-81
    [3] Drinkard W.C. NL 7205832,1972
    [4] Hajime N., Mitsuo K. Preparation of cycloolefins from aromatic hydrocarbons with ruthenium-containing reduction catalysts[P]. J. P. Patent: 6363627, 1988
    [5] Hu S. C., Chen Y.W. Effect of preparation on Ru-Zn ultrafine catalysts in partial hydrogenation of benzene[J]. Industrial Engineering Chemical Research, 2001, 40(12): 3127-3132
    [6]杨新丽,郭益群,刘寿长.非晶Ru-Co/ZrO_2催化苯加氢制备环己烯[J].应用化学, 2003,21(4): 379-381
    [7] Liu Z.Y., Sun H.J., Wang D.B. Selective hydrogenation of benzene to cyclohexene over Ru-Zn catalyst with nanosized zirconia as dispersant[J]. Chinese Journal of Catalysis, 2010, 31(2): 150–152.
    [8] Xie S. H., Qiao M. H. Applied Catalysis A: General, 1999, 176(2): 129-134
    [9] Xie H. F., Liu Y.Q., Liu C. G., et al. Preparation of amorphous Ru-Zn-B/Al_2O_3 catalyst and its application in benzene selective hydrogenation[C]. 229th ACS meeting, Washington DC, USA, 2005
    [10] Ronchin L., Toniolo L. Selective hydrogenation of benzene to cyclohexene using a Ru catalyst suspended in an aqueous solution in a mechanically agitated tetraphase reactor: a study of the influence of the catalyst preparation on the hydrogenation kinetics of benzene and of cyclohexene[J]. Applied Catalysis A: General, 2001, 208(1): 77-89
    [11] Milone C., Neri G., Donato A., et al. Selective hydrogenation of benzene to cyclohexene on Ru/γ-Al_2O_3[J]. Journal of Catalysis, 1996, 159(2): 253-258
    [12] Ronchin L., Toniolo L. Selective hydrogenation of benzene to cyclohexene catalyzed by Ru supported catalysts[J]. Catalyst Today, 2001, 66(1): 363-368
    [13] Rosensweig R.E. Magnetic stabilization of the states of uniform fluidization[J]. Science, 1979, 204(1): 57-59
    [14]陈西波,傅送保,朱泽华.液固两相磁稳定床中试冷模研究[J].化工进展, 2004, 23(6): 669-672
    [15] Ding Y., Sun Y. Small-sized dense magnetic pellicular support for magnetically stabilized fluidized bed adsorption of protein[J]. Chemical Engineering Science, 2005, 60(4): 917-924
    [16]孟祥堃,宗保宁,慕旭宏,等.磁稳定床反应器中己内酰胺加氢精制过程研究[J].化学反应工程与工艺, 2002, 18(1): 26-31
    [17] Nagahara, Hajime, Konishi. Process for producing cycloolefins[P]. U. S. Patent: 4734536, 1988
    [18]孙海杰,张程,袁鹏,等.新型苯选择性加氢制环己烯非晶态催化剂Ru-Fe-B/ZrO_2的制备及其可调变性[J].催化学报, 2008, 29(5): 441-446
    [19]刘寿长,王海荣,韩民乐,等.高活性高选择性苯部分加氢制环己烯催化剂的研究[J].燃料化学学报, 2001, 299(增刊): 127-129
    [20]王盛枝,李金鹏,罗鸽,等.液相法Ru-M–B/ZrO_2催化苯选择性加氢制环己烯[J].郑州大学学报(理学版), 2002, 34(4): 78-81
    [21] Liu S. C., Liu Z. Y., Wang Z., et al. A novel amorphous alloy Ru–La–B/ZrO_2 catalyst with high activity and selectivity for benzene selective hydrogenation[J]. Applied Catalysis A: General, 2006, 313(2): 49–57
    [22]王建强.新型钌催化剂的制备表征及苯选择性加氢反应研究[D].上海:复旦大学, 2005
    [23]宁剑波.钌催化剂上苯选择性加氢合成环己烯的研究[D].大连:中科院大连化物所, 2007
    [24] Zhao Y. J., Zhou J., Zhang J. G., et al. Liquid-phase selective hydrogenation of benzene to cyclohexene on Ru/Al_2O_3–ZrO_2/cordierite monolithic catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2009, 309(1-2): 35-39
    [25]Zhao Y. J., Zhou J., Zhang J. G., et al. Monolithic Ru-based catalyst for selective hydrogenation of benzene to cyclohexene[J]. Catalysis Communications, 2008, 9(3): 459-464
    [26]Zhao Y. J., Zhou J., Zhang J. G., et al. Selective Hydrogenation of Benzene to Cyclohexene on a Ru/Al_2O_3/Cordierite Monolithic Catalyst: Effect of Mass Transfer on the Catalytic Performance[J]. Indudustrial& Engineering Chemical Research, 2008, 47(14): 4641-4647
    [27] Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712
    [28] Zhao D., Feng J., Huo Q., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279: 548-552
    [29] Ciesla U., Schuth F. Ordered mesoporous materials[J]. Microporous and Mesoporous Materials, 1999, 27(2-3): 131-149
    [30]Ying J. Y., Mehnert C. P., Wong M. S. Sythesis and applications of supramolecular-templated mesoporous materials[J]. Angewandte Chemie International Edition, 1999, 38(1-2): 56-77
    [31] Trewyn B. G., Whitman C. M., Lin V. S. Y. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents[J]. Nano Letters, 2004, 4(11): 2139-2143
    [32] Suzuki K., Ikari K., Imai H. Synthesis ofsilica nanoparticles having a well-ordered mesostructure usinga doublesurfactant system[J]. Journal of American Chemical Society, 2004, 126(2): 462-463
    [33] Han Y., Ying J.Y. Generalized fluorocarbon surfactant-mediated synthesis of nanoparticles with various mesoporous structures [J]. Angewandte Chemie International Edition, 2005, 44(2): 288-292
    [34] Ying J. Y. Design and synthesis of nanostructured catalysts[J]. Chemical Engineering Science, 2006, 61(5): 1540-1548
    [35] Takahashi H., Li B., Sasaki T., et al. Catalytic activity in organic solvents and stability of immobilized enzaymes depend on the pore size and surface characteristics of mesoporous silica[J]. Chemistry Materials, 2000, 12(11): 3301-3305
    [36] Han Y. J., Stucky G. D., Butler A. Mesoporous silicate sequestration and release of proteins[J]. Journal of American Chemical Society, 1999, 121(42): 9897-9898
    [37] Lai C. Y., Trewyn B. G., Jeftinija D. M., et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. Journal of American Chemical Society, 2003, 125(15): 4451-4459
    [38] Radu D. R., Lai C. Y., Jeftinija K., et al. A Polyamidoamine Dendrimer-Capped Mesoporous Silica Nanosphere-Based Gene Transfection Reagent[J]. Journal of American Chemical Society, 2004, 126(41): 13216-13217
    [39] Slowing I, Trewyn B G, Lin V. S. Y. Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells[J]. Journal of American Chemical Society, 2006, 128(46): 14792-14793
    [40] Giri S, Trewyn B G, Stellmaker M P, et al. Stimuli-responsive controlled-release deliverysystem based on mesoporous silica nanorods capped with magnetic nanoparticles[J]. Angewandte Chemie International Edition. 2005, 44(32): 5038-5044
    [41] Qiao S. Z., Djojoputro H., Hu Q. H., et al. Synthesis and lysozyme adsorption of rod-like large-pore periodic mesoporous organosilica[J]. Progress in Solid State Chemistry, 2006, 34(2-4): 249-256
    [42] Qiao S. Z., Yu C. Z., Xing W., et al. Synthesis and bio-adsorptive properties of large-pore periodic mesoporous organosilica rods[J]. Chemistry Material, 2005, 17( 24): 6172-6176
    [43] Wu P. G., Zhu J. H., Xu Z. H. Template-assisted synthesis of mesoporous magnetic nanocomposite particles[J]. Advanced Functional Materials, 2004, 14(4): 345-351
    [44] Lu A. H., Li W. C., Kiefer A., et al. Fabrication of magnetically separable mesostructured silica with an open pore system[J]. Journal of American Chemical Society, 2004, 126( 28): 8616-8617
    [45] Kim J., Lee J. E., Lee J., et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals[J]. Journal of American Chemical Society, 2006, 128(3): 688-689
    [46] Zhang L., Qiao S. Z., Jin Y. G., et al. Fabricationand size-selective bioseparation of magnetic silica nanosphers with highly ordered periodic mesostructure[J]. Advanced Functional Materials, 2008, 18(20): 3203-3212
    [47] Stober W., Fink A. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of colloid interface Science, 1968, 26(1): 62-69
    [48] Deng Y. H., Qi D. W., Deng C. H. Superparamagnetic high-magnetization microspheres with an Fe_3O_4/SiO_2 core and perpendicularly aligned mesoporous SiO_2 shell for removal of microcystins[J]. Journal of American Chemical Society, 2008, 130(1): 28-29
    [49] Zhao W. R., Gu J. L., Zhang L. X., et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. Journal of American Chemical Society, 2005, 127(25): 8916-8917
    [50]汤慧利.新型磁性纳米材料和介孔氧化硅材料的设计合成及应用研究[D].上海:复旦大学, 2008
    [51] Dong K. Y., Selvan S. T., Su S. L., et al. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots[J]. Journal of American Chemical Society, 2005, 127(14): 4990-4991
    [52] Lin Y. S., Wu S. H., Hung Y., et al. Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous [J]. Chemistry Materials, 2006, 18(22): 5170-5172
    [53] Dong K. Y., Su S. L., Georgia C. P., et al. Nanoparticle Architectures Templated by SiO_2/Fe_2O_3 Nanocomposites[J]. Chemistry Materials, 2006, 18(3): 614-619
    [54] Teng Z. G., Li J., Yan F., et al. Highly magnetizable superparamagnetic iron oxide nanoparticles embedded mesoporous silica spheres and their application for efficient recovery of DNA from agarose gel[J]. Journal of Materials Chemistry, 2009, 19(13): 1811-1815
    [55] Zhang L., Qiao S. Z., Jin Y. G., et al. Magnetic hollow spheres of periodic mesoporous organosilica and Fe_3O_4 nanocrystals: fabrication and structure control [J]. Advanced Materials, 2008, 20(4): 805-809
    [56] Zhao W. R., Chen H. R., Li Y. S., et al. Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property [J]. Advanced Functional Materials, 2008, 18(18): 2780-2788
    [57] Liu J., Deng Y. H., Liu C., et al. A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls[J]. Journal of Colloid Interface Science, 2009, 333(1): 329-334
    [58] Kubo T., Sugita T., Shimose S., et al. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters[J]. International journal of oncology, 2000, 17(2): 309-315
    [59] Dekker R. F. H. Application of a magnetic immobilizedβ-glucosidase in the enzymatic saccharification of steam-exploded lignocellulosic residues[J]. Applied Biochemistry and Biotechnology, 1990, 23(1): 25-39
    [60] Goodwin S. C., Bittner C. A., Peterson C. L., et al. Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier[J]. Toxicological Sciences, 2001, 60(1): 177-183
    [61] Mccol E. D. F., Doherty M. L., Baird A. W., et al. Concanavalin a-stimulated proliferation of cell subset-depleted lymphocyte populations isolated from fasciola hepatica-infected cattle[J]. Veterinary Immunology and Immunopathology, 1998, 66(3-4):289-300
    [62] Anselmann R., Pellatt M. G. Spherical magnetic particles[P]. W. O. Patent: 9812717, 1998
    [63] Uematsu H., Daimon K., Yoshiga S., et al. Method for isolating nucleic acids using silica-coated magnetic particles[P]. U. S. Patent: 5945525, 1999
    [64] Sunderland C. J., Steiert M., Talmadge J. E., et al. Targeted nanoparticles for detetecting and treating cancer[J]. Drug Development Research, 2006, 67(1): 70-93
    [65] Santra S., Tapec R., Theodorpouloun, et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants[J]. Langmuir, 2001, 17(10): 2900-2906
    [66] Euliss L. E., Grancharov S. G., Obrien S., et al. Cooperative Assembly of Magnetic Nanoparticles and Block Copolypeptides in Aqueous Media[J]. Nano Letters, 2003, 3(11): 1489-1493
    [67] Kim J., Lee J. E., Lee J., et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals[J]. Journal of American Chemical Society, 2006, 128(3): 688-689
    [68] Hyeon T. Chemical synthesis of magnetic nanoparticles[J]. Chemical Communication, 2003, 8(8): 927-934
    [69] Park J., Joo J., Hyeon T., et al. Synthesis of monodiperse spherical nanocrystals[J]. Angewandte Chemie International Edition, 2007, 46(25): 4630-4660
    [70] Wang X., Li Y. Monodisperse nanocrystals: general synthesis, assembly, and their applications[J]. Chemical Communication, 2007, 28(28): 2901-2910
    [71] Cushing B. L., Kolesnichenko V. L., Oconnor C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chemical Review, 2004, 104( 9): 3893-3946
    [72] Jeong U., Tang X., Wang Y., et al. Superparamagnetic colloids: controlled synthesis and niche applications[J]. Advanced Materials, 2007, 19( 1): 33-60
    [73] Arruebo M., Fernandez-Pacheco R., Ibarra M. R., et al. Magnetic nanoparticles for drug delivery[ J]. Journal of Nanotoday, 2007, 2(3 ): 22-32
    [74] Xu C., Sun S. Monodisperses magnetic nanoparticles for biomedical applications[J]. Polymer International, 2007, 56(7 ): 821-826
    [75]张阳德,张洋,潘一峰.磁性纳米颗粒靶向性肿瘤热疗的研究进展[J].中国医学工程, 2006 , 14(2): 148-152
    [76] Qu F., Zhu G., Huang S., et al. Controlled release of captopril by regulating the pore size and morphology of ordered mesoporous silica[J]. Microporous Mesoporous Materials, 2006, 92(1-3): 1-9
    [77] Vallet-Regi M., Doadrio J. C., Doadrio A. L., et al. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin[J]. Solid state ionics, 2004, 172(1-4 ): 435-439
    [78] Zhang L., Qiao S. Z., Jin Y. G., et al. Hydrophobic functional group initiated helical mesostructured silica for controlled drug release[J]. Advanced Functinal Materials, 2008,18( 23): 3834-3842
    [79] Zhang L., Qiao S. Z., Cheng L., et al. Fabrication of a magnetic helical mesostructured silica rod[J]. Nanotechnology, 2008, 19(43 ): 435608-435614
    [80]陈金媛,彭图治.磁性纳米TiO_2/Fe_3O_4光催化复合材料的制备及性能[J].化学学报, 2004, 62( 20): 2093-2097
    [81]廖振华,陈建军,姚可夫.磁性纳米TiO_2/SiO_2/Fe_3O_4光催化剂的制备及表征[J].无机材料学报, 2004, 19(4): 749-754
    [82]王君. ZrO_2基复合氧化物磁性固体酸的合成与性能研究[D].哈尔滨:哈尔滨工程大学, 2007
    [83]孟祥堃,陈西波,慕旭宏,等.一种磁稳定床烷基蒽醌加氢方法. CN 1317253C, 2004
    [84]杨永辉.磁性微球形氧化铝载体与催化剂制备及性能研究[D].北京:北京化工大学, 2006
    [85] Clark J. H. Catalysis of organic reactions by supported inorganic reagents[M]. Academic Press: New York, 1994: 312
    [86]郎宇琪,邢建民,张菊花,等.磁性氧化铝负载Pd催化剂对硝基苯加氢催化活性的研究[J].化学通报, 2009, 7(72): 631-636
    [87]高镰,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002: 128-145
    [88]许士洪,冯道伦,李登新,等.可磁分离二氧化钛光催化剂的制备及其光催化性能[J].无机化学学报, 2007, 24(5): 785-790
    [89] Xu S. H., Shangguan W. F., Yuan J., et al. Preparations and photocatalytic properties of magnetically separable nitrogen-doped TiO_2 supported on nickel ferrite[J]. Applied Catalysis B: Environmental, 2007, 71(3-4): 177-184
    [90] Tarek A. G., Kyoko F., Shigeru K., et al. Preparation and characterization of magnetically separable photocatalyst (TiO_2/SiO_2/Fe_3O_4): Effect of carbon coating and calcination temperature[J]. Journal of Hazard Materials, 2008, 154( 1-3):572-577
    [91] Chen Y. H., Matthias F., Lin R. H., et al. Platinum-Doped TiO_2/Magnetic Poly(methyl methacrylate) Microspheres as a Novel Photocatalyst[J]. Industrial&Engineering Chemical Research, 2009, 48(16 ):7616-7623
    [92]宗保宁,闵恩泽,朱永山. CN 91111807.1, 1991
    [93] Yang Y. Y., Song F. R., Dai W. Petrochemical Technology, 2001, 30(supplement): 26-30
    [94] Dong M. H., Pan Z. Y., Meng X. K., et al. Selective acetylene hydrogenation over core–shell magnetic Pd-support catalysts in a magnetically stabilized bed[J]. AIChEJ, 2008, 54(5): 1358-1364
    [95]彭颖,孟祥堃,宗保宁.一种复合磁性超细粉体及其制备方法. CN 200710099559, 2007
    [96]彭颖,孟祥堃,宗保宁,等.一种甲醇脱水生产二甲醚的方法. CN 200810105361.7, 2008
    [97]谢文华,程萌,宗保宁,等.一种磁性阳离子交换树脂催化剂及其制备方法和应用. CN 20081022557015, 2008
    [98] Pan Z. Y., Dong M. H., Meng X. K. Integration of magnetically stabilized bed and amorphous nickel alloy catalyst for CO methanation [J]. Chemical Engineering Science, 2007, 62( 10): 2712-2717
    [99] Capes C. E., Fouda A. E. Handbook of powder science and technology[M]. Van Nostrand Reinhold: New York, 1984: 269
    [100] Stiles A. B. Catalyst supports and supported catalysts, petrochemical publishing house of china[M]. Academic Press: Beijing, 1992: 125
    [101] Ding X. J., Zhang J. Z., Li J. J., et al, Spray-Dried Alumina Granules for Extrusion[J]. Journal of inorganic material, 2001,16( 6): 1094-1100
    [102] Mitsche R.T. Manufacture of spherical alumina particles[P]. U. S. Patent: 3943070, 1976
    [103] Michalko E. Method of preparing spheroidal alumina particles[P]. U. S. Patent: 4250058, 1981
    [104] Deng S. G., Lin Y. S. Granulation of sol-gel-derived nanostructured alumina[J]. AIChE J, 1997, 43(2): 505-514
    [105] Buelna G., Lin Y. S. Sol–gel-derived mesoporousγ-alumina granules[J]. Microporous and Mesoporous Materials, 1999, 30( 2-3): 359-369
    [106] Buelna G., Lin Y. S. Preparation of spherical alumina and copper oxide coated alumina sorbents by improved sol–gel granulation process[J]. Microporous and Mesoporous Materials, 2001, 42(1 ): 67-76
    [107] Chan Y, Zimmer J P, Stroh M, Steckel J S, Jain R K, Bawendi M G. Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres[J]. Advanced Materials, 2004, 16(23-24 ): 2092-2097
    [108] Breen M. L., Dinsmore A. D., Pink R. H., et al. Sonochemically produced ZnS-coatedpolystyrene core-shell particles for use in photonic crystals[J]. Langmuir, 2001, 17(3): 903-907
    [109] Deng Y. H., Yang W. L., Wang C. C., et al. A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure[J]. Advanced Materials, 2003, 15(20): 1729-1732
    [110] Von werne T., Patten T. E. Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations[J]. Journal of American Chemical Sociey, 1999, 121(30): 7409-7410
    [111] Salgueirino-Maceira V., Correa-Duarte M .A., Spasova M., et al. Composite silica spheres with magnetic and luminescent functionalities[J]. Advanced functional materials, 2006, 16(4): 509-514
    [112] Caruso F., Susha A. S., Giersig M., et al. Magnetic core-shell particles: preparation of magnetite multilayers on polymer latex microspheres[J]. Advanced Materials, 1999, 11(11): 950-953
    [113] Cheng B., Zhao L., Yu J. G., et al. Facile fabrication of SiO_2/Al_2O_3 composite microspheres with a simple electrostatic attraction strategy[J]. Materials Research Bulletin, 2008, 43( 3): 714-722
    [114] Zhao W. R., Gu J. L., Zhang L. X., et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. Journal of American Chemical Society, 2005, 127(25 ): 8916-8917
    [115] Deng Y. H., Qi D. W., Deng C. H., et al. Superparamagnetic high-magnetization microspheres with an Fe_3O_4/SiO_2 core and perpendicularly aligned mesoporous SiO_2 shell for removal of microcystins[J]. Journal of American Chemical Society, 2008, 130(1): 28-29
    [116] Feng J. T., Lin Y. J., Li F., et al. Preparation, structure and properties of micro-spherical alumina with magnetic spinel ferrite cores[J]. Applied Catalysis A: Genenal, 2007, 329(1):112-119
    [117] Feng J. T., Lin Y. J., Li F., et al. Preparation and properties of microspherical alumina with a magnetic core/shell structure[J]. Industrial& Engineering Chemistry Research, 2009, 48(2): 692-697
    [118] Li Y., Liu Y. C., Tang J., et al. Fe_3O_4/Al_2O_3 magnetic core–shell microspheres for rapid and highly speci?c capture of phosphopeptides with mass spectrometry analysis[J]. Journal of Chromatography A, 2007, 1172(1): 57-71
    [119] Guo X. H., Deng Y. H., Gu D., et al. Synthesis and microwave absorption of uniformhematite nanoparticles and their core-shell mesoporous silica nanocomposites[J]. Journal of Materials Chemisry, 2009, 19(37): 6706-6712
    [120] Gregg S. J., Sing K S W. Adsorption, surface area and porosity, end 2 [M]. Academic Press: New York, 1982: 41
    [121] Vaudry F., Khodabandeh S., DavisM. E. Synthesis of Pure Alumina Mesoporous Materials[J]. Chemistry Materials, 1996, 8(7): 1451-1464
    [122] Ohmori M., Matijevic E. Preparation and Properties of Uniform Coated Inorganic Colloidal Particles: 8. Silica on Iron[J]. Jounal of Colloid Interface Science, 1993, 160(2): 288-292
    [123]Rosensweig R E. Hydrocarbon conversion process utilizing a magnetic field in a fluidized bed of catalitic particles[P]. U. S. Patent: 4136016, 1979
    [124] Ivanova V., Hristov J., Dobreva E., et al. Performance of a magnetically stabilized bed reactor with immobilized yeast cells[J]. Applied biochemistry and biotechnologyBiochem Biotechnol, 1996, 59(2): 187-198
    [125] Tong X. D., Sun Y. Application of magnetic agarose support in liquid magnetically stabilized fluidized bed for protein adsorption[J]. Biotechnology Progress, 2003, 19(6): 1721-1727.
    [126] Liu Y. A., Hamby R. K., Colberg R. D. Fundamental and practical developments of magnetofluidized beds: A review[J]. Powder Technology, 1991, 64(1-2): 3-41
    [127] Meng X K, Mu X H, Zong B N, Min E Z, Zhu Z H, Fu S B, LuoY B. Purification of caprolactam in magnetically stabilized bed reactor[J]. Catalysis Today, 2003, 79-80(2): 21-27
    [128] Harel O, Zimmels Y, Resnick W. Particle separation in a magnetically stabilized fluidized bed[J]. Powder Technology, 1991, 64(1-2): 159-164
    [129]张冠东,官月平,单国彬,等.纳米Fe_3O_4颗粒的表面包覆及其在磁性氧化铝载体制备中的应用[J].过程工程学报, 2002, 2(4): 319-324
    [130]王巧巧,官月平,郎宇琪,等.尿素水解法制备球形磁性Al_2O_3复合材料[J].化学通报, 2007, 2: 112-116.
    [131] Zhao W. R., Lang M.D., Li Y. S., et al. Fabrication of uniform hollow mesoporous silica spheres and ellipsoids of tunable size through a facile hard-templating route[J]. Journal of Materials Chemistry, 2009, 19(18): 2778-2783 beds of magnetic particles[J].
    [132]舒保华.γ-Fe_2O_3型磁粉的性能及其生产[J].粉末冶金工业, 1999, 9(1): 7-14.
    [133] Takumi S., Hashimoto T., Tatsushima M. Method of manufacture of spherical alumina particles[P]. U. S. Patent: 4108971, 1978
    [134]李辉.非晶态合金催化剂的制备及其催化性能的研究[D].上海:复旦大学, 2001
    [135]杨新丽,郭益群,刘寿长.非晶Ru-Co/ZrO_2催化苯加氢制备环己烯[J].应用化学, 2003, 21(4): 379-381
    [136]姬永亮,王志武,刘寿长,等.苯选择性加氢制环己烯Ru系催化剂的研究[J].贵金属, 2003, 24(1): 26-30
    [137]杨新丽,郭益群,刘寿长,等.苯选择性加氢制环己烯Ru-Co-B/ZrO_2催化剂的研究[J].化学研究与应用, 2003, 15(5): 670-672
    [138]韩民乐,刘寿长,杨笑迪,等.助剂对Ru-B/ZrO_2非晶合金催化剂性能及表面性质的影响[J].分子催化, 2004, 18(1): 47-50
    [139] Xie S. H.,Qiao M. H.,Deng J. F. et al. A novel Ru-B/SiO_2 amorphous catalyst used in benzene-selective hydrogenation[J]. Applied Catalysis A: General, 1999, 176(1): 129-134
    [140] Hu S. C., Chen Y. W. Effect of preparation on Ru-Zn ultrafine catalysts in partial hydrogenation of benzene[J]. Industrial & Engineering Chemical Research, 2001, 40(14): 3127-3132
    [141] Liu Zh., Dai W. L., Deng J. F. The effect of boron on selective hydrogenation to cyclohexene over Ruthenium bororide powders[J]. Journal of Catalysis, 1999, 187(1): 253-256
    [142]刘寿长,朱伯仲,罗鸽,等.苯部分加氢制环己烯的非晶态Ru-M-B/ZrO_2催化剂的表征[J].分子催化, 2002, 16(3): 217-222
    [143]刘寿长,罗鸽,韩民乐,等.浸渍法制备的苯部分加氢制环己烯催化剂的表征[J].催化学报, 2001, 22(6): 559-562
    [144]高晓,刘欣梅,阎子峰. ZrO_2-Al_2O_3催化剂载体的制备及应用[J].工业催化, 2008, 16(3): 24-29
    [145]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社, 2004: 14-148
    [146]高正中.实用催化[M].北京:化学工业出版社, 1996: 26-30, 225-227
    [147]慕旭宏.气液固三相磁稳定床用于加氢反应过程的探索性研究[D].北京:石油化工科学研究院, 1996
    [148]Rosensweig R E, Hydrocarbon conversion process utilizing a magnetic field in a fluidized bed of catalitic particles[J]. U. S. Patent: 4136016, 1979
    [149] Rosensweig R. E., Ferrohydrodynamics[M]. University Press: Cambridge, U K, 1985
    [150] Fan G. Y., Jiang W. D., Wang J. B., et al. Selective hydrogenation of benzene to cyclohexene over RuCoB/γ-Al_2O_3 without additive [J]. Catalysis Communications, 2008, 10(2): 98–102
    [151] Liu Z., Xie S. H., Liu B., et al. Benzene-selective hydrogenation to cyclohexene over supported ruthenium boride catalysts prepared by a novel method[J]. New journal of chemistry, 1999, 23(11): 1057-1058
    [152]唐雷,石秋杰,谌伟庆.酸改性海泡石负载钌-硼合金催化苯选择性加氢制环已烯[J].石油化工, 2005, 34(12): 1140-1144
    [153] Mazzieri V. A., Largentiere P. C., et al. Effectof chlorine on the properties of Ru/Al_2O_3 [J]. Industrial&Engineering Chemical Research, 2003, 42(11): 2269-2272
    [154]李远志,周瑞.负载型非晶态催化Ru-B/TiO_2的制备及应用[J].化学研究与应用, 2000, 12(6): 614-616
    [155]王东升.苯部分加氢制环乙烯[J].石油化工, 1991, 20(11): 785-791
    [156]刘国际,汪志宏,李竹霞,等.苯部分加氢制环己烯的钌系催化剂研究新进展[J].郑州工业大学学报, 1999, 20(4): 1-5
    [157]梁红玉,张连红.苯部分加氢制备环己烯研究的进展[J].抚顺石油学院学报, 2000, 20(2): 34-39
    [158]王盛枝,李金鹏,罗鸽,等.液相法Ru-M-B/ZrO_2催化苯选择性加氢制环己烯[J].郑州大学学报:理学版, 2002, 34(4): 78-81
    [159]张乐,刘振宇,刘寿长.钌催化苯选择性加氢制环己烯的研究进展[J].煤炭转化, 2001, 24(2): 40-45
    [160]刘寿长,黄振旭,吴咏梅. Zn对苯选择性加氢制环己烯Ru催化剂性能的影响[J].郑州大学学报:理学版, 2006, 38(2): 72-75
    [161] Nagahara H., Konishi M. Process for producing cycloolefins[P]. U. S. Patent: 4734536, 1988
    [162] Fischer R., Dostalek R., Marosi L. Process for preparing cyclohexene by partial hydrogenation of benzene[P]. E. P. Patent: 554765, 1993
    [163] Struijk J., Scholten J. J. F. Selectivity to cyclohexenes in the liquid-phase hydrogenation of benzene and toluene over ruthenium catalysts, as influenced by reaction modifiers[J]. Applied Catalysis A: General, 1992, 82(2): 277-287
    [164]师瑞娟,刘寿长,王辉,等.沉淀法制备苯选择性加氢制环己烯双助剂Ru系催化剂研究[J].分子催化, 2005, 19(2): 141-145
    [165] Hronec M., Cvengrosova Z., Kralik M., et al. Hydrogenation of benzene to cyclohexene over polymer-supported ruthenium catalysts[J]. Journal of Molecular Catalysis A: Chemical, 1996, 105(1-2): 25-30
    [166] Wang J. Q., Guo P. J., Yan S. R., et al. Colloidal RuB/Al_2O_3·xH_2O catalyst for liquid phase hydrogenation of benzene to cyclohexene[J]. Journal of Molecular Catalysis A: Chemical, 2004,222(1-2): 229-234
    [167] Mazzieri V., Figoli N., Pascual F. C. Effect of the support on the selective hydrogenation of benzene over ruthenium catalysts.1. Al_2O_3 and SiO_2[J]. Catalysis Letters, 2005,102(1-2): 79-82
    [168] Da-Silva J. W., Cobo A. J. G. The role of the titania and silica supports in Ru-Fe catalysts to partial hydrogenation of benzene[J]. Applied Catalysis A: General, 2003, 252(1): 9-16
    [169] Hu S.C., Chen Y.W. Partial hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on La2O3-ZnO binary oxides[J]. Industrial&Engineering Chemical Research, 1997, 36(12): 5153-5159
    [170] Aizawa H. A., Kuroda A. K. Process for preparing cyclicolefins by selective partial hydrogenation of aromatic hydrocarbons [P]. U. S. Patent: 4197415, 1980
    [171] Nagahara H., Konishi M. Process for producing cycloolefins [P]. U. S. Patent: 4734536, 1988
    [172] Ronchin L., Toniolo L. Supported Ru catalysts: A study of the influence of supports, promoters and preparative variables on the catalytic activity and selectivity[J]. Reaction Kinetics and Catalysis Letters, 2003, 78(2): 281-289
    [173] Richard M. A., Taube D. J., Yee D. K., et al. H-D exchange during selective benzene hydrogenation to cyclohexene[J]. Journal of the American Chemical Society, 1991, 202(4): 1833-1838
    [174] Kluson P., Cerveny L., Had J. Preparation and properties of ruthenium supported catalysts[J]. Catalysis letters, 1994, 23(2): 299-305
    [175]Kluson P., Cerveny L. Selective hydrogenation over ruthenium catalysts [J]. Applied Catalysis A: General, 1995, 128(1): 13-31
    [176] Kluson P., Had J., Belohlav Z., et al. Selective hydrogenation of toluene over ruthenium catalysts prepared by the sol-gel method[J]. Applied Catalysis, 1997, 149(2): 331-339
    [177] Struyk J., Scholten J. J. F. Selectivity to cyclohexene in the gas phase hydrogenation of benzene over ruthenium, as influenced by reaction modifiers. III. FT-IR study of the interaction between the reaction modifiers and cyclohexene[J]. Applied Catalysis, 1990,62(1): 151-159
    [178] Van der Steen P. J., Scholten J. J. F. Selectivity to cyclohexene in the gas phase hydrogenation of benzene over ruthenium, as influenced by reaction modifiers. II. Catalytic hydrogenation of benzene to cyclohexene and cyclohexane[J]. Applied Catalysis, 1990, 58(2): 291-304
    [179] Mazzieri V. A., Largentiere P. C., Figoli N. S. Influence of methanol addition during selective hydrogenation of benzene to cyclohexene[J]. Reaction Kinetics and Catalysis Letters, 2004, 81(1): 107-112
    [180] Suryawanshi P. T., Mahajani V. V., Liquid-phase hydrogenation of benzene to cyclohexene using ruthenium-based heterogeneous catalyst[J]. Journal of Chemical Technology and Biotechnology, 1997, 69(2): 154-160
    [181] Dietzsch E., Claus P., Honicke D. The partial gas-phase hydrogenation of benzene to cyclohexene on supported and coated ruthenium catalysts[J]. Topics in Catalysis, 2000, 10(1-2): 99-106
    [182] Van der Steen P.J., Scholten J. J. F. Selectivity to cyclohexene in the gas phase hydrogenation of benzene over ruthenium, as influenced by reaction modifiers. I. Adsorption of the reaction modifiers, water and.epsilon.-caprolactam,on ruthenium[J]. Applied Catalysis, 1990, 58(2): 281-289
    [183] Spinace E. V., Vaz J. M. Liquid-phase hydrogenation of benzene to cyclohexene catalyzed by Ru/SiO_2 in the presence of water-organic mixtures[J]. Catalysis Communications, 2003, 4(3): 91-96
    [184]高波.苯选择性加氢技术的研究进展[J].辽宁化工, 2004, 33(10): 578-581
    [185]李望明,梁红文.苯液相部分加氢制备环己烯影响因素的探讨[J].合成技术及应用, 1998, 13(4): 14-18
    [186]刘寿长.苯部分加氢制环己烯催化技术研究进展[J].精细与专用化学品,2004,12(24): 4-6
    [187]陈应萍,张结实,汪心想,等.苯部分加氢生产氯代环己烷工艺路线探讨[J].河南化工, 2004, (10): 11-13
    [188]唐雷,石秋杰.钌催化剂上苯加氢制环己烯的影响因素[J].工业催化, 2005, 13(7): 7-11
    [189]戴新民,张结实,陈应萍.苯部分加氢制环己烯催化剂中试设备工艺探讨[J].化工科技市场, 2005, 28(4): 32-35
    [190]吴济民.苯催化加氢生产环己烯工艺研究与分析[J].河南化工, 2002, (4): 29-30
    [191] Struijk J., Dangremond M., Lucasderegt W.J.M., et al. Partial liquid phase hydrogenation of benzene to cyclohexene over ruthenium catalysts in the presence of an aqueous salt solution.I. Preparation,characterization of the catalyst and study of a number of process variables[J]. Applied Catalysis A: General, 1992, 83(2): 263-295
    [192] Liu S. C., Liu Z. Y., Wang Z., et al. Characterization and study on performance of the Ru–La–B/ZrO_2 amorphous alloy catalysts for benzene selective hydrogenation to cyclohexene under pilot conditions[J]. Chemical Engineering science, 2008, 139(1): 157-164
    [193] Satterfield C. N. Heterogeneous Catalysis in Practice[M]. McGraw-Hill, Inc, 1980
    [194] Struijk J., Roene R., vanderkamp, T., et al. Partial liquid-phase hydrogenation of benzene to cyclohexene over ruthenium catalysts in the presence of an aqueous salt solution. II. In?uence of various salts on the performance of the catalyst[J]. Applied Catalysis, 1992, 89(2): 77-102
    [195] Hu S. C., Chen Y. W. Effect of Preparation on Ru?Zn Ultrafine Catalysts in Partial Hydrogenation of Benzene[J]. Industrial & Engineering Chemical Research, 2001, 40(14) : 3127-3132
    [196] Ning J. B., Xu J., Liu J., et al. Selective hydrogenation of benzene to cyclohexene over colloidal ruthenium catalyst stabilized by silica [J]. Catalysis Letter, 2006, 109(3-4): 175-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700