CO经草酸二乙酯合成乙二醇催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙二醇是一种重要的化工原料,由于我国需求旺盛而产能不足,进口依赖度逐年增加。目前国内外乙二醇生产均采用以石油化工为基础的环氧乙烷直接水合法工艺,能耗和物耗等技术指标偏高,而我国属于贫油多煤国家,开发非石油路线合成乙二醇生产工艺具有原料优势。CO经草酸酯合成乙二醇由两步反应构成,第一步:CO偶联反应合成草酸酯工艺;第二步:草酸酯加氢合成乙二醇工艺。本论文分别对草酸酯合成催化剂的制备和草酸酯加氢催化剂的制备进行了研究,对催化剂进行了系统表征,考察了不同制备条件和不同工艺条件下的催化剂性能,具体研究工作如下:
     (1)草酸二乙酯(DEO)合成催化剂研究
     采用浸渍法制备了系列草酸二乙酯合成钯催化剂,对载体和催化剂进行了系统表征。研究结果表明,γ-氧化铝经过高温焙烧后,相应比表面、孔结构、晶型及表面酸性均发生改变。对于单金属Pd/a-Al2O3催化剂而言,钯呈蛋壳型分布,还原后催化剂活性组分以Pd。存在。对于双金属Pd-Fe/a-Al2O3催化剂而言,加入助剂铁后,钯分散度增加,还原后铁以FeO存在,载体、助剂和活性组分之间形成了“夹心”结构,活性组分分散性和稳定性有所提高。采用固定床反应器考察了催化剂制备条件和Cl-含量对催化性能的影响,发现α-Al2O3比α-Al2O3更适合作为催化剂载体;催化剂中Cl-含量对催化剂选择性有较大影响,讨论了副产物碳酸二乙酯的形成原因。反应工艺条件试验表明,在反应温度115-125℃,反应原料CO和草酸二乙酯配比为1.2-1.6,空速为2800-3600h-1的条件下,CO的转化率可达35%以上,草酸二乙酯选择性可达95%,Pd-Fe/α-Al2O3催化剂稳定性能良好。
     (2)草酸二乙酯加氢催化剂表征研究
     以四硅酸乙酯为硅源,硝酸铜为铜源,采用改进的溶胶-凝胶法制备了系列草酸二乙酯加氢Cu/SiO2催化剂,对还原前后的铜催化剂进行了系统表征,结果表明,催化剂铜含量和氨水溶液pH值对催化剂的比表面、孔结构、物相组成、铜价态、还原性能和分散性有较大的影响。在一定的铜含量范围内,催化剂前体中铜组分主要以层状硅酸铜的形式存在,即使在铜含量较高时,铜组分在载体中仍然有良好的分散性,催化剂有较大的比表面。Cu/SiO2催化剂经高温焙烧后,部分层状硅酸铜仍以层状形式存在,另一部分分解为CuO,且在载体上分散良好。铜含量低于37.8%的催化剂经焙烧存在两种铜组分:层状硅酸铜和高度分散的CuO;而铜含量高于37.8%的催化剂经焙烧后存在三种铜组分:层状硅酸铜、高度分散的CuO和颗粒较粗的CuO。催化剂经还原后,层状硅酸铜还原为一价铜,而CuO还原为金属铜。随着氨水溶液pH值的升高,硅胶中的羟基反应活性增强,因此较高的pH值有利于催化剂中层状硅酸铜的形成。作为对比,采用沉淀沉积法制备了Cu/SiO2催化剂并进行了相关表征,还原前沉淀沉积法催化剂中铜组分以CuO的形式存在,未发现层状硅酸铜的存在,因此这类催化剂比表面较低,还原后Cu物种主要以Cu0为主。
     (3)草酸二乙酯加氢催化剂性能评价
     对溶胶-凝胶法催化剂和沉淀沉积法催化剂进行了对比评价,研究结果表明,溶胶-凝胶法催化剂性能好于沉淀沉积法催化剂,究其原因是因为溶胶-凝胶法有助于层状硅酸铜的形成,导致焙烧后该类催化剂比表面积较大,还原后该类催化剂有适宜的Cu+/Cu0。实验考察了催化剂制备条件和反应条件对溶胶-凝胶法催化剂性能的影响,铜含量和氨水溶液pH值对催化剂性能有较大的影响,且有类似的变化规律。随着铜含量增加,草酸二乙酯转化率和乙二醇选择性呈现出先增加后减少的趋势,峰值出现在催化剂中铜含量37.8%处;催化性能随氨水溶液pH值的变化趋势与铜含量的变化趋势亦一致。焙烧温度和还原温度对催化性能也有重要的影响。至于反应条件对催化性能的影响,在优化工艺[温度220℃、压力2MPa、气体空速7000 h-1、n (H2):n(DEO)=70]条件下,草酸二乙酯的转化率可达96%,乙二醇的选择性为88%。实验研究了草酸二乙酯加氢铜催化剂失活的原因,催化剂主要失活原因是反应后催化剂中活性组分聚集长大和催化剂小孔被结焦物堵塞;进一步的催化作用机理分析表明,草酸二乙酯加氢催化性能与催化剂中Cu+和Cu0协同作用有关。
Ethylene glycol is a valuable commercial chemical and the import for it increased year by year due to strong demand and limited production compacity in China. Currently the major method widely used for the industrial production of ethylene glycol is based on the direct hydrolysis of ethylene oxide obtained from oil as raw material. However this method is plagued by some problems such as the increased price of crude oil as a result of the long-term of shortage and high energy consumption for the distillation of the large amount of excess water etc. To deal with these problems, it is good choice to prepare ethylene glycol by alternative processes based on non-oil routes taking into account the advantages of sources of raw materials and the characteristics of oil-poor and coal-rich country. Synthesis of ethylene glycol from CO via oxalate ester is two-step process. The first one is oxalate ester synthesis by CO coupling and the second one is synthesis of ethylene glycol by hydrogenation of oxalate ester. In this thesis, some Pd/Al2O3 catalysts prepared for oxalate ester synthesis and Cu/SiO2 catalysts prepared for hydrogenation of oxalate ester were studied and characterized systematically. The catalytic performance was investigated under different preparation conditions and reaction conditions. The specific research work is as follows:
     (1) Pd/Al2O3 catalysts for diethyl oxalate (DEO) synthesis
     A series of Pd/Al2O3 catalysts were prepared by the impregnation method. Some supports and catalyst samples were characterized by nitrogen physisorption, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Temperature programmed reduction(TPR), Scanning electron microscopy (SEM) and Transmission electron microscopy(TEM). The results show that, after calcinations at high temperature, the corresponding specific surface area, pore structure, crystal type and surface acidity of y-alumina were changed. For pure Pd/a-Al2O3 catalysts, the active species for the reaction was zero valent palladium with egg-shelled distribution in the support. For the bimetallic Pd-Fe/a-Al2O3 catalyst, the promoter existed in the form of FeO, resulting in the formation of a "sandwich" typed catalyst which could improve the catalytic activity and stability. Some catalysts in terms of their activity and selectivity were evaluated in a laboratory fixed bed reactor. Superior catalytic performance of Pd/α-Al2O3 catalyst over Pd/y-Al2O3 catalyst was ascribed to the support effect. It was found that the effect of [Cl-] content in the palladium based catalyst on the catalytic selectivity and the reseaon for the formation of diethyl carbonate as by-product was disscussed. The Pd-Fe/α-Al2O3 sample for diethyl oxalate synthesis showed good performance and stability with CO conversion 35% and DEO selectivity 95% over Pd/y-Al2O3 catalyst under the optimal reaction conditions with reaction temperature ranged froml 15~125℃, molar ratio of reactants CO to DEO ranged from 1.2 to 1.6 and gas space velocity ranged from 2800-3600h-1
     (2) Characterization of Cu/SiO2 catalysts for diethyl oxalate hydrogenation
     A series of Cu/SiO2 catalysts for diethyl oxalate hydrogenation were prepared by an improved sol-gel method with tetraethoxysilane(TEOS) used as silica source and copper nitrate as copper source. Some catalyst samples before and after reduction were characterized systematically. It was found that the copper content and pH value of ammonia solution had a great impact on the specific surface area, pore structure, phase composition, copper oxidation state, reducibility and dispersion. In a certain range of copper content, the copper species in catalyst precursor appeared mainly in the form of copper phyllosilicate with finely dispersed in the support even at elevated copper loading, resulting in the catalyst with higher specific surface area. Copper phyllosilicate in the Cu/SiO2 catalyst precursor undergoes partial decomposition during calcination, resulting in well dispersed CuO particles and intact copper phyllosilicate. In the calcined sol-gel-derived catalyst samples with a copper loading lower than 37.8 wt%, there were two copper species:copper phyllosilicate and well-dispersed CuO whereas in the high copper content (> 37.8 wt%) catalysts the copper species were composed of copper phyllosilicate, well-dispersed CuO, and some of copper oxide agglomerates. Reduction of calcined Cu/SiO2 catalyst sample could lead to Cu+ and Cu0 species, originating from reduction of copper phyllosilicate and CuO respectively. As for the impact of pH value of the ammonia solution, it was found that higher pH value favored the formation of copper phyllosilicate in the catalyst because the silica sol formed during the hydrolysis of TEOS became very reactive at elevated pH value of ammonia soulution. For comparison purpose, some Cu/SiO2 catalyst samples prepared by the deposition precipitation method were characterized, in which the copper species appeared in the form of CuO without copper phyllosilicate, leading to the lower specific surface area and presence of Cu0 in the catalyst sample after reduction process.
     (3) Evaluation of Cu/SiO2 catalyst for diethyl oxalate hydrogenation to ethylene glycol
     The Cu/SiO2 samples prepared by sol-gel method and deposition precipitation method were evaluated focusing on the effect of preparation method on the catalytic properties. The experiment results show that the Cu/SiO2 catalyst prepared by the sol-gel method was superior in catalytic performance to the Cu/SiO2 catalyst prepared by the deposition precipitation method, which could be explained by the existence of finely dispersed copper phyllosilicate in the sol-gel derived catalyst precursor resulting in the reduced catalyst with higher copper surface area and the suitable Cu+/Cu0 ratio. At the same time, the effect of preparation conditions and reaction conditions on catalytic performance was investigated in hydrogenation of diethyl oxalate to ethylene glycol. It is found that the catalytic performance was heavily dependent on copper loading and the pH value of ammonia solution, which was understandable considering that the effect of copper loading and pH value on the catalyst structure. With the rise in copper loading, the diethyl oxalate conversion and ethylene glycol selectivity increased, reaching a maximum at a copper loading of 37.8 wt%, followed by a drop with further rise in copper loading. The same trend was found for the effect of the pH value on the catalytic performance. In addition, the calcination temperature and reduction temperature also played an important role in the catalytic performance. As for the effect of reaction conditions on the catalytic performance, it was found that under optimum reaction conditions[temperature=220℃, pressure=2.0MPa, GHSV=7000h-1, n (H2) :n(DEO)= 70], conversion of diethyl oxalate was 96%, and selectivity of ethylene glycol was 88%. On the other hand, it was suggested that the main reasons for catalyst deactivation were coke polymer formation and the sintering of the Cu0 phase. Catalytic mechanism for hydrogenation of diethyl oxalate was analyzed. In hydrogenation of diethyl oxalate to ethylene glycol, the catalytic performance is related with synergy effect between Cu0 and Cu+
引文
[1]魏文德.有机化工原料大全[M].北京:化学工业出版社,1999,906-920
    [2]崔小明.我国乙二醇的生产及市场分析[J].石油化工技术与经济.2010,26(1):23-28
    [3]武戈,闫亚明,邓蜀平.CO催化合成乙二醇的工业化前景[J].煤化工,1998,(1):6-9
    [4]沈景馀.国外环氧乙烷/乙二醇技术进展[J].石油化工,2001,30(5):404-409
    [5]许茜,王保伟,许根慧.乙二醇合成工艺的研究进展[J].石油化工,2007,36(2):194-199
    [6]黄卫国,贺德华,刘金尧.非石油路线合成乙二醇研究进展[J].天然气化工,1997,22(5):35-38
    [7]李应成,何文军,陈永福.环氧乙烷催化水合制乙二醇研究进展[J].工业催化,2002,10(2):38-44
    [8]华强,刘定华,马正飞.催化水合法合成乙二醇[J].石油化工,2003,32(4):317-320
    [9]刘定华,刘晓勤,华强.乙二醇合成技术进展及应用前景[J].南京工业大学学报,2002,24(6):95-98
    [10]田恒水,朱石峰,潘鹤林.乙二醇生产新工艺[J].上海化工,2001,15(26):15-17
    [11]Cui H Y, Wang T, Wang F J. One-pot synthesis of dimethyl carboneate using ethylene oxide, methanol, and carbon dioxide under supercritical conditions[J]. Ind Eng Chem Res,2003,42: 3865-3870
    [12]黄飙.2种C,化工路线制乙二醇技术经济分析[J].化工生产与技术[J],2005,12(6):24-26
    [13]William F G. Preparation of Polyfuntional Compounds[P]. US Patent, US 2636046, 1953-4-21
    [14]蔡启瑞,彭少逸,万惠霖.碳一化学中的催化作用[M].北京:化学工业出版社,1995,539
    [15]John F K. Process for low pressure synthesis of ethylene glycol from synthesis gas plus formaldehyde. US Patent,US 4616097,1986-10-7
    [16]周健飞,刘晓勤,刘定华.草酸酯法由合成气制备乙二醇技术研究进展[J].化工进展,2009,28(1):47-50
    [17]王建平,杨文书,吕建宁.合成气经草酸酯制乙二醇技术进展[J].化工进展,2009,28(7):1216-1221
    [18]潘蕊娟.合成气制乙二醇工艺及催化剂研究进展[A].第七届全国工业催化技术及应用年会论文集[C],2010,18(增刊):134-140
    [19]陈贻盾,马锦波.CO气相催化合成草酸酯及草酸乙二醇的开发[J].石油与天然气化工,1997,27(2):67-71
    [20]郭荣群.CO常压气相催化偶联法合成草酸酯新工艺[J].化工设计,2004,14(2)3-5
    [21]李振花,何翠英,项铁丽.双金属钯催化剂上C0气相偶联制草酸酯的研究[J].化学反应 工程与工艺,2004,20(3):280-283
    [22]房金刚,许根慧.草酸酯合成研究进展[J].化学推进剂与高分子材料,2004,2(2)18-21
    [23]张旭,王保伟,许根慧.草酸酯加氢催化剂研究进展[J].天然气化工,2008,33(2):60-62
    [24]张启云,黄维捷,文峰.草酸二甲酯加氢合成乙二醇反应的研究[J].石油化工,2007,36(4):340-344
    [25]陈锦文,马新宾,许根慧.一氧化碳气相催化偶联合成草酸二乙酯的研究[J].燃料化学学报,1994,22(1):37-42
    [26]孟凡东,许根慧,郭荣群.钯催化CO偶联合成草酸二乙酯的本征动力学[J].石油化工2003,32(增刊):854-855
    [27]孟凡东,许根慧,王保伟.CO合成草酸二乙酯偶联与再生反应匹配的研究[J].石油学报,2003,19(3):58-62
    [28]吴芹,高正虹,何琲.CO偶联反应中氧对Pd-Fe/a-Al2O3催化剂活性的影响[J].催化学报,2003,24(4):289-292
    [29]何琲,高正虹,宋瑛.CO偶联临氢反应Pd-Fe/Al2O3催化剂的XPS研究[J].催化学报,2002,23(3):223-226
    [30]马新宾,许根慧,陈锦文.CO气相催化偶联合成草酸二乙酯动力学[J].化工学报,1995,46(1):50-56
    [31]王保伟,马新宾,韩森.CO气相偶联合成草酸二乙酯钯系催化剂研究[J].天然气化工,2000,25(2):29-32
    [32]王保伟,许根慧,马新宾.CO气相氧化偶联制草酸二乙酯催化剂研究[J].燃料化学学报,2000,28(3):262-267
    [33]何琲,高正虹,许根慧.钯催化剂上CO偶联制草酸二乙酯的XPS研究[J].天然气化工,2006,31(5):31-35
    [34]林茜,计扬,谭俊青Pd/a-Al2O3催化CO偶联制草酸二甲酯的反应机理[J].催化学报,2008,29(4):325-329
    [35]宋瑛,李振花,高正虹.钯系催化剂上气相催化偶联合成草酸二乙酯的原位红外研究[J].催化学报,2000,21(6):537-541
    [36]李振花,宋瑛,马新宾.临氢条件下CO偶联合成草酸二乙酯反应的原位红外研究[J].天津大学学报,2003,36(1):1-4
    [37]赵秀阁,吕兴龙,赵红钢.气相法CO与亚硝酸甲酯偶联合成草酸二甲酯用Pd/a-Al2O3催化剂的研究[J].催化学报,2004,25(2):125-128
    [38]高正虹,胡超权,李振花.一氧化碳偶联制草酸二乙酯用Pd-Fe/a-Al2O3催化剂的表面结构[J].催化学报,2004,25(3):205-209
    [39]尹东学,李振花,项铁丽.CO气相偶联合成草酸二乙酯Pd-Fe/a-Al2O2催化剂研究[J]. 天然气化工,2004,29(2):20-23
    [40]李振花,何翠英,项铁丽.双金属钯催化剂上CO气相偶联制草酸酯的研究[J].化学反应工程与工艺,2004,20(3):280-283
    [41]王保伟,马新宾,韩森.CO气相合成草酸二乙酯的载体研究[J].天然气化工,2005,30(1)7-10
    [42]霍志国,李振花,王保伟.载体的性质对CO气相催化偶联反应的影响[J].化学反应工程与工艺,2002,18(1):31-35
    [43]孟祥宇,叶宛丽,马中义.载体处理对CO气相偶联反应的影响[J].化工科技,2009,7(2):24-27
    [44]项铁丽,李振花,房金刚.气相催化偶联制草酸二乙酯反应中催化剂的失活与再生研究[J].石油化工,2003,32(4):281-284
    [45]李振花,许根慧,王保伟.Hz对CO气相催化偶联制草酸二乙酯反应的失活机理[J].化工学报,2003,54(1):59-63
    [46]房金刚,李振花,许根慧Pd-Fe/a-Al2O3催化CO偶联制草酸二乙酯催化剂临氢失活研究[J].石油化工,2003,32(12):1021-1023
    [47]高正虹.CO催化偶联反应机理和杂质对催化剂活性影响研究[D].天津:天津大学,2002
    [48]孟凡东.CO偶联合成草酸二乙酯反应体系的过程分析和模拟[D],天津:天津大学,2003
    [49]王保伟,马新宾,许根慧.一氧化碳偶联制草酸酯反应工程研究[J].化学工业与工程,1998,15(3):10-14
    [50]Jiang, X. Z.; Su,Y. H.; Lee, B. J.; Chien, S. H. A study on the synthesis of diethyl oxalate over Pd/α-Al2O3 [J]. Appl. Catal. A:Gen.2001,211,47-51
    [51]陈锦文,许根慧,李振花.一氧化碳偶联再生反应动力学[J].化工学报,1993,44(1):66-72
    [52]Kirk-Othmer Encyclopedia Chemical Technology [M], fourth ed., New York:John Wiley & Sons,2001
    [53]张定国,张守民,张淑红.Cu-Zn/Al2O3催化剂的制备及其在选择加氢反应中的催化性能[J].催化学报,2003,24(5):350-354
    [54]龙毅.低温高活性甲酸甲酯氢解反应用新型催化剂研究[D].成都:四川大学,2004
    [55]张琪,吴指南.丁二酸二乙酯气相催化加氢本征动力学研究[J].催化学报,1991,12(5):346-352
    [56]Jan H. Schlander, and Thomas Turek. Gas-Phase Hydrogenolysis of Dimethyl Maleate to 1,4-Butanediol and Butyrolactone over Copper/Zinc Oxide Catalysts [J]. Ind. Eng. Chem. Res., 1999,38(4):1264-1270
    [57]张旭,王保伟,许根慧.草酸酯加氢催化剂研究进展[J].天然气化工(C1化学与化工),2008,33(2):60-62
    [58]Guo L Y, Zhou J X, Mao J B. Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols [J].Applied Catalysis A:General,2009,367(1):93-98
    [59]Evans J W, Casey P S, Wainwright M S. Hydrogenolysis of alkyl formates over a copper chromite catalyst[J]. Applied Catalysis,1983,7(1):31-41
    [60]杨儒,刘瑛,钟炳.Raney Cu-Ba催化剂的吸附与酯氢解反应性能[J].石油化工,1999,28(4):219-222
    [61]Kohler M A, Curry H E, Hughens A E. The structure of Cu/SiO2 catalysts prepared by the ion-exchange technique[J]. J Catal,1987,108:323-333
    [62]Toupance T, Kermarec M, Lambert J F. Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption [J]. J Phys Chem B,2002,106: 2277-2286
    [63]陈梁峰.双酯加氢制备二醇的新型Cu基催化剂的合成及催化性能研究[D].上海:复旦大学,2009
    [64]Kohler M A, Wainwright M S, Trimm D L. Reaction kinetics and selectivity of dimethyl succinate hydrogenolysis over copper-based catalysts [J]. Ind Eng Chem Res,1987,26 (4): 652-656
    [65]Wang Z L, Liu Q Sh, Yu J F. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods [J]. Appl Catal A:Gen,2003, 239:87-94
    [66]Jernigan, G. G.; Somorjai, G. A. Carbon monoxide oxidation over three different oxidation states of copper:metallic copper, copper (Ⅰ) oxide, and copper (Ⅱ) oxide-A surface science and kinetic study [J]. J. Catal.1994,147:567-577
    [67]Antonella G, Simona B. Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR)[J]. Applied Catalysis A: General,2005,281:199-205
    [68]Peter C, Martin L, Bernhard L. Selective hydrogenolysis of methyl and ethyl acetate in the gas phase on copper and supported Group Ⅷ metal catalysts[J]. Applied Catalysis A:General, 1991,79(1):1-18
    [69]Cunningham J, Al-Sayyed G H, Cronin J A. Hydrogenolysis of methyl formate over copper on silica:Study of surface species by in situ infrared spectroscopy [J]. J Catal,1986,102: 160-171
    [70]Monti D M, Wainwright M S, Trimm D L. Kinetics of the vapor-phase hydrogenolysis of methyl formate over copper on silica catalysts [J]. Ind Eng Chem Prod Res Dev,1985,24(3): 397-401
    [71]Tonner S P, Trimm D L, Wainwright M S. Dehydrogenantion of methanol to methyl formate over copper catalysts [J]. Ind Eng Chem Prod Res Dev,1984,23 (3):384-388
    [72]Huang X, Cant N W, Evans J W. Kinetic studies of gas-phase hydrogenolysis of methyl formate to methanol over copper-based catalyst[J]. Catalysis Today,2004,93:113-119
    [73]Long Y, Chu W, Ye Y H. Hydrogenolysis of methyl formate to methanol on copper-based catalysts and TPR characterization [J]. Studies in Surface Science and Catalysis,2004,147:613-618
    [74]Frank Th. van de Scheur, Poels E K. Activity-enhanced copper-zinc based catalysts for the hydrogenolysis of esters[J]. Applied Catalysis A:General,1994,116(1):237-257
    [75]Brands D S, Poels E K, Bliek A. Sulfur Deactivation of Fatty Ester Hydrogenolysis Catalysts[J]. Journal of Catalysis,1999,186(1):169-180
    [76]Poels E K, Brands D S. Modification of Cu/ZnO/SiO3 catalysts by high temperature reduction[J]. Applied Catalysis A:General,2000,191(1):83-96
    [77]武戈,闫亚明,邓蜀平.CO催化合成乙二醇的工业化前景[J].煤化工,1998,82(1):6-9
    [78]Aquilo A, Alder J S, Freeman DN. Focus on C1 chemistry [J]. Hydrocarbon Proc.1983, 62:57-60
    [79]Turek T, Trimm D L, Cant N W. The Catalytic Hydrogenolysis of Esters to Alcohols [J]. Catal Rev Sci Eng,1994,36:645-675
    [80]Miyazaki, H.; Uda, T.; Hirai, K.; Nakamura, Y.; Ikezawa, H.; Tsuchie, T. Process for producing ethylene glycol and/or glycolic acid ester, catalyst composition used thereof, and process for production thereof. U.S. Patent, US4440873,1984-4-3
    [81]Hirai K, Uda T, Nakamura Y. Catalyst composition for prooducing ethylene glycol and process for producing the catalyst composition [J]. US Patent. US 4614728,1986-9-30
    [82]许茜.草酸二乙酯气相加氢制乙二醇催化剂研究[D].天津:天津大学,2007
    [83]李竹霞,钱志刚,赵秀阁.草酸二甲酯加氢Cu/SiO2催化剂前体的研究[J].华东理工大学学报,2004,30(6):613-617
    [84]李振花,李延春,许根慧.草酸二乙酯气相催化加氢合成乙二醇的研究[J].化学工业与工程,1993,10(4):27-33
    [85]Xu G H, Li Y Ch, Li Z H. Kinetics of the hydrogenation of diethyl oxalate to ethylenen glycol [J]. Ind Eng Chem Res,1995,34:2371-2378.
    [86]王保伟,马新宾,许根慧.草酸酯加氢合成乙二醇的催化剂及其制备方法[P].中国专利,CN101138725,2008-3-12
    [87]Matteoli U, Menchi G, Bianchi M. Selective reduction of dimethyl oxalate by ruthenium carbonyl carboxylates in homogeneous phase. Journal of Molecular Catalysis, 1991,64(3):257-267
    [88]Matteoli U, Bianchi M, Menchi G. Hydrogenation of dimethyl oxalate in the presence of ruthenium carbonyl carboxylates:ethylene glycol formation. Journal of Molecular Catalysis, 1985,29(2):269-270
    [89]Van Engelen M C, Herman T T, Johannes G. Suitable ligands for homogeneous ruthenium-catalyzed hydrogenolysis of esters. Journal of Molecular Catalysis A:Chemical, 2003,1(1):185-192
    [90]张旭.草酸二乙酯气相加氢催化剂助剂的研究[D].天津:天津大学,2008
    [91]Mokhtar M, Ohlinger C, Schlander J H. Hydrogenolysis of dimethyl maleate on Cu/ZnO/Al2O3 catalysts[J]. Chem Eng Technol,2001,24:423-426
    [92]Yin A Y, Guo X Y, Dai W L. Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Applied Catalysis A:General,2008, 349:91-99
    [93]Minyukova T P, Simentsova 1 I, Khasin A V. Dehydrogenation of methanol over copper-containing catalysts [J]. Appl Catal A:Gen,2002,237:171-180
    [94]Hu T J, Yin H B, Zhang R C. Gas phase hydrogenation of maleic anhydride to c-butyrolactone by Cu-Zn-Ti catalysts [J]. Catalysis Communications,2007,8:193-199
    [95]Wu J, Shen Y M, Liu C H.Vapor phase hydrogenation of furfural to furfuryl alcohol over environmentally friendly Cu-Ca/SiO2 catalyst [J]. Catalysis Communications,2005,6:633-637
    [96]Magnusson J. The competition for active sites between hydrogen and methyl esters of fatty acids in vapor phase on alpha-alumina-supported copper and nickel catalysts [J] Ind Eng Chem Res,1987,26:874-877
    [97]Schlander J H, Thomas T. Gas-phase hydrogenolysis of dimethyl maleate to 1,4-butanediol and y-butyrolactone over copper/zinc oxide catalysts [J]. Ind Eng Chem Res,1999,38 (4):1264-1270
    [98]Frank T, Leendert H S. Effects of zinc addition to silica supported copper catalysts for the hydrogenolysis of ester[J]. Applied Catalysis A:General,1994,108(1):63-83
    [99]Frank T, Bart L, Marjo C. Structure-activity relation and ethane formation in the hydrogenolysis of methyl acetate on silica supported copper catalysts[J]. Applied Catalysis A: 1994,111(1):63-77
    [100]Yuan Z L, Wang L N, Wang J H. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts[J]. Applied Catalysis B:Environmental,2011,101(3):431-440
    [101]Turek T, Trimm D L, Black D S. Hydrogenolysis of dimethyl succinate on copperbased catalysts [J]. Applied Catalysis A:General,1994,116, (1):137-150
    [102]Evans J W, Cant N W, Trimm D L. Hydrogenolysis of ethyl formate over copper-based catalysts[J]. Applied Catalysis,1983,6(3):355-362
    [103]Chen L F, Guo P J, Zhu L J. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol[J].Applied Catalysis A:General,2009, 356(2):129-136
    [104]Bartley, W J, Charleston W V. Process for the preparation of ethylene glycol by catalytic hydrogenation. U.S.Patent, US Patent, US 4628128,1986-12-9
    [105]Bartley W J, Charleston W V. Process for the preparation of Ethylene glycol. US Patent, US 4628129,1986-12-9
    [106]Bartley W J, Charleston W V. Process for the preparation of Ethylene glycol. US Patent, US 4677234,1987-6-30
    [107]Thomas D J, Wehrli J T, Wainwright M S. Hydrogenolysis of diethyl oxalate over copper-based catalysts [J]. Appl Catal A:Gen,1992,86,101-114.
    [108]黄当睦,陈彰明,陈福星.草酸二乙酯催化加氢制乙二醇模试研究[J].工业催化,1996,4:24-29
    [109]李振花,许根慧,王海京,等.铜基催化剂的制备方法对草酸二乙酯加氢反应的影响[J].催化学报,1995,16(1):9-14
    [110]Wang B W, Zhang X, Xu G H. Preparation and characterization of Cu/SiO2 catalyst and its catalytic activity for hydrogenation of diethyl oxalate to ethylene glycol [J]. Chin J Catal,2008, 29:275-280
    [111]王保伟,张旭,许茜.Cu/SiO2催化剂的制备表征及其对草酸二乙酯加氢制乙二醇的催化性能[J].催化学报,2008,29(3):275-280
    [112]李竹霞,钱志刚,赵秀阁.Cu/SiO2催化剂上草酸二甲酯加氢反应的研究[J].化学反应工程与工艺,2004,20(2):121-127
    [113]李竹霞,钱志刚,赵秀阁.载体对草酸二甲酯加氢铜基催化剂的影响[J].华东理工大学学报(自然科学版),2005,31(1):27-30
    [114]Chen L F, Guo P J, Qiao M H. Cu/SiO2 catalysts prepared by the ammonia-evaporation method:texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol [J]. J Catal,2008,257:172-180
    [115]李斯琴,刘俊涛,王万民.草酸酯加氢生产乙二醇的催化剂[P].中国专利,CN101474561,2009-7-8
    [116]刘俊涛,孙凤侠,朱志焱.草酸酯加氢生产乙二醇催化剂载体的制备方法[P].CN101474579,2009-7-8
    [117]吴晓金,刘志刚,胡晓鸣.一种草酸酯加氢合成乙二醇催化剂及其制备方法和应用[P].中国专利,CN101524646,20099-9
    [118]王东辉,李永刚,吴良泉.草酸酯加氢制乙二醇催化剂及其成型方法和应用[P].CN101745433,2010-6-23
    [119]林海强,何萍,何喆.一种用于草酸酯加氢制乙二醇的催化剂及其制备方法[P]. CN101757915,2010-6-30
    [120]黄维捷,文峰,康文国.草酸二甲酯加氢制乙二醇Cu/SiOz催化剂的制备与改性[J].工:业催化,2008.16(6):13-17
    [121]唐博合金,卢艺元,沈玄俊.草酸二甲酯加氢制乙二醇催化剂的研究[J].光谱实验室,2010.27(2):616-619
    [122]唐博合金,朱明,陆颖音.铜-水滑石型催化剂在草酸二甲酯加氢反应中的应用[J].精细石油化工,2009,2:15-18
    [123]尹安远,郭秀英,戴维林.新型高性能Cu/HMS催化剂的合成及其在草酸二甲酯催化加氢合成乙二醇反应中的应用[J].化学学报,2009,67(15):1731-1736
    [124]王科,范鑫,袁小金.草酸酯加氢制乙二醇Cu/SiO2催化剂的制备及性能研究[J].天然气化工(C,化学与化工),2009,34(3):27-30
    [125]康文国,李伟,肖文德.草酸二甲酯加氢制乙二醇Cu/SiO2催化剂失活研究.工业催化,2009,17(6):70-74
    [126]文峰,黄维捷,肖文德.草酸二甲酯加氢催化剂Cu/SiO2的制备研究[J].广东化工,2008,35(4):5-11
    [127]钱东,王开毅,杨礼义Pd/Al2O3催化合成2,3,5-三甲基氢醌的连续工艺(II)[J]中南工业大学学报,2000,31(1):41-43
    [128]魏延喜,刘新香.Pd/Al2O3催化剂物性对C4馏份选择加氢性能的影响[J].石油化工1996,25(9):603-608
    [129]南军,柴永明,李彦鹏.UDO-01重整生成油选择性加氢催化剂的研制[J].石油炼制与化工,2007,38(1),28-32
    [130]过中儒,史鸿鑫,徐慧珍.钯系双金属催化剂的制备及其表面性质[J].催化学报,1993,14(1):12-17
    [131]刘秀芳,计扬,李伟.蛋壳型Pd/a-Al203催化剂的制备及活性[J].催化学报,2009,30(3):213-217
    [132]李德忠,李光兴,王海龙.制备条件对Pd/Al2O3催化棉籽油加氢活性的影响[J].华中理工大学学报,1996,24(3):109-112
    [133]刘振林,伏义路.制备条件对Pd催化剂上C3H6选择性还原NO性能的影响[J].分子催化,2001,15(2):81-85
    [134]唐博合金,徐著利.重整后加氢Pd/Al2O3型催化剂的制备[J].石油与天然气化工2010,39(1):32-33
    [135]南军.重整汽油选择性加氢Pd基催化剂的制备、表征与加氢性能[D].北京:中国石油大学,2007
    [136]祁彩霞,白庭芳,安立敦.双浸渍法制备负载型钯催化剂[J].分子催化,1994,8(4):278-284
    [137]Zhu Y Y, Wang S R, Wang L J. The Influence of Copper Particle Dispersion in Cu/SiO2 Catalysts on the Hydrogenation Synthesis of Ethylene Glycol[J].Catal Lett,2010,135:275-281
    [138]陈骅,李少羽,陈传正.用X射线光电子能谱研究Cu/SiO2加氢催化剂[J].催化学报,1980,1(3):168-174
    [139]Tu Y J, Chen Y W. Effect of alkali metal oxide additives on Cu/SiO2 catalyst in the dehydrogenation of ethanol. Ind Eng Chem Res,2001,40 (25):5889-5893
    [140]江晶亮,刘建周,许红娟.助剂Ce02修饰铜基催化剂失活机理研究[J].煤炭工程,2008,9:80-82
    [141]Bienholz A, Hofmann H, Claus P. Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase:Correlation between the copper surface area and the catalyst's activity[J]. Applied Catalysis A:General,2011,391(1):153-157
    [142]LOOI M H, LEE S T. Use of Citric Acid in Synthesizing a Highly Dispersed Copper Catalyst for Selective Hydrogenolysis[J]. Chinese Journal of Catalysis,2008,29(6):566-570
    [143]Huang Z W, Cui F, Kang H X. Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol:Effect of residual sodium[J]. Applied Catalysis A:2009,366(2):288-298
    [144]Kohler M A, Lee J C, Trimm D L. Preparation of Cu/SiO2 catalysts by the ion-exchange technique[J]. Appl Catal,1987,31:309-321
    [145]Ryoji T, Satoshi S, Toshiaki S. Preparation of Cu/SiO2 Catalyst by Solution Exchange of Wet Silica Gel[J]. Journal of Sol-Gel Science and Technology,2000,19:715-718
    [146]Fixman E M, Abello M C,. Preparation of Cu/SiO2 catalysts with and without tartaric acid as template via a sol-gel process Characterization and evaluation in the methanol partial oxidation [J]. Applied Catalysis A:General,2007,319:111-118
    [147]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997
    [148]Yasuyuki M, Hideomi I. Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol-gel method [J]. Applied Catalysis B:Environmental, 2009,86:114-120
    [150]Takahashi R, Sato S, Sodesawa T. Preparation of Cu/SiO2 catalyst by solution exchange of wet silica gel [J]. J Sol Gel Sci Technol,2000,19:715-718
    [151]Rsdwan N R E. Influence of La2O3 and ZrO2 as promoters on surface and catalytic properties of CuO/MgO system prepared by sol-gel method [J]. Appl Catal A:Gen 2006, 299:103-121
    [152]Schwarz J A. Methods for Preparation of Catalytic Materials [J]. Chem Rev,1995, 95(3):477-510
    [153]Stephanie L, Caroline C, Fabrice F. On the structure-sensitivity of 2-butanol dehydrogena- tion over Cu/SiO2 cogelled xerogel catalysts [J]. Catalysis Communications,2007,8:2032-2036
    [154]Nobuaki N, Masaya M, Hiromi Y. Characterization of Copper Ion Catalyst Encapsulated in SiO2 Matrices by the Sol-Gel Method and Their Photocatalytic Activity for Decomposition of NO into N2 and O2 at 275K[J]. J Phys Chem,1993,97:5211-5212
    [155]马沛生.化工数据[M].北京:中国石化出版社,2003
    [156]陆振东.化工工艺设计手册[M].北京:化学工业出版社,1996
    [157]化学工程手册》编辑委员会.化学工程手册[M].北京:化学工业出版社,1989
    [158]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002
    [159]卢焕章.石油化工基础数据手册[M].北京:化学工业出版社,1982
    [160]郑丹星.流体与过程热力学[M].北京:化学工业出版社,2005
    [161]田克胜,王保伟,许根慧.草酸二乙酯气相加氢热力学计算与分析[J].天然气化工,2007,32(1):48-51
    [162]尹安远,戴维林,范康年.草酸二甲酯催化加氢合成乙二醇过程的热力学计算与分析石油化工,2008,37(1):62-66
    [163]苏跃华,季金美,姜玄珍.亚硝酸乙酯再生的研究[J].化学反应工程与工艺,2000,16(1):45-49
    [164]Nishimura K, Fujii K, Matsuda M. Process for preparing a diester of oxalic acid in the gaseous phase. US Patent, US 4229591,1980-10-21
    [165]Miyazaki H, Shiomi Y, Fujitus S. Process for preparing oxalic acid diesters using platinum group metals supported on alumina. US Patent, US4410722,1983-10-18.
    [166]林励吾,杨维慎,贾继飞.负载型高分散双组分催化剂的表面结构及催化性能研究[J].中国科学(B辑),1999,29(2):109-117
    [167]Van Der Grift C, Elberse P, Mulder A. Preparation of silica-supported copper catalysts by means of deposition-precipitation [J]. Appl Catal A:Gen,1990,59:275-289
    [168]Van Der Grift C, Wielers A, Mulder A. The reduction behavior of silica-supported copper catalysts prepared by deposition-precipitation [J]. Thermochim Acta,1990,171:95-113
    [169]郭志英,张威.钯-氧化铝催化剂上钯分散度的研究[J].燃料化学学报,1984,12(2):189-192
    [170]程昌瑞,何瑞德.脉冲氧化亚氮-色谱法测定含铜催化剂的活性表面积[J].燃料化学学报,1984,12(3):269-274
    [171]黄当睦,陈福星,林平.草酸二乙酯催化加氢制乙二醇液相产物分析[J].色谱,1998,16(5):442-444
    [172]林茜,赵秀阁,毕伟α-Al2O3的性质对负载钯催化剂催化偶联反应的影响[J].催化学报,2006,27(10):912-915
    [173]黄肖容,李雪辉.γ-氧化铝膜的表面酸碱性[J].分子催化,2001.15(1):6-10
    [174]何小荣,朱家义,胡晓朋.焙烧温度对A1203载体及Pd/Al2O3催化剂性能的影响[J].石化技术与应用,2009,27(3):233-237
    [175]潘履让.固体催化剂的设计与制备[M].天津:南开大学出版社,1993
    [176]朱洪法.催化剂载体[M].北京:化学工业出版社,1980:
    [177]徐明朋,张正富,杨显万.钯铁合金共沉积行为及其成核机理的研究[J].材料导报,2006,26(9):158-160
    [178]胡卫兵,周忠信,张曼征Pd-Fe2O3/D3520催化剂的结构表征[J].离子交换与吸附,1997,13(1):48-53
    [179]南军.重整汽油选择性加氢Pd基催化剂的制备、表征与加氢性能[D].山东:中国石油大学,2007
    [180]梁贤振,赵维君,杨瑞华.CO和CH3ONO在A1203负载钯铜合金催化剂上合成草酸二甲酯的原位红外光谱研究[J].高等学校化学学报,1997,18(5):777-781
    [181]过中儒,史鸿鑫,徐慧珍.Pd呈特定分布的Pd/Al2O3催化剂的制备及其表面性能[J].石油化工,1993,22(6):358-362
    [182]过中儒,徐慧珍,蒋志诚Pd/Al2O3催化剂制备因素的研究[J].催化学报,1984,5(3):214-219
    [183]Uchiumi Sh I, Akato K, Matsuzaki Y. Oxidative reactions by a palladium-alkyl nitrite system[J]. J Organomet Chem.1999,576 (1):279-289
    [184]赵建宏,宋成盈,王留成.催化剂结构与分子设计[M].北京:中国工人出版社,1998
    [185]许志华.铜工艺矿物学[J].广东有色金属学报.1999,9(1):1-8
    [186]Van Der Grift C, Geus J W. Characterization of copper-silica catalysts by means of in situ diffuse reflectance in fraed fourier transform spectroscopy [J]. Catalysis Letters,1989,3:159-168
    [187]沈钟.吸附剂的物理结构和表面性质的研究-酸处理对硅胶孔结构和吸附性能的影响[J].高等学校化学学报,1989,10(5):486-490
    [188]Gregg S J. Adsorption, Surface Area and Porosity[M]. New York:Academic Press Inc,1982
    [189]Toupance T, Kermarec M, Louis C. Metal particle size in silica-supported copper catalysts. Influence of the conditions of preparation and of thermal pretreatments[J]. J Phys Chem B,2000, 104:965-972
    [190]El-Shobaky GA, EL-Khouly S M, Ghozza A M. Surface and catalytic investigations of CuO-Cr2O3/Al2O3 system [J]. Appl Catal A:Gen,2006,302,296-304
    [191]Chang F W, Kuo W Y, Lee K C. Dehydrogenation of ethanol over copper catalysts on rice husk ash prepared by incipient wetness impregnation [J]. Appl Catal A:Gen,2003,246:253-264
    [192]Okamoto Y, Fuklno K, Imanaka T. Surface characterization of CuO-ZnO methanol-systhesis catalysts by X-ray photoelectron spectroscopy.1. Precursor and calcined catalysts [J]. J Phys Chem,1983,87:3740-3747
    [193]Van Der Grift C, Mulder A, Geus J W. Characterization of silica-supported copper catalysts by means of temperature-programmed reduction [J]. Appl Catal,1990,60:181-192
    [194]Nagaraja B M, Kumar V S, Shashikala V. Effect of method of preparation of copper-magnesium oxide catalyst on the dehydrogenation of cyclohexanol [J]. J Mol Catal A: Chem,2004,223,339-345
    [195]Zhou R X, Yu T M, Jiang X Y. Temperature-programmed reduction and temperature-programmed desorption studies of CuO/ZrO2 catalysts [J]. Appl Surf Sci,1999,148: 263-270
    [196]Marchi A J, Fierro J L G, Santamarla J. Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst:a study of the activity evolution and reactivation of the catalyst [J]. Appl Catal A:Gen,1996,142:375-386
    [197]Gervasini A, Manzoli M, Martra, G. Dependence of copper species on the nature of the support for dispersed CuO catalysts [J]. J Phys Chem B,2006,110:7851-7861
    [198]Bartholomew C H. Catalyst Deactivation[J]. Chem Eng,1984,91(23):96-112
    [199]杨亚玲.草酸二甲酯合成乙二醇过程的研究[D].上海:复旦大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700