蛋白质结晶过程的模拟优化和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大分子生物药以晶体形式作为给药的方式具有药物稳定性高,药物有效成分浓度高以及容易实现药物的可控性释放等许多优点。然而,、截至2004年的150多种生物药中,以晶体为其主要的生产和销售形态的药物只有胰岛素。造成这种情况的主要技术原因是因为蛋白质结晶和小分子结晶相比具有更为复杂的结晶环境和影响因素,大规模生产蛋白质晶体在方法和技术上还很不成熟。相对于传统的蛋白质结晶中实验研究以及模拟研究所针对的单晶体尺度,本论文主要在过程尺度上对蛋白质结晶过程中晶体群体的生长行为进行了系统的模型化和实验研究。
     蛋白质晶体的形状以及产品的粒度分布是衡量结晶产品质量的主要指标,但是目前对蛋白质结晶的群体粒数衡算模型的研究还非常少,而且只能模拟粒度分布,不能模拟形状分布,因为模型中的晶体尺寸被简单的定义为该晶体的体积当量直径。本论文提出了一个适用于蛋白质结晶过程的基于晶体形状结构的群体粒数衡算模型。在该模型中,蛋白质晶体的形状被定量描述为每个晶面到晶体几何中心的距离,由此提出了基于蛋白质晶形的多维粒度分布,即形状分布的概念。
     论文以溶菌酶结晶过程为例,对溶菌酶晶体结晶的热力学和动力学行为进行了分析和研究,应用非线性回归的方法,确定了四方系溶菌酶的结晶动力学方程参数。结合本论文提出的基于晶体形状结构的群体粒数衡算模型,质量衡算方程以及能量方程建立了溶菌酶冷却结晶过程模型。利用该模型可以描述不同操作条件下晶体群体的形状分布和粒度分布随时间的动态变化,即在过程系统尺度上蛋白质结晶过程的晶体生长行为。
     利用提出的溶菌酶冷却结晶过程模型,论文模拟研究了鸡蛋清溶菌酶冷却结晶过程中的冷却速率,晶种负荷以及晶种的尺寸对结晶过程的影响,,尤其是对产品晶体的形状和粒度分布以及过饱和度的影响。模拟研究发现,结果表明:低晶种负荷(0.001)生产的溶菌酶晶体颗粒较大而且长宽比较小;较低的冷却速率(0.7℃/day)下溶菌酶晶体生长很慢;较高的冷却速率(高于2.0℃/day)会产生较大的晶体颗粒和较小的长宽比。论文还提出了适于二维晶种负荷预估的模型,用于估算蛋白质结晶过程所需添加的晶种负荷量。
     应用基于晶型结构的群体粒数衡算模型可以研究和控制不同晶面的生长,以达到所期望的晶体外形和尺寸,因此本论文进一步对溶菌酶结晶过程中的产品晶体形状分布和粒度分布进行了优化研究。对于期望的产品晶体的形状和尺寸分布,通过调节操作参数,可以优化得到最优的冷却温度曲线和过饱和度曲线。模拟晶体群体的生长行为是一个极为复杂,非线性很强的过程,而且模拟计算非常耗时,本文利用遗传算法对群体粒数模型进行优化,证明是有效的。通过调节结晶器夹套中冷却剂的流量实现了冷却温度曲线和过饱和度曲线的跟踪控制,从而使控制晶体产品形状分布和尺寸分布成为可能。
     由于温度条件易于操作控制,重复性好,因此被广泛应用于小分子工业结晶。然而,目前还缺乏对连续降温冷却法进行蛋白质结晶的系统研究。本论文通过多槽微孔板并行结晶实验(24槽坐滴式微结晶器)找到了适合研究溶菌酶冷却结晶的适宜的初始条件,包括适宜的溶菌酶溶液初始浓度,沉淀剂浓度以及溶液pH值。利用实时照相技术观测记录了在溶菌酶降温结晶过程的晶体生长变形轨迹。通过对大区域冷却台反应器冷却速率的调节,研究了冷却速率对晶体形变的影响。这些结果对本论文的模拟研究提供了实验依据,也验证了连续降温对蛋白质结晶过程是可行和有效的。
Large molecule protein crystals have shown significant benefits in the delivery of biopharmaceuticals to achieve high stability, high concentration of active pharmaceutical ingredients (API), and controlled release of API. However, among the about 150 biopharmaceuticals on the market by 2004, only insulin has been marketed in crystalline form. The main technical reason led to this situation is due to the fact that protein crystallisation has a more complicated crystallisation environment and is affected by many factors. There is currently a lack of knowledge on commercial scale production of protein crystals. Therefore, in contrast to the majority of previous work on experimental and computational studies of protein crystallisation that has been centered on single crystal scale, the focus of the research reported in this thesis is placed on the computational and experimental study of protein crystallisation at process scale, investigating the growth behavior of the population of crystals grown from a crystallizer.
     The morphology and size distribution of protein crystals are key measures in quality control. However, research on population balance modelling of protein crystallisation processes is still very limited and restricted to simulation of crystal size distribution, ignoring crystal shape information because the size of a crystal is simply defined as the diameter of a sphere having the same volume as the crystal. A new morphological population balance model is proposed in this work for modelling protein crystallisation processes. In the model, the shape of a crystal is quantitatively defined as the distances of all crystal faces to the geometric centre of the crystal. For all the crystals in the crystalliser, a concept of multi-dimensional size distributions, which we call shape distribution for the crystal population, is proposed.
     The case study protein is Hen-Egg-White (HEW) lysozyme for which the thermodynamics and kinetics of crystallisation were examined. Faced crystal growth kinetic models were developed using non-linear regression. Process models were built for the crystallisation process of HEW lysozyme by combining the newly proposed morphological population balance model with mass and energy balance equations. The models were applied to simulate the evolving behaviour of shape distribution as well as size distribution of crystals of tetragonal HEW lysozyme.
     The morphological population balance model was applied to crystallization of HEW lysozyme for study of the effect of cooling rate, seed loading and seed size on size and shape distributions of product crystals as well as supersaturation. It was found that for growth only crystallization, low seed loading (0.001) and high cooling rate (2.0℃/day) lead to large crystals of low aspect ratio, but care has to be taken to avoid nucleation and major shape change such as width becoming larger than the length. Low cooling rate (0.7℃/day) results in slow growth. In addition, a two dimensional model for estimating seed loading was developed.
     In principle, the proposed morphological population balance model for protein crystallisation can be applied to investigate and control the growth of individual faces with the aim of obtaining desired crystal shape and size. Therefore process optimisation techniques were introduced to the model for optimising the product crystal shape distribution and size distribution. Optimal temperature and supersaturation profiles leading to the desired crystal shape and size distributions were derived. Genetic algorithm was investigated and found to be an effective optimisation technique for the current application. Since tracking an optimum temperature or supersaturation trajectory can be easily implemented by manipulating the coolant flowrate in the reactor jacket, the proposed methodology provides a feasible closed-loop mechanism for protein crystal shape tailoring and control.
     The modelling and optimisation study in this work is based on cooling protein crystallisation. Cooling rate control can be easily achieved and has good repeatability, and as a result has been widely used in industrial crystallisation of small molecules. However, there is a noticeable lack of systematic study on cooling crystallisation of proteins. In this study Linbro parallel crystallization experiments (24-well sitting-drop plate) was conducted to find the suitable conditions for carrying out cooling crystallisation investigation, including the initial concentration of HE W lysozyme solutions, precipitate concentration and pH value of solution. Real-time in-process imaging was used to record the morphological evolution of HEW lysozyme crystals during cooling crystallization using a hot-stage. Using a hot-stage, the effect of cooling rates on HEW lysozyme crystallization was investigated. The results provide experimental proof of the feasibility and effectiveness of cooling as a means for protein crystallisation.
引文
[1]Li Mei, Chang Wen-rui. Protein crystallization. Photosynthesis Research.2009,102(2-3, Sp. Iss. SI):223-229
    [2]Durbin S. D., Feher G. Protein crystallization. Annual Review of Physical Chemistry. 1996,47:171-204.
    [3]Karg Saskia R., Kallio Pauli T. The production of biopharmaceuticals in plant systems. Biotechnology Advances.2009,27(6)
    [4]Lowe J. A., Jones P. Biopharmaceuticals and the future of the pharmaceutical industry. Current Opinion in Drug Discovery & Development.2007,10(5):513-514
    [5]Walsh G. Biopharmaceutical benchmarks 2006. Nature Biotechnology.2006,24(7):769-U765
    [6]BRIC. Bioprocessing Research Industrial Club (BRIC). wwwbbsrcacuk, accessed in Dec 2007. 2005
    [7]EvaluatePharma. www.evaluatepharma.com, accessed in February 2010.2010
    [8]Basu S. K., Govardhan C. P., Jung C. W., et al. Protein crystals for the delivery of biopharmaceuticals. Expert Opinion on Biological Therapy.2004,4(3):301-317
    [9]Dumetz A. C., Chockla A. M., Kaler E. W., et al. Effects of pH on protein-protein interactions and implications for protein phase behavior. Biochimica Et Biophysica Acta-Proteins and Proteomics.2008,1784(4):600-610
    [10]Judge R. A., Jacobs R. S., Frazier T., et al. The effect of temperature and solution pH on the nucleation of tetragonal lysozyme crystals. Biophysical Journal.1999,77(3):1585-1593
    [11]Forsythe E., Pusey M. L. The effects of temperature and NaCL concentration on tetragonal lysozyme face growth-rates. Journal of Crystal Growth.1994,139(1-2):89-94
    [12]Skouri M., Lorber B., Giege R., et al. Effect of macromolecular impurities on lysozyme solubility and crystallizability:dynamic light scattering, phase diagram, and crystal growth studies. Journal of Crystal Growth.1995,152(3):209-220
    [13]Retailleau Pascal, Huang Xin, Yin Yuhui, et al. Interconversion of ATP Binding and Conformational Free Energies by Tryptophanyl-tRNA Synthetase:Structures of ATP Bound to Open and Closed, Pre-Transition-state Conformations. Journal of Molecular Biology. 2003,325(1):39-63.0022-2836
    [14]Poznanski J., Szymanski J., Basinska T., et al. Aggregation of aqueous lysozyme solutions followed by dynamic light scattering and H-1 NMR spectroscopy. Journal of Molecular Liquids. 2005,121(1):21-26.
    [15]Georgalis Y., Umbach P., Saenger W., et al. Ordering of fractal clusters in crystallizing lysozyme solutions. Journal of the American Chemical Society.1999 Mar,121(8):1627-1635. ISI Document Delivery No.:174BP
    [16]Rieskautt M. M., Ducruix A. F. Crystallization of Basic-Proteins by Ion-Pairing. Journal of Crystal Growth.1991,110(1-2):20-25. Times Cited:42
    [17]Rose G. D., Wolfenden R. Hydrogen-Bonding, Hydrophobicity, Packing, and Protein-Folding. Annual Review of Biophysics and Biomolecular Structure.1993,22:381-415
    [18]Dai GuoLiang, Peng Ling, Xie Ying, et al. Efect of Intermolecular Interaction on Protein Crystal Growth. ACTA CHIMICA SINICA.2007,65(17):1767-1772
    [19]Takeuchi H. Structure formation during the crystallization induction period of a short chain-molecule system:A molecular dynamics study. Journal of Chemical Physics.1998,109(13):5614-5621
    [20]Georgalis Y., Umbach P., Raptis J., et al. Lysozyme aggregation studied by light scattering.1. Influence of concentration and nature of electrolytes. Acta Crystallographica Section D-Biological Crystallography.1997,53:691-702.
    [21]Jaramillo-Flores M. E., Soriano-Garcia M., Moreno A. The influence of polyethyleneglycols on predicting crystallisation conditions of lipase from wheat germ by dynamic light scattering studies. Journal of Molecular Structure.1998,444(1-3):155-164
    [22]Schlichtkrull J. Insulin Crystals.5. the Nucleation and Growth of Insulin Crystals. Acta Chemica Scandinavica.1957,11(3):439-460
    [23]Kam Z., Shore H. B., Feher G. On the crystallization of proteins. Journal of Molecular Biology.1978,123(4):539-555
    [24]Fiddis R. W., Longman R. A., Calvert P. D. Crystal-Growth Kinetics of Globular-Proteins-Lysozyme and Insulin. Journal of the Chemical Society-Faraday Transactions I.1979,75:2753-&
    [25]Pusey M., Naumann R. Growth-Kinetics of Tetragonal Lysozyme Crystals. Journal of Crystal Growth.1986 Aug,76(3):593-599
    [26]Pusey M., Witherow W., Naumann R. Preliminary Investigations into Solutal Flow About Growing Tetragonal Lysozyme Crystals. Journal of Crystal Growth.1988,90(1-3):105-111
    [27]Demattei R. C., Feigelson R. S. Growth-Rate Study of Canavalin Single-Crystals. Journal of Crystal Growth.1989,97(2):333-336
    [28]Durbin S. D., Feher G. Crystal growth studies of lysozyme as a model for protein crystallization. Journal of Crystal Growth.1986,76(3):583-592
    [29]Durbin S. D., Feher G. Studies of crystal growth mechanisms of proteins by electron microscopy. Journal of Molecular Biology.1990,212(4):763-774
    [30]Boistelle R., Astier J. P. Crystallization mechanisms in solution. Journal of Crystal Growth. 1988,90(1-3):14-30
    [31]Malkin A. J., Kuznetsov Y. G., Land T. A., et al. Mechanisms of Growth for Protein and Virus Crystals. Nature Structural Biology.1995,2(11):956-959
    [32]Ng J. D., Kuznetsov Y. G., Malkin A. J., et al. Visualization of RNA crystal growth by atomic force microscopy. Nucleic Acids Research.1997,25(13):2582-2588
    [33]Land T. A., De Yoreo J. J. The evolution of growth modes and activity of growth sources on canavalin investigated by in situ atomic force microscopy. Journal of Crystal Growth.2000,208(1-4):623-637
    [34]Chernov A. A. Roughening and Melting of Crystalline Surfaces. Progress in Crystal Growth and Characterization of Materials.1993,26:195-218
    [35]Delucas L. J., Smith C. D., Smith H. W., et al. Protein Crystal-Growth in Microgravity. Science.1989,246(4930):651-654
    [36]Pusey Marc L., Gernert Kim. A method for rapid liquid-solid phase solubility measurements using the protein lysozyme. Journal of Crystal Growth.1988,88(3):419-424
    [37]Cacioppo Elizabeth, Munson Sibyl, Lee Pusey Marc. Protein solubilities determined by a rapid technique and modification of that technique to a micro-method. Journal of Crystal Growth. 1991,110(1-2):66-71
    [38]Cacioppo Elizabeth, Pusey Marc L. The solubility of the tetragonal form of hen egg white lysozyme from pH 4.0 to 5.4. Journal of Crystal Growth.1991,114(3):286-292
    [39]Sazaki Gen, Kurihara Kazuo, Nakada Toshitaka, et al. A novel approach to the solubility measurement of protein crystals by two-beam interferometry. Journal of Crystal Growth. 1996,169(2):355-360
    [40]Agena Sabine M., Pusey Marc L. Protein Solubility Modeling. Biotechnology and Bioengineering.1999,64(2)
    [41]Ostwald W. Studies upon the forming and changing solid bodies. Zeitschrift for Physikalische Chemie.1897,22:289-330
    [42]Baird J. K., Scott S. C., Kim Y. W. Theory of the effect of pH and ionic strength on the nucleation of protein crystals. Journal of Crystal Growth.2001,232(1-4):50-62
    [43]Bhamidi V., Skrzypczak-Jankun E., Schall C. A. Dependence of nucleation kinetics and crystal morphology of a model protein system on ionic strength. Journal of Crystal Growth. 2001,232(1-4):77-85
    [44]Chayen N. E. Methods for separating nucleation and growth in protein crystallisation. Progress in Biophysics & Molecular Biology.2005,88(3):329-337
    [45]Gorti Sridhar, Forsythe Elizabeth L, Pusey Marc L.. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth. Crysal Growth and Design.2004,4(4):691-699
    [46]Rupp Bernhard, Wang Junwen. Predictive models for protein crystallization. Methods. 2004,34(3):390-407
    [47]Dold P., Ono E., Tsukamoto K., et al. Step velocity in tetragonal lysozyme growth as a function of impurity concentration and mass transport conditions. Journal of Crystal Growth. 2006,293(1):102-109
    [48]Nadarajah A., Forsythe E. L., Pusey M. L. The Averaged Face Growth-Rates of Lysozyme Crystals-the Effect of Temperature. Journal of Crystal Growth.1995,151(1-2):163-172
    [49]Tavare N. S., Garside J. ESTIMATION OF CRYSTAL-GROWTH AND DISPERSION PARAMETERS USING PULSE RESPONSE TECHNIQUES IN BATCH CRYSTALLIZERS. Transactions of the Institution of Chemical Engineers.1982,60(6):334-344
    [50]陶凤云,张新妙,马润宇.蛋白质结晶过程中的影响因素.化学工业与工程.2006,23:260-264
    [51]Li H. Y., Perozzo M. A., Konnert J. H., et al. Determining the molecular-packing arrangements on protein crystal faces by atomic force microscopy. Acta Crystallographica Section D-Biological Crystallography.1999,55:1023-1035
    [52]舒占永.,毕汝昌.蛋白质晶体的优化生长.生物化学与生物物理进展.1997,24(5):396-401
    [53]http://hust-hoo.blog.sohu.com/50681171.html
    [54]Yau S. T., Thomas B. R., Vekilov P. G. Molecular mechanisms of crystallization and defect formation. Physical Review Letters.2000,85(2):353-356
    [55]http://www.39kf.com/medicine/pro/experimental/basic-experimentation/01/2008-02-02-450856.shtml
    [56]Baranauskas V., Vidal B. C., Parizotto N. A. Observation of geometric structure of collagen molecules by atomic force microscopy. Applied Biochemistry and Biotechnology.1998,69(2):91-97
    [57]http://www.ebiotrade.com/newsf/2007-5/2007521110541.htm
    [58]http://www.ttplabtech.com.cn/
    [59]李欣欣;徐晓冬;丹媛媛;张密林.蛋白质结晶的研究进展.生物技术通报.2007,6:44-47
    [60]Xie Ying, Dai Guoliang. The Application and Development of Laser Light Scattering in the Investigation of Protein Crystal Growth. Chemistry online.2005,2:94-99
    [61]Neal B. L., Asthagiri D., Velev O. D., et al. Why is the osmotic second virial coefficient related to protein crystallization? Journal of Crystal Growth.1999,196(2-4):377-387
    [62]董君;潘冀森;牛秀田;周元聪;毕汝昌.微重力对蛋白质晶体结构的影响.科学通报.2000 2000年1月,45(1):55-59
    [63]McPherson Alexander. Recent advances in the microgravity crystallization of biological macromolecules. Trends in Biotechnology.1997,15(6):197-200.0167-7799
    [64]Gamarnik M. Y., Ian D. Wilson. Protein Crystallization. Encyclopedia of Separation Science. Oxford:Academic Press; 2000. p.4020-4026.
    [65]Awaji S., Ma Y., Chen W. P., et al. Magnetic field effects on synthesis process of high-Tc superconductors. Current Applied Physics.2003,3(5):391-395.1567-1739
    [66]Sazaki G., Yoshida E., Komatsu H., et al. Effects of a magnetic field on the nucleation and growth of protein crystals. Journal of Crystal Growth.1997,173(1-2):231-234.0022-0248
    [67]Ataka Mitsuo, Katoh Eriko, Wakayama Nobuko I. Magnetic orientation as a tool to study the initial stage of crystallization of lysozyme. Journal of Crystal Growth.1997,173(3-4):592-596. 0022-0248
    [68]Yanagiya Shin-ichiro, Sazaki Gen, Durbin Stephen D., et al. Effects of a magnetic field on the growth rate of tetragonal lysozyme crystals. Journal of Crystal Growth.2000,208(1-4):645-650.0022-0248
    [69]Penkova Anita, Gliko Olga, Dimitrov Ivaylo L., et al. Enhancement and suppression of protein crystal nucleation due to electrically driven convection. Journal of Crystal Growth. 2005,275(1-2):el527-el532.0022-0248
    [70]Sazaki Gen, Nagatoshi Yukiko, Suzuki Yoshihisa, et al. Solubility of tetragonal and orthorhombic lysozyme crystals under high pressure. Journal of Crystal Growth.1999,196(2-4):204-209
    [71]Kakinouchi Keisuke, Adachi Hiroaki, Matsumura Hiroyoshi, et al. Effect of ultrasonic irradiation on protein crystallization. Journal of Crystal Growth.2006,292(2):437-440.0022-0248
    [72]Kitano Hiroshi, Murakami Satoshi, Adachi Hiroaki, et al. Processing of membrane protein crystal using ultraviolet laser irradiation. Journal of Bioscience and Bioengineering. 2005,100(1):50-53.1389-1723
    [73]Amzel L. M. Structure-based drug design. Current Opinion in Biotechnology. 1998,9(4):366-369
    [74]Stevens R. C. High-throughput protein crystallization. Current Opinion in Structural Biology. 2000,10(5):558-563
    [75]Drews J. Drug discovery:A historical perspective. Science.2000,287(5460):1960-1964
    [76]Baird J. K., Hoffman S. L. Prevention of malaria in travelers. Medical Clinics of North America.1999,83(4):923-+
    [77]Donnay J. D. H., Harker D. A new law of crystal morphology extending the law of bravais. American Mineralogist.1937,22(5):446-467
    [78]Genest D., Mazeau K., Ptak M.2-Dimensional H-1-Nmr Study of D(Br5c-G)3 in the Z-Form-Self Association and Flexibility of the Left-Handed Double Helix. Journal of Biomolecular Structure & Dynamics.1987,5(1):67-78
    [79]Hartman P., Perdok W. G. On the Relations between Structure and Morphology of Crystals.3. Acta Crystallographica.1955,8(9):525-529
    [80]Hartman P., Perdok W. G. On the Relations between Structure and Morphology of Crystals.2. Acta Crystallographica.1955,8(9):521-524
    [81]Hartman P., Perdok W. G. On the Relations between Structure and Morphology of Crystals.1. Acta Crystallographica.1955,8(1):49-52
    [82]Hartman P., Bennema P. The Attachment Energy as a Habit Controlling Factor.1. Theoretical Considerations. Journal of Crystal Growth.1980,49(1):145-156
    [83]Hartman P. The Attachment Energy as a Habit Controlling Factor.3. Application to Corundum. Journal of Crystal Growth.1980,49(1):166-170
    [84]Hartman P. The Attachment Energy as a Habit Controlling Factor.2. Application to Anthracene, Tin Tetraiodide and Orthorhombic Sulfur. Journal of Crystal Growth. 1980,49(1):157-165
    [85]Weissbuch I., Shimon L. J. W., Addadi L., et al. Stereochemical Discrimination at Organic-Crystal Surfaces.1. the Systems Serine Threonine and Serine Allothreonine. Israel Journal of Chemistry.1985,25(3-4):353-362
    [86]Mikol V., Rodeau J. L., Giege R. Experimental-Determination of Water Equilibration Rates in the Hanging Drop Method of Protein Crystallization. Analytical Biochemistry. 1990,186(2):332-339
    [87]Suzuki Yoshihisa, Miyashita Satoru, Sazaki Gen, et al. Effects of pressure on growth kinetics of tetragonal lysozyme crystals. Journal of Crystal Growth.2000,208(1-4):638-644
    [88]Gernert K. M., Smith R., Carter D. C. A Simple Apparatus for Controlling Nucleation and Size in Protein Crystal-Growth. Analytical Biochemistry.1988,168(1):141-147
    [89]Demattei R. C., Feigelson R. S. CONTROLLING NUCLEATION IN PROTEIN SOLUTIONS. Journal of Crystal Growth.1992,122(1-4):21-30
    [90]Rosenberger F., Howard S. B., Sowers J. W., et al. Temperature dependence of protein solubility-determination and application to crystallization in X-ray capillaries. Journal of Crystal Growth.1993,129(1-2):1-12
    [91]Heinrichs W., Heinrichs M., Schonert H. Growth of Protein Single-Crystals in a Periodically Changing Solubility Gradient-Description of the Method and 1st Results. Journal of Crystal Growth.1992,122(1-4):186-193
    [92]Heng Meng H. Method for rapidly obtaining enzyme crystals with desirable morphologies. United States Patent 6403350.2000
    [93]Judge R. A., Johns M. R., White E. T. Protein-purification by bulk crystallization-the recovery of ovalbumin. Biotechnology and Bioengineering.1995,48(4):316-323
    [94]Jacobsen C., Garside J., Hoare M. Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths. Biotechnology and Bioengineering.1998,57(6):666-675
    [95]Lee T. S., Vaghjiani J. D., Lye G. J., et al. A systematic approach to the large-scale production of protein crystals. Enzyme and Microbial Technology.2000,26(8):582-592
    [96]Gron H., Borissova A., Roberts K. J. In-process ATR-FTIR spectroscopy for closed-loop supersaturation control of a batch crystallizer producing monosodium glutamate crystals of defined size. Industrial & Engineering Chemistry Research.2003 Jan,42(1):198-206
    [97]Abebe S. B., Wang X. Z., Li R., et al. The information content in NIR spectral data for slurries of organic crystals. Powder Technology.2008,179(3):176-183
    [98]Li R. F., Wang X. Z., Abebe S. B. Monitoring Batch Cooling Crystallization Using NIR: Development of Calibration Models Using Genetic Algorithm and PLS. Particle-& Particle Systems Characterization.2008,25(4):314-327
    [99]Mougin P., Thomas A., Wilkinson D., et al. On-line monitoring of a crystallization process. Aiche Journal.2003,49(2):373-378
    [100]Wang X. Z., Roberts K. J., Ma C. Crystal growth measurement using 2D and 3D imaging and the perspectives for shape control. Chemical Engineering Science.2008,63(5):1173-1184
    [101]Wan J., Ma C. Y., Wang X. Z. A method for analyzing on-line video images of crystallization at high-solid concentrations. Particuology.2008,6(1):9-15
    [102]Wang X. Z., De Anda J. C., Roberts K. J. Real-time measurement of the growth rates of individual crystal facets using imaging and image analysis-A feasibility study on needle-shaped crystals of L-glutamic acid. Chemical Engineering Research & Design.2007,85(A7):921-927
    [103]Li R. F., Thomson G. B., White G., et al. Integration of crystal morphology modeling and on-line shape measurement. Aiche Journal.2006,52(6):2297-2305
    [104]De Anda J. C., Wang X. Z., Roberts K. J. Multi-scale segmentation image analysis for the in-process monitoring of particle shape with batch crystallisers. Chemical Engineering Science. 2005,60(4):1053-1065
    [105]De Anda J. C., Wang X. Z., Lai X., et al. Real-time product morphology monitoring in crystallization using imaging technique. Aiche Journal.2005,51(5):1406-1414
    [106]De Anda J. C., Wang X. Z., Lai X., et al. Classifying organic crystals via in-process image analysis and the use of monitoring charts to follow polymorphic and morphological changes. Journal of Process Control.2005 Oct,15(7):785-797
    [107]Lee A. Y., Lee I. S., Dettet S. S., et al. Crystallization on confined engineered surfaces:A method to control crystal size and generate different polymorphs. Journal of the American Chemical Society.2005 Nov,127(43):14982-14983
    [108]Chew J. W., Black S. N., Chow P. S., et al. Comparison between open-loop temperature control and closed-loop supersaturation control for cooling crystallization of glycine. Industrial & Engineering Chemistry Research.2007 Jan,46(3):830-838
    [109]Prasad Korlakunte V. R., Ristic Radoljub I., Sheen David B., et al. Crystallization of paracetamol from solution in the presence and absence of impurity. International Journal of Pharmaceutics.2001,215(1-2):29-44
    [110]Zhang G. P., Rohani S. On-line optimal control of a seeded batch cooling crystallizer. Chemical Engineering Science.2003,58(9):1887-1896
    [111]Chivate M. R., Palwe B. G., Tavare N. S. Effect of Seed Concentration in a Batch Dilution Crystallizer. Chemical Engineering Communications.1979,3(3):127-133. Times Cited:11
    [112]Desiraju G. R. Crystal engineering:A holistic view. Angewandte Chemie-International Edition.2007,46(44):8342-8356
    [113]Lovette M. A., Browning A. R., Griffin D. W., et al. Crystal Shape Engineering. Industrial & Engineering Chemistry Research.2008,47(24):9812-9833
    [114]Ulrich J., Jones M. J. Industrial crystallization-Developments in research and technology. Chemical Engineering Research & Design.2004,82(A12):1567-1570
    [115]Yu Z. Q., Chew J. W., Chow P. S., et al. Recent advances in crystallization control-An industrial perspective. Chemical Engineering Research & Design.2007,85(A7):893-905
    [116]Shi D., El-Farra N. H., Li M. H., et al. Predictive control of particle size distribution in particulate processes. Chemical Engineering Science.2006,61(1):268-281
    [117]Wan Jian, Wang Xue Z., Ma Cai Y. Model-based optimisation and closed-loop control of crystal shape in cooling crystallisation. In:Jezowski J. and Thullie J., editor. Computer-Aided Chemical Engineering, Vol 26-Proceedings of 19th European Symposium on Computer Aided Process Engineering-ESCAPE 19,14-17 June,2009. Kracow, Poland:Elsevier; 2009a. p.483-488.
    [118]Wan Jian, Wang Xue Z., Ma Cai Y. Particle shape manipulation and optimization in cooling crystallization involving multiple crystal morphological forms. AIChE Journal.2009b,55(8):2049-2061
    [119]Wang Xue Z., Ma Caiyun, Roberts Kevin J., et al. Shape--The final frontier. Computer Aided Chemical Engineering:Elsevier; 2008b. p.817-822.
    [120]Wang X.Z, Ma C.Y. Morphological population balance model in principal component space. AIChE Journal.2009,55:DOI:10.1002/aic.11860
    [121]Wang Xue Z., Roberts Kevin J., Ma Caiyun. Crystal growth measurement using 2D and 3D imaging and the perspectives for shape control. Chemical Engineering Science.2008a,63(5):1173-1184
    [122]Nokhodchi A., Bolourtchian N., Dinarvand R. Crystal modification of phenytoin using different solvents and crystallization conditions. International Journal of Pharmaceutics.2003 Jan,250(1):85-97
    [123]Fujiwara M., Nagy Z. K., Chew J. W., et al. First-principles and direct design approaches for the control of pharmaceutical crystallization. Journal of Process Control.2005 Aug,15(5):493-504
    [124]Patience D. B., Rawlings J. B. Particle-shape monitoring and control in crystallization processes. Aiche Journal.2001,47(9):2125-2130. Times Cited:19
    [125]Ma C. Y., Wang X. Z. Crystal growth rate dispersion modelling using morphological population balance. AIChE Journal.2008,54(9):2321-2334
    [126]Ma C. Y., Wang X. Z., Roberts K. J. Multi-dimensional population balance modeling of the growth of rod-like L-glutamic acid crystals using growth rates estimated from in-process imaging. Advanced Powder Technology.2007,18:707-723
    [127]Ma C. Y., Wang X. Z., Roberts K. J. Morphological population balance for modeling crystal growth in face directions. Aiche Journal.2008,54:209-222.
    [128]Ma David L., Tafti D. K., Braatz R. D. High-resolution simulation of multidimensional crystal growth. Industrial & Engineering Chemistry Research.2002a,41(25):6217-6223.
    [129]Ma David L., Tafti Danesh K., Braatz Richard D. Optimal control and simulation of multidimensional crystallization processes. Computers & Chemical Engineering.2002b,26(7-8):1103-1116
    [130]Puel F., Fevotte G., Klein J. P. Simulation and analysis of industrial crystallization processes through multidimensional population balance equations. Part 1:a resolution algorithm based on the method of classes. Chemical Engineering Science.2003a,58(16):3715-3727.
    [131]Puel F., Fevotte G., Klein J. P. Simulation and analysis of industrial crystallization processes through multidimensional population balance equations. Part 2:a study of semi-batch crystallization. Chemical Engineering Science.2003b,58(16):3729-3740.
    [132]Nagy Z. K., Braatz R. D. Robust nonlinear model predictive control of batch processes. Aiche Journal.2003 Jul,49(7):1776-1786
    [133]Shi D., Mhaskar P., El-Farra N. H., et al. Predictive control of crystal size distribution in protein crystallization. Nanotechnology.2005,16(7):S562-S574
    [134]Baird James K., Hill Susan C., Clunie John C. Kinetics of protein crystal nucleation and growth in the batch method. Journal of Crystal Growth.1999,196(2-4):220-225
    [135]Dumetz Andre C., Chockla Aaron M., Kaler Eric W., et al. Effects of pH on protein-protein interactions and implications for protein phase behavior. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics.In Press, Uncorrected Proof
    [136]Forsythe Elizabeth, Lee Pusey Marc. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates. Journal of Crystal Growth.1994,139(1-2):89-94
    [137]Forsythe E.F, Pusey M.L. Studies on tetragonal lysozyme crystal growth rates. Acta Cryst. 1994,D50:614-619
    [138]Forsythe E. L., Judge R. A., Pusey M. L. Tetragonal chicken egg white lysozyme solubility in sodium chloride solutions. Journal of Chemical and Engineering Data.1999 May-Jun,44(3):637-640
    [139]董君,潘冀森,牛秀田,et al.微重力对蛋白质晶体结构的影响.科学通报.2000 2000年1月,45(1):55-59
    [140]刘兴宇,戴国亮,王素静.杂质对蛋白质晶体影响研究进展.中国生物工程杂志.2007,27(12):101-108
    [141]代小虎,毕汝昌.沉淀剂类型对蛋白质晶体分子堆积的影响.生物物理学报.2002,18(4):394-398
    [142]戴国亮,解莹,康琦,et al.溶液热历史对蛋白质晶体生长影响的内在原因研究.化学学报.2007,65(13):1202-1206
    [143]Murai R., Nakata S., Kashii M., et al. Cooling-rate screening system for determining protein crystal growth conditions. Journal of Crystal Growth.2006,292(2):433-436
    [144]Adachi Hiroaki, Niino Ai, Takano Kazufumi, et al. Temperature-Screening System for Determining Protein Crystallization Conditions. Japanese Journal of Applied Physics. 2005,44(6):4080-4083
    [145]Linkam. www.linkam.co.uk. [cited; Available from:
    [146]Wilkinson M.J., Jennings K.H., Hardy M. Non-invasive video imaging for interrogating pharmaceutical crystallization processes. Microscopy and Microanalysis.2000,6(2):996-997
    [147]Calderon De Anda J., Wang X.Z., Lai X., et al. Classifying organic crystals via in-process image analysis and the use of monitoring charts to follow polymorphic and morphological changes. Journal of Process Control.2005 2005/10,15(7):785-797
    [148]Calderon De Anda J., Wang X. Z., Lai X., et al. Real-time product morphology monitoring in crystallization using imaging technique. AIChE Journal.2005 May,51(5):1406-1414
    [149]Calderon De Anda J., Wang X.Z., Roberts K.J. Multi-scale segmentation image analysis for the in-process monitoring of particle shape with batch crystallisers. Chemical Engineering Science. 2005 2005/2,60(4):1053-1065
    [150]Ma C. Y., Wang X. Z., Roberts K. J. Multi-dimensional population balance modeling of the growth of rod-like L-glutamic acid crystals using growth rates estimated from in-process imaging. Advanced Powder Technology.2007,18(6):707-723
    [151]Wang X.Z., Calderon De Anda J., Roberts K.J., et al. Advances in on-line monitoring and control of the morphological and polymorphic forms of organic crystals grown from solution (Paper downloadable from http://www.kona.or.jp/html/about/index2005.html). KONA:Powders and Particle.2005(23):69-85
    [152]Wang Xue Z., Roberts Kevin J., Ma Cai Yun. Crystal growth measurement using 2D and 3D imaging and the perspectives for shape control. Chemical Engineering Science. 2008,63(5):1173-1184
    [153]韩毅,仓怀兴,毕汝昌.NaCl溶液体系溶菌酶结晶相图的测定.生物物理学报.1998,14(3):573-576
    [154]Howard Sandra B., Twigg Pamela J., Baird James K., et al. The solubility of hen egg-white lysozyme. Journal of Crystal Growth.1988,90(1-3):94-104
    [155]Hojjati H., Rohani S. Cooling and seeding effect on supersaturation and final crystal size distribution (CSD) of ammonium sulphate in a batch crystallizer. Chemical Engineering and Processing.2005,44(9):949-957
    [156]Mohameed Hazim A., Abu-Jdayil Basim, Al Khateeb Mohamad. Effect of cooling rate on unseeded batch crystallization of KCl. Chemical Engineering and Processing.2002,41 (4):297-302
    [157]Kubota N., Doki N., Yokota M., et al. Seeding policy in batch cooling crystallization. Powder Technology.2001,121(1):31-38
    [158]Doki N., Kubota N., Sato A., et al. Effect of cooling mode on product crystal size in seeded batch crystallization of potassium alum. Chemical Engineering Journal.2001,81(1-3):313-316
    [159]Ramkrishna Doraiswami, Mahoney Alan W. Population balance modeling. Promise for the future. Chemical Engineering Science.2002,57(4):595-606
    [160]Doraiswami Ramkrishna, editor. Population Balances—Theory and Applications to Particulate Systems in Engineering. USA:A Harcourt Science and Technology Company; 2000.
    [161]Ramkrishna Doraiswami. The Framework of Population Balance. Population Balances. San Diego:Academic Press; 2000. p.7-45.
    [162]Villadsen J. On the use of population balances. Journal of Biotechnology.1999,71(1-3):251-253
    [163]Gadewar Sagar B., Doherty Michael F. A dynamic model for evolution of crystal shape. Journal of Crystal Growth.2004,267(1-2):239-250.0022-0248
    [164]Christofides Panagiotis D., Li Mingheng, Madler Lutz. Control of particulate processes: Recent results and future challenges. Powder Technology.2007,175(1):1-7
    [165]Accelrys. www.accelrys.com/cerius2/;2009.
    [166]Clydesdale G., Roberts, K.J., Docherty, R. HABIT-a program for predicting the morphology of molecular crystals. Computer Physics Communications.1991,64(2):311-328
    [167]Clydesdale G., Roberts, K.J., Docherty, R. HABIT95, Quantum Chemistry Program Exchange, Program no.670, Bloomington, IN 47405, USA.1996
    [168]Clydesdale G., Roberts K. J., Docherty R. Modeling the morphology of molecular-crystals in the presence of disruptive tailor-made Additives. Journal of Crystal Growth.1994 Jan,135(1-2):331-340
    [169]Clydesdale G., Roberts K. J., Docherty R. HABIT95-A program for predicting the morphology of molecular crystals as a function of the growth environment. Journal of Crystal Growth.1996 Sep,166(1-4):78-83
    [170]Clydesdale G., Roberts K. J., Lewtas K. Computational modeling study of the growth-morphology of the normal-alkane docosane and its mediation by tailor-made additives. Molecular Crystals and Liquid Crystals.1994,248:243-276
    [171]Clydesdale G., Roberts K. J., Lewtas K., et al. Modeling the Morphology of Molecular-Crystals in the Presence of Blocking Tailor-Made Additives. Journal of Crystal Growth.1994 Aug,141(3-4):443-450
    [172]Clydesdale G., Thomson G. B., Walker E. M., et al. A molecular modeling study of the crystal morphology of adipic acid and its habit modification by homologous impurities. Crystal Growth & Design.2005 Nov-Dec,5(6):2154-2163
    [173]Docherty R., Roberts K. J. Modeling the Morphology of Molecular-Crystals-Application to Anthracene, Biphenyl and Beta-Succinic Acid. J Cryst Growth.1988 Apr,88(2):159-168
    [174]Docherty R., Roberts K. J., Dowty E. Morang-a Computer-Program Designed to Aid in the Determinations of Crystal Morphology. Computer Physics Communications.1988 Nov,51(3):423-430
    [175]Hammond R. B., Pencheva K., Roberts K. J. A structural-kinetic approach to model face-specific solution/crystal surface energy associated with the crystallization of acetyl salicylic acid from supersaturated aqueous/ethanol solution. Crystal Growth & Design.2006 Jun,6(6):1324-1334
    [176]SHAPE. SHAPE for windows 7.1. wwwshapesoftwarecom.2006
    [177]Oullion M., Puel F., Fevotte G., et al. Industrial batch crystallization of a plate-like organic product. In situ monitoring and 2D-CSD modelling. Part 2:Kinetic modelling and identification. Chemical Engineering Science.2007,62(3):833-845.
    [178]Sato K, Nagaib H., Hasegawab K., et al. Two-dimensional population balance model with breakage of high aspectr atio crystals for batch crystallization. Chemical Engineering Science. 2008,63:3271-3278
    [179]Gerstlauer A., Gahn C., Zhou H., et al. Application of population balances in the chemical industry-current status and future needs. Chemical Engineering Science.2006,61 (1):205-217.
    [180]Gerstlauer A., Motz S., Mitrovic A., et al. Development, analysis and validation of population models for continuous and batch crystallizers. Chemical Engineering Science. 2002,57(20):4311-4327.
    [181]Gerstlauer A., Mitrovic A., Motz S., et al. A population model for crystallization processes using two independent particle properties. Chemical Engineering Science.2001,56(7):2553-2565.
    [182]Briesen H. Simulation of crystal size and shape by means of a reduced two-dimensional population balance model. Chemical Engineering Science.2006,61 (1):104-112.
    [183]Zhang Xiangping, Zhang Suojiang, He Xuezhong. Prediction of solubility of lysozyme in lysozyme -NaCl-H2O system with artificial neural network. Journal of Crystal Growth. 2004,264(1-3):409-416
    [184]Ma C.Y., Wang X.Z. Development of a morphological population balance model in principal component space. Proceedings of 10th International Symposium on Process Systems Engineering-PSE2009.2009 16-20 August 2009,Rita Maria de Brito Alves, Claudio Augusto Oller do Nascimento and Evaristo Chalbaud Biscaia Jr., eds:in press
    [185]Christofides P. D., Ei-Farrac N., Li M., et al. Model-based control of particulate processes. Chemical Engineering Science.2008,63(5):1156-1172
    [186]Chiu T., El-Farra N. H., Christofides P. D. Nonlinear control of particulate processes with input constraints. Proceedings of the 2000 American Control Conference, Vols 1-6.2000:1752-1759
    [187]Liu Jing J., Ma Cai Y., Hu Yang D., et al. Morphological Population Balance Models for the Dynamic Evolution of Particle Shape and Size Distribution in Protein Crystallization. In:Rita Maria de Brito Alves Claudio Augusto Oller do Nascimento and Evaristo Chalbaud Biscaia Jr., editor. Computer Aided Chemical Engineering:Elsevier; 2009. p.1911-1916.
    [188]Campos F. B., Lage P. L. C. A numerical method for solving the transient multidimensional population balance equation using an Euler-Lagrange formulation. Chemical Engineering Science. 2003,58(12):2725-2744.0009-2509
    [189]Qamar Shamsul, Warnecke Gerald. Numerical solution of population balance equations for nucleation, growth and aggregation processes. Computers & Chemical Engineering. 2007,31(12):1576-1589
    [190]Lin Yulan, Lee Kangtaek, Matsoukas Themis. Solution of the population balance equation using constant-number Monte Carlo. Chemical Engineering Science.2002,57(12):2241-2252
    [191]Dorao C. A., Jakobsen H. A. Numerical calculation of the moments of the population balance equation. Journal of Computational and Applied Mathematics.2006,196(2):619-633.
    [192]Nadarajah A., Li M. R., Pusey M. L. Growth mechanism of the (110) face of tetragonal lysozyme crystals. Acta Crystallographica Section D-Biological Crystallography.1997,53:524-534.
    [193]Nadarajah Arunan, Pusey Marcl. Growth Mechanism and Morphology of Tetragonal Lysozyme Crystals. Acta Crystallographica Section D.1996,52(5):983-996.
    [194]Nadarajah Arunan, Pusey Marc L. Growth Mechanism and Morphology of Tetragonal Lysozyme Crystals. Acta Crystallographica Section D.1996,52(5):983-996
    [195]Jones A. G. Optimal operation of a batch cooling crystallizer. Chemical Engineering Science.1974,29(5):1075-1087.0009-2509
    [196]Agena S. M., Pusey M. L., Bogle I. D. L. Protein solubility modeling. Biotechnology and Bioengineering.1999,64(2):144-150
    [197]Kurihara Kazuo, Miyashita Satoru, Sazaki Gen, et al. Interferometric study on the crystal growth of tetragonal lysozyme crystal. Journal of Crystal Growth.1996,166(1-4):904-908
    [198]Vekilov P. G., Rosenberger F. Dependence of lysozyme growth kinetics on step sources and impurities. Journal of Crystal Growth.1996,158(4):540-551
    [199]Monaco Lisa A., Rosenberger Franz. Growth and etching kinetics of tetragonal lysozyme. Journal of Crystal Growth.1993,129(3-4):465-484
    [200]Wiencek Partricia A. Darcy and John M. Eastimating lysozyme crystallization growth rates and solubility from isothermal microcalorimetry. Acta Cryst.1998 24 April,D54:1387-1394
    [201]FORSYTHE F.Ewing, M.Pusey. Studies on tetragonal lysozyme crystal growth rates. Acta Cryst.1994,D50:614-619
    [202]Sridhar Gorti*, Elizabeth L. Forsythe, and Marc L. Pusey. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth. CRYSTAL GROWTH & DESIGN. 2004,4(4):691-699
    [203]Marc L. PuseyS Robert S. Snyder, and Robert Naumann. Protein Crystal Growth. THE JOURNAL OF BIOLOGICCAHLE MISTRY.1986,261:6524-6529
    [204]Gunawan R., Fusman I., Braatz R. D. High resolution algorithms for multidimensional population balance equations. Aiche Journal.2004,50(11):2738-2749.
    [205]LeVeque Randall J. Finite Volume Methods for Hyperbolic Problems.2002(Cambridge University Press):578 pages
    [206]Qamar S., Elsner M. P., Angelov I. A., et al. A comparative study of high resolution schemes for solving population balances in crystallization. Computers & Chemical Engineering. 2006,30(6-7):1119-1131
    [207]Nadarajah Arunan, Forsythe Elizabeth L., Pusey Marc L. The averaged face growth rates of lysozyme crystals:the effect of temperature. Journal of Crystal Growth.1995,151(1-2):163-172
    [208]Durbin S. D., Feher G. Simulation of lysozyme crystal growth by the Monte Carlo method. Journal of Crystal Growth.1991,110(1-2):41-51
    [209]Liu Jing J., Ma Cai Y., Hu Yang D., et al. Modelling protein crystallisation using morphological population balance models. Chemical Engineering Research and Design.In Press, Corrected Proof
    [210]Hu Q., Rohani S., Wang D. X., et al. Optimal control of a batch cooling seeded crystallizer. Powder Technology.2005,156(2-3):170-176.0032-5910
    [211]Hu Q., Rohani S., Jutan A. Modelling and optimization of seeded batch crystallizers. Computers & Chemical Engineering.2005,29(4):911-918.0098-1354
    [212]Nowee S. M., Abbas A., Romagnoli J. A. Optimization in seeded cooling crystallization:A parameter estimation and dynamic optimization study. Chemical Engineering and Processing. 2007,46:1096-1106.
    [213]Doki N., Kubota N., Sato A., et al. Scaleup experiments on seeded batch cooling crystallization of potassium alum. Aiche Journal.1999,45(12):2527-2533
    [214]Kubota N., Doki N., Yokota M., et al. Seeding effect on product crystal size in batch crystallization. Journal of Chemical Engineering of Japan.2002,35(11):1063-1071
    [215]Jagadesh D., Kubota N., Yokota M., et al. Seeding effect on batch crystallization of potassium sulfate under natural cooling mode and a simple design method of crystallizer. Journal of Chemical Engineering of Japan.1999,32(4):514-520
    [216]Chung S. H., Ma D. L., Braatz R. D. Optimal seeding in batch crystallization. Canadian Journal of Chemical Engineering.1999,77(3):590-596
    [217]Bohlin M., Rasmuson A. C. Application of Controlled Cooling and Seeding in Batch Crystallization. Canadian Journal of Chemical Engineering.1992 Feb,70(1):120-126
    [218]Murai Ryota, Nakata Shinya, Kashii Masafumi, et al. Cooling-rate screening system for determining protein crystal growth conditions. Journal of Crystal Growth.2006,292(2):433-436
    [219]Dunuwila Dilum D., Berglund Kris A. ATR FTIR spectroscopy for in situ measurement of supersaturation. Journal of Crystal Growth.1997,179(1-2):185-193
    [220]Shiau L. D., Lu T. S. Programmed cooling of a batch crystallizer in the presence of growth rate dispersion. Journal of the Chinese Institute of Chemical Engineers.2004,35(6):677-682
    [221]Nowee S. Mostafa, Abbas Ali, Romagnoli Jose A. Optimization in seeded cooling crystallization:A parameter estimation and dynamic optimization study. Chemical Engineering and Processing:Process Intensification.2007,46(11):1096-1106
    [222]Qu Haiyan, Pollanen Kati, Louhi-Kultanen Marjatta, et al. Batch cooling crystallization study based on in-line measurement of supersaturation and crystal size distribution. Journal of Crystal Growth.2005,275(1-2):e1857-e1862
    [223]Liu Jing J., Ma Cai Y., Hu Yang D., et al. Morphological Population Balance Model for Studying the Effects of Seed Loading and Cooling Rates on Crystal Size and Shape Distribution in Protein Crystallisation. In:Ferraris S. Pierucci and G. Buzzi, editor.20th European Symposium on Computer Aided Process Engineering-ESCAPE20. Italy:Elsevier.2010.
    [224]Mullin J. W., Nyvlt J. Programmed cooling of batch crystallizers. Chemical Engineering Science.1971,26(3):369-377
    [225]Bhat S. A., Huang B. Preferential Crystallization:Multi-Objective Optimization Framework. Aiche Journal.2009,55(2):383-395.
    [226]Corriou J. P., Rohani S. A New Look at Optimal Control of a Batch Crystallizer. Aiche Journal.2008,54(12):3188-3206.
    [227]Hermanto M. W., Chiu M. S., Braatz R. D. Nonlinear Model Predictive Control for the Polymorphic Transformation of L-Glutamic Acid Crystals. Aiche Journal.2009,55(10):2631-2645.
    [228]Kim D. Y., Paul M., Rapke J. U., et al. Modelling of crystallization process and optimization of the cooling strategy. Korean Journal of Chemical Engineering.2009,26(5):1220-1225.
    [229]Lindenberg C., Krattli M., Cornel J., et al. Design and Optimization of a Combined Cooling/Antisolvent Crystallization Process. Crystal Growth & Design.2009,9(2):1124-1136.
    [230]Nowee S.M., Abbas A., Romagnoli J.A.. Modelling and Development of Optimal Operational Policies for Batch Seeded Crystallisation. Chemeca, Sydney, Australia,. 2004(September):26-29
    [231]Nowee S. M., Abbas A., Romagnoli J. A. Model-based optimal strategies for controlling particle size in antisolvent crystallization operations. Crystal Growth & Design.2008,8(8):2698-2706.
    [232]Paengjuntuek W., Kittisupakom P., Arpomwichanop A. Optimization and nonlinear control of a batch crystallization process. Journal of the Chinese Institute of Chemical Engineers. 2008,39(3):249-256.
    [233]Paengjuntuek W., Kittisupakorn P., Arpornwichanop A. On-line dynamic optimization integrated with generic model control of a batch crystallizer. Journal of Industrial and Engineering Chemistry.2008,14(4):442-448.
    [234]Costa C. B. B., da Costa A. C., Maciel R. Mathematical modeling and optimal control strategy development for an adipic acid crystallization process. Chemical Engineering and Processing.2005,44(7):737-753.
    [235]Costa C. B. B., Maciel M. R. W., Maciel R. Factorial design technique applied to genetic algorithm parameters in a batch cooling crystallization optimisation. Computers & Chemical Engineering.2005,29(10):2229-2241.
    [236]Costa C. B. B., Maciel R. Evaluation of optimisation techniques and control variable formulations for a batch cooling crystallization process. Chemical Engineering Science. 2005,60(19):5312-5322.
    [237]Lang Y. D., Cervantes A. M., Biegler L. T. Dynamic optimization of a batch cooling crystallization process. Industrial & Engineering Chemistry Research.1999,38(4):1469-1477.
    [238]Miller S. M., Rawlings J. B. MODEL IDENTIFICATION AND CONTROL STRATEGIES FOR BATCH COOLING CRYSTALLIZERS. Aiche Journal.1994,40(8):1312-1327.
    [239]Sheikhzadeh M., Trifkovic M., Rohani S. Real-time optimal control of an anti-solvent isothermal semi-batch crystallization process. Chemical Engineering Science.2008,63(3):829-839.
    [240]Trifkovic M., Sheikhzadeh M., Rohani S. Multivariable Real-Time Optimal Control of a Cooling and Antisolvent Semibatch Crystallization Process. Aiche Journal.2009,55(10):2591-2602.
    [241]Wissmann P. J., Grover M. A. A New Approach to Batch Process Optimization Using Experimental Design. Aiche Journal.2009,55(2):342-353.
    [242]Yu Z. Q., Chew J. W., Chow P. S., et al. Recent Advances in Crystallization control:An Industrial Perspective. Chemical Engineering Research and Design.2007,85(7):893-905
    [243]Yang Guangyu, Kubota Noriaki, Sha Zuoliang, et al. Crystal Shape Control by Manipulating Supersaturation in Batch Cooling Crystallization. Crystal Growth & Design. 2006,6(12):2799-2803
    [244]Wan J., Wang X. Z., Ma C. Y. Particle Shape Manipulation and Optimization in Cooling Crystallization Involving Multiple Crystal Morphological Forms. AIChE Journal. 2009,55(8):2049-2061.
    [245]哈姆斯基E B, editor.化学工业中的结晶.北京:化学工业出版社;1984.
    [246]丁绪怀,谈遒,editors.工业结晶.北京:化学工业出版社;1985.
    [247]Fogel L. J., Owens A. J., Walsh M. J. Artificial Intelligence Through Simulated Evolution. New York:Wiley Publishing; 1966.
    [248]Holland John Henry. Adaptation in natural and artificial systems:an introductory analysis with applications to biology, control, and artificial intelligence.1st MIT Press ed. ed. Camridge, MA:MIT Press; 1992.
    [249]Hancock Peter J.B. Selection Methods for Evolutionary Algorithms. In:Chambers Lance D., editor. The Practical Handbook of Genetic Algorithms:New Frontiers, Volume Ⅱ; 1995. p. Chapter 3.
    [250]Jong K. A. De. An analysis of the behavior of a class of genetic adaptive systems: University of Michigan; 1975.
    [251]Chiu Ting-Lan, So Sung-Sau. Genetic Neural Networks for Functional Approximation. Quantitative Structure Activity Relationships and Combinatorial Science.2003,22(5):519-526
    [252]Buontempo F. V., Wang X. Z., Mwense M., et al. Genetic programming for the induction of decision trees to model ecotoxicity data. Journal of Chemical Information and Modeling. 2005,45(4):904-912.
    [253]Ma C. Y., Wang X. Z. Inductive data mining based on genetic programming:Automatic generation of decision trees from data for process historical data analysis. Computers & Chemical Engineering.2009,33(10):1602-1616.
    [254]Wang X. Z., Buontempo F. V., Young A., et al. Induction of decision trees using genetic programming for modelling ecotoxicity data:adaptive discretization of real-valued endpoints. Sar and Qsar in Environmental Research.2006,17(5):451-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700