嗜麦芽寡养单胞菌D2株Ⅱ型分泌系统GSP基因簇的序列测定及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的本实验室自沙蚕消化道分离得到的一株嗜麦芽寡养单胞菌D2可胞外大量分泌某蛋白(SMP)。根据已获知的部分基因组序列,发现该蛋白基因与Ⅱ型分泌系统蛋白基因成簇排列,故推测D2株SMP的大量分泌可能与Ⅱ型分泌系统有关。Ⅱ型分泌系统的研究为探索D2株蛋白高效分泌机制奠定基础。方法将已知的嗜麦芽寡养单胞菌D2菌株SMP基因序列通过Blast软件进行对比,发现其与嗜麦芽寡养单胞菌K279a和R551-3的AKP基因序列有高度的同源性。采用基因移步法,根据菌株K279a和R551-3的基因组序列高保守区设计上游引物,根据已获知的D2株基因组序列设计下游引物进行聚合酶链反应,将PCR扩增获得的产物均连接至p MD18-T载体中并用TSS法转化大肠杆菌JM109。利用蓝白斑筛选阳性克隆,提取质粒后经双酶切鉴定确认为阳性的菌株菌液送测序。测序所得基因片段经DNASTAR软件拼接后通过Blast比对。利用ClustalX软件分析比对后得到的完整开放读码框与GenBank相关蛋白基因序列同源性,并用MEGA3.0软件进行系统发育分析;并对各蛋白的结构进行了分析和预测。结果以嗜麦芽寡养单胞菌D2株的基因组为模板进行PCR扩增、连接、转化、酶切鉴定、测序后,分别获得7个基因片段,经拼接分析后发现其中包含了11个完整开放读码框,分别对应于II型分泌系统GspF、GspE、GspD、 GspM、GspL、GspK、GspG、GspJ、Gspl、GspH、GspC蛋白(GenBank收录号依次为:GU377212、HM151387、JQ070336、JQ070343、1Q070342、JQ070341、JQ070337、JQ070340、JQ070339、JQ070338、JQ070335)。将该11个开放读码框翻译成蛋白质后与菌株R551-3的相应蛋白序列比对和系统发育分析后发现,测序获得的11种蛋白均与同种属细菌相应蛋白亲缘关系较近。结论成功获得了嗜麦芽寡养单胞菌D2株Ⅱ型分泌系统gsp基因簇的完整基因序列,证明D2株gsp基因簇与smp紧密串联,且具有高度保守性,为进一步探索和开发利用D2株SMP蛋白高效胞外分泌表达机制奠定了基础。
Objective We obtained an protein-hyperproducing Stenotrophomonas maltophilia strain D2from the digestive tract of Perinereis aibuhitensis Grube. Based on the sequenced genes, we found the gene of this protein was clustered by genes of general secretory pathway proteins. So we speculated the type Ⅱ secretion system may be responsible for the the hyperproducion of SMP in D2. We expect to know more about the high level protein secretion mechanism of D2according to exploring the type II machinery. Methods The genes of SMP was blasted and it had a high identity with AKP gene sequences of Stenotrophomonas maltophilia K279a and R551-3correspondingly was discovered. The forward primers were designed according to the high conserved regions of K279a and R551-3, the reward primers were designed based on the sequenced genes by the methord of gene moving. Then the PCR amplified products were connected to pMD18-T-vector and transformed into Escherichia coli JM109by TSS. After sceened by white and blue clonies and identificated by double enzymes cutting, the positive clonies with the genes of interest were sequenced. The obtained gene fragments were spliced and blasted. The homology of the obtained ORFs were analysed by Clustalx and the phylogenetic relationships by MEGA3.0. Results Seven gene framents were obtained and eleven ORFs were found and named GspF, GspE, GspD, GspM, GspL, GspK, GspG, GspJ, Gspl, GspH, GspC, and their GeneBank numbers were GU377211、HM151387、JQ070336、JQ070343、JQ070342、 JQ07034、JQ070337、JQ070340、JQ070339、JQ070338、JQ070335successively. The translted amino acid sequences of the former ORFs had high identity with the corresponding proteins of both Stenotrophomonas maltophilia R551-3and K279a. The phylogenetic analyse indicated the sequenced nine proteins were homologous with the correspongding proteins of the same kind bacteria. Conclusion We obtain the complete primary structure of general secretory pathway gene cluster. The results of homologous and phylogenetic analysis lay the foundation for exploiting protein-hyperproducing mechanism of D2.
引文
1. Palleroni, N.1. & Bradbury,1. F. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia[J]. Int J Syst Bacterio,1993,143:606-609.
    2. Nicodemo AC, Paez JI. Antimicrobial therapy for Stenotrophomonas maltophilia infection [J]. Eur J Chin Microbiol Infect Dis.2007,26(4):229-237.
    3.刘旗,毛彩萍.嗜麦芽寡养单胞菌耐药机制的研究进展[J].实验与检验医学,2004,27(5):517-519
    4. Nseir S, Di Pompeo C, Brisson H, et al. Intensive care unitacquired Stenotrophomonas maltophilia:incidence, risk factors and outcome[J]. Crit Care,2006,10:R143
    5. Tachibana S, Naka N, Kawai F, et al. Purification and characterization of cytop lasmic NAD2dependent polyp ropylene glycol de2 hydrogenase from Stenotrophomonas maltophilia [J]. FEMS Mi2 crobiol Lett,2008,288 (2):266-272
    6. Singh NI, Swings IJ, Devi RKT, et al. White stripe, a new disease of rice by Stenotrophomonas maltophilia in India[J]. India Phytophathologu,2001,54(2):276
    7. Uchia H, Naito N, et al. Secretion of authentic 20-kDa human growth hormone (20kDa hGH) in Escherichia Coil and properties of the purified product. Journal of biothecnology,1997,55(2):101-102.
    8.黄斌,陈世锋.黄缘闭壳鱼囊肿病得研究[J].淡水渔业,2002,32(5):44-46
    9. Hobbs M, Mattick JS. Common components in the assembly of type IV fimbriae, DNA transfer systems, f ilam entous phage and pmteln secretion apparatus:a general system for the formation of surface-associated protein complexes. MoL. Micmbiol,1993, 10:233-243.
    10.赵百慧,钱冬萌,闰志勇,等.沙蚕丝氨酸蛋白酶家族相关基因的克隆和测序[J].青岛大学医学院学报,2003,39(1):19—22.
    11.闫志勇,王斌,宋旭霞,等.一株具有纤溶蛋白溶解活性的海单胞菌的分离和鉴定[J].中国生物制品杂志,2007,10(20):717-720
    12. J.I.Garcia Paez, S. F. Costa. Risk factors associated with mortality of infections caused by Stenotrophomonas maltophilia:a systematic review[J]. J of Hospita; Infection,2008,70:101-108
    13. BARCHITTAA M., CIPRESSO A. R., GIAQUINTAD L.,et al. Acquisition and spread of Acinetobacter baumannii and Stenotrophomonas maltophilia in intensive care patients. Internat J Hyg Environ Health,2009,212:330-337
    14. Sanchez P, Alonso A, Martinez J L. Cloning and characterization of smeT, a repressor of the Stenotrophomonas maltophilia multidrug efflux pump smeDEF [J]. Antimicrob Agent Chemother,2002,46(11):3386-3393
    15. Binks P R, Nicklin S, and Bruce N C. Degradation of hexahydro-1,3,5-trinitro-l,3, 5-triazine (RDX) by Stenotrophomonas maltophilia PB1 [J]. Appl Environ Microbiol. 1995 Apr;61(4):1318-22
    16. Dietmar Kaiser, Christoph Kempter and Gunther Jung. Maltophilin:A New Antif imgal Compound Produced by Stenotvophomonas maltophilia R3089 [J]. THE JOURNAL OF ANTIBIOTICS,1996,49(11):1101-1104
    17. Hacene H, Boudjellal F, Lefebvre G. AH7, a non-polyenic antifungal antibiotic produced by a new strain of Streptosporangium roseum [J]. Microbios.1998,96(384): 103-109.
    18. Delphine Pages, Jerome Rose4, Sandrine Conrod et al. Heavy Metal Tolerance in Stenotrophomonas maltophilia [J]. PLoS ONE 3(2):e1539.
    19.王高学,梁朝军,黄海洪.嗜麦芽寡养单胞菌(DR-929)纤溶酶的发酵条件优化及其分离纯化[J].中国生物工程杂志,2007,27(9):47-52.
    20.鲁丹,曹张军,周美华.嗜麦芽寡养单胞菌降解羽毛5L发酵罐工业小试过程研究[J].环境工程学报,2009,3(8):1513~1516
    21.杨丽,闫志勇,王斌,辛晓妮,宋旭霞,赵巍,钱冬萌,苏洁.嗜麦芽寡养单胞菌D2株基因组文库的构建及部分克隆的分析[J].医学研究生学报,2010,23(4):369-371
    22. de Keyzer,van der Does C, Driessen AJ. The bacterial translocase:a dynamic protein channel complex[J]. Cell Mol Life Sci,2003,60:2034-2052
    23. Enfert C, Ryter A, Pugsley AP. Clonging and expression in Escherichia coli of Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase[J]. EMBO J,1987,6:3531-3538
    24. Camberg JL, Sandkvist M. Molecuar analysis of the Vibrio cholerae type II secretion ATPaes EpsE[J]. J Bacteriol,2005,187:249-256
    25. Douet V, Loiseau L, Barras F. Systematic analysis, by the yeast two-hybrid, of protein interaction between compomemts of type Ⅱ secretory machinery of Erwinia chrysanthemi[J]. Res Microbiol,2004,155:71-75
    26. G Ball,E Durand, A Lazdunski, et al. Anovel type Ⅱ secretion system in Pseudomonas aeruginosa[J]. Mol Microbiol,2002,43:475-485
    27. Tanya L.Johnson, Jan Abendroth, Wim G. J. Hol, et al. Type Ⅱ secretion:from structure to function [J]. FEMS Microbiol Lett,2006,255:175-18
    28. Py B, Loiseau L, Barras F. An inner membrane platform in type Ⅱ secretion machinery of Gram-negtive bacteria[J]. EMBO Rep,2001,2(3):244-248
    1. Finlay BB, Falkow S. Common themes in microbial patuogenicity revisited[J]. Microbiol Mol Biol Rev,1997,61:136
    2. Pallen MJ. The ESTA-6/WXG100 superfamily-and a new Gram-positive secretion system? [J]. Trends Microbiol,2002,10:209-212
    3. Binet R, Letoffe S, Ghigo JM, et al. Protein secretion by gram-negative bacterial ABC exporters[J]. Folia Microbiol,1997,42:179-183
    4. Omori K, Idei A. Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins[J]. J Biosic Bioeng,2003,95(1):1
    5. Koronakis V, Sharff A, Koronakis E, et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export[J]. Science, 2000,405(6789):914
    6. W. Goebel, J. Hedgpeth. Bacteriol,1982,151:1290-1298
    7. 周立雄,张兆山.大肠杆菌α-溶血素分泌系统基因表达调控研究进展[J].生物技术通讯,2004,15(4):374-378
    8. P. Delepelaire. Type I secretion in gram-negative bacteria[J]. Biochemica et Biophysica Acta,2004,1694:149-161
    9. U. Baumman, S. Wu, K M Flaherty, et al. EMBO J.1993,3357-3364
    10. P. Delepelaire, C Waandersman, in:G. Winkelmann. Microbial transport systems[J]. Wiley,2001, pp.165-208
    11. S Letoffe, JM Ghigo, C Wandersman, et al. Bacteriol.1994,176:5372-5377
    12. Gentschev I, Dietrich G, Goebel W. The E. coli a-hemolysin secretion system and its use in vaccine development[J]. Trands Microbiol,2002,10(1):39
    13. Parsot C, Ageron C, Penno C, et al. A secreted anti-activator, OspDl, and its chaperone, Spal5, are involved in the control of transcription by the type III secretion apparatus activity in Shigella Flexneri[J]. Molecular Microbiology, 2005,56(5):1627
    14.朱杰清,陆承平.细菌毒力因子的分泌机制[J]. 国外医学,微生物学分册,2000,23(4):20-21
    15. Partho Ghosh. Process of protein transport by the type III secretion system[J]. Microbiology and Molecular Biology Reviews,2004,68(4):771-795
    16. Kubio T, Matsushima Y, Nakamura D, et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system [J]. Science,1998,280:262
    17. Gauthier A, Puente JL, Finlay BB. Secretion of the ebteropathogenic Escherchia coli type Ⅲ secretion system requires components of the type Ⅲ apparatus for assembly and localization[J]. Infect Immun,2003,71(6):3310-3319
    18. Yip CK, Kimbrough TG, Felise HB, et al. Structural characterization of the molecular platform for type Ⅲ secretion system assembly[J]. Nature,2005,435(7042):702-707
    19. Mundy R, Petrovsha L, Smollet K, et al. Identification of a novel Citrobacter rodentium type Ⅲ secreted protein, Espl, and roles of this and other secreted proteins in infection[J]. Infect Immun,2004,72(4):2288-2302
    20. Trame, C. B., D B Mckay. Structure of the Yersinia enterocolitica molecular chaperone protein SycE[J]. Acta Crystallogr. Sect. D,2003,59:389-392
    21. Birtalan S, P Ghosh. Structure of the Yersinia type Ⅲ secretory system chaperone SycE[J]. Nat. Struct. Biol,2001,8:974-978
    22. Ward DV, Draper 0, Zupan JR, et al. Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type Ⅳ secretion system reveals protein subassemblies[J]. Proc Natl Acad Sci USA,2002,99:11493-11500
    23. Ma Q, Zhai Y, Schneider JC, et al. Protein secretion system of Pseudomonas aeruginosa and P. fluorescens[J]. Biochim Biophys Acta,2003,1611:223-233
    24. Jakubowshi SJ, Kerr JE, Garza I, et al. Agrobacterium VirB10 domain requirments for type Ⅳ secretion and Tpilus biogenesis[J]. Mol Microbiol,2009,71 (3):779-794
    25.吴琛耘,吴建和,刘晶星.细菌的Ⅲ型和Ⅵ型分泌系统[J].国外医学(微生物分册),2004,27(2):19-21
    26. Desvaux, M., N. Parham, et al. Type V protein secretion pathway:simplicity gone awry? [J]. Curr Issues Mol Biol,2004,6:111-124
    27.原志伟,朱国强.细菌V型分泌系统[J].生物技术通讯,2007,18(1):129-131
    28. Yen MR, Peadbody CR, Partovi SM, et al. Protein-translocating outer membrane porins of gram-negative bacteria[J]. Biochim Biophys Acta,2002 1562:6
    29. Henderson, I. R., Navarro Garcia, et al. The great escape:structure and function of the autotransporter proteins[J]. Trands Microbiol,1998,6:370-378
    30. Herskovits AA, Bochkareva ES, Bibi E. New prospects in studying the bacterial signal recognition particle pathway[J]. Mol Microbiol,2000,38:927
    31. Martoglio B, Dobberstein B. Signal sequences:more than just greasy peptides[J]. Trands Cell Biol,1998,8:410
    32. Ian R Henderson, Fernando Navarro Garcia, Mickael Desvaux, et al. Type Ⅴ protein secretion pathway:the autotransporter story[J]. Micro and Molecu Bio Reviews,
    2004,68(4):692-744
    33. Das S, Chaudhuri K. Identification of a unique IAHP(IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis[J]. In Silico Biol,2003,3:287-300
    34. Bingle LE, Bailey CM, Pallen MJ. Type Ⅵ secretion:a beginner's guide[J]. Curr Opin Microbiol,2008,11(1):3-8
    35. Pukatzki S. Ma AT, Sturtevant D, et al. Identificatio of a conseved bacterial protein secretion system in Vibrio cholerae using the dictyostelium host model system[J]. Proc Natl Acad Sci USA,2006,103(5):1528-1533
    36. Lee S, Sowa ME, Watanabe YH, et al. The structure of C1pB:a molecular chaperone that rescuses proteins from an aggregated state[J]. Cell,2003,115:299-240
    37. Mougous JD, Cuff ME, Raunser S, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretin apparatus[J]. Science,2006,312:1526-1530
    38. Zheng J, Leung KY. Dissecton of a type VI secretion system in Edwardsiela tarda[J]. Mol Microbiol,2007,66:1192-1206
    39. Mocgous JD, Cuff ME, Raunser S, et al. Avirulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus[J]. Science,2006,312(5779)1526-1530
    40. Pukatzki S, MA A, Revel A, etal. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin[J]. Proc Natl Acad Sci USA,2007,104(39):15508-15513
    41. Aschtgen MS, Bernard CS, De Bentzmann S, et al. SciN is an outer membrane lipoprotein required for type VI secretion in Enteroaggregative Escherichia coli[J]. J Bacteriol,2008,190(22):7523-7531
    42. Shrivastava S, Mande SS. Identification and functional characterization of gene components of type VI secretion system in bacterial genomes[J]. Plos One,2008, 3(8):2995
    43. Desvaux M, Parrham NJ, Scott-Tucker A. The general secretory pathway:a general misnomer? [J]. Trands Microbiol,2004,12:306-309
    44. Maria Sandkvist. Type Ⅱ secretion and pathogenesis[J]. American Society for Microbiology,2001,69(6):3532-3535
    45. de Groot, JJ Krijger, A Filloux, et al. Characterization of type Ⅱ protein secretion(xcp) genes in the plant groeth-stimulating Pseudomonas putida, strain WCS358[J] Mol Gen Genet,1996,250:491-504
    46. Dow JM, Daniels MJ, Dums F, et al. Genetic and biochemical analysis of protein export
    from Xanthomonas campestri s[J].J Cell Sci Suppl,1989,11:59-72
    47.Alain Filloux.The underlying mechanisms of type Ⅱ protein secretion[J] Bioehimica Biophysica Acta,2004,1694:163一179
    48.Burrows LL.Weapons of mass retraction[J].Mol Microbiol,2005,57:878-888
    49.Planet PJ,Kachlany SC,DeSalle R.Phylogeny of genes for secrertion NTPases:identificat ion of the widespread tadA subfamily and development of a diagnostic key for gene classification[J].Proc Natl Acad Sci USA,2001,98: 2503-2508
    50.Sandkvist M,Kei th JM, Bagdasarian M.Two regions of EspLinvolved in speeies-specific protein-protein interaction with EspE and EspM of the general secretion pathway in Vibrio cholerae[J].J Bacteriol,2.00,182:742-748
    51.Sandkvist M, Hugh LP,Bagdasarian MM.Direct ingteraction of EpsL and EpsM proteins of the general secretion apparatus in V ibrio cholerae[J].J Bacteriol,1999,181: 3129-3135
    52.Kohler R,Schafer K,Muller S,et a1.Structure and assembly of the pseudopilin PulG[J].Mol Microbiol, 2004,54:647-664
    53.Vignon G,Kohler R,Larquet E,et al.TypeⅣ-like pili formed by type Ⅱ secretion: specificity,composition,bunding,polar localization,and surface presentation of peptides[J].J Bacteriol,2003,185:3416-3428
    54.Sauvonnet N,Vignon G,Pugsley AP.Pilus formation and protein secretion by the same machinery in Escherichia coli[J].EMBO J,2000,19:2221—2228
    55.Durand E,Michel G,Voulhoux R,et al.XcpX controls biogenesi s of the Pseudomonas aeruginosa XcpT-containing pseudopilus[J].J Biol Chem,2005,280:31378-31389
    56.Parge HE,Forest KT,Hickey MJ.Structure of the fiber-forming protein pilin at 2.6-A resolut ion[J].Nature,1995,378:32-38
    57.Lee MS,Chen LY,Leu WM,et al.Association of the major pseudopilin XpsG with XpsN(GspC)and secretin XpsD of Xanthomonas campestris pv.Campestris type Ⅱ secretion apparatus reveale by cross-linking analysis[J].J Biol chem,2005,280: 4585-4591
    58.Robien MA,Krumm BE,Saandkvist M.Crystal structure of the extracellular protein secretion NTPase EpsE ofVibrio cholerae[J].J Mol Biol,2003,333:657-674
    59.R Brok,P Van Gelder, M Winterhalter,et al.The C-terminnal domain of the Pseudomonas secretin XcpQ Forms ol igomeric rings with pore activity[J].Mol Biol, (?)99,294:1169-1179
    60. M Russel. Mutants at conserved position in gene IV, a gene required for assembly and secretion of filamentous phages[J]. Mol Microbiol,1994,14:357-369
    61. Chami M, Guilvout I, Gregorini M, et al. Structural insights into the secretin PulD and its trypsin resistant core[J]. J Biol Chem,2005,280:37732-37741
    62. Robbert V, Filoux A, Michel GP. Role of XcpP in the functionality of the Pseudomonas aeruginosa[J]. FEMS Microbio,2005,156:880-886
    63. Schoenhofen IC, Li G, Strozen TG. Purification and characterization of the N-terminal domain ExeA:a novel ATPase involved in the type Ⅱ secretion pathway of Aeromonas hydrophila[J]. J Bacteriol,2005,187:6370-6378
    64. Linder M, Salmond GP, Collmer A. Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologous reveals OutC and OutD as candidate gatekeepers of species-specific secretion of proteins via the type Ⅱ pathway[J]. Mol Microbiol,1996,20:175-190
    65. Gerard-Vincent M, Robert V, Ball G, et al. Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type Ⅱ secretion apparatus[J]. Mol Microbiol,2002,44:1651-1665
    66. Nunn D. Bacterial type Ⅱ protein export and pilus biogenesis:more than just homologies? [J]. Trands Cell Biol,1999,9:402-408
    67. Possot OM, G Vignon, N Bomchil, et al. Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE[J]. J Bacteriol,2000,182:2142-2152
    68. Tanya L.Johnson, Jan Abendroth, Wim G.J. Hol, et al. Type Ⅱ secret ion:from structure to function [J]. FEMS Microbiol Lett,2006,255:175-18
    69. Scott ME, Dossani ZY, Sandkvist. Directed polar secretion of protease from single cells of Vibrio cholerae via the type Ⅱ secretion pathway[J]. Proc Natl Acad Sci USA,2001,98:13978-13983
    70. Abendroth J, Rice AE, Mcluskey K, et al. The crystal structure of the periplasmic of the type Ⅱ secretion system protein EspM from Vibrio cholerae:the simp;est version of the ferredoxin fold[J]. J Mol Biol,2004,338:585-596
    71. Crowther LJ, Yamagata A, Craig L, et al. The ATPase activity of BfpD is greatly enchanced by zinc and allosteric interactions with other Bfp proteins[J]. J Biol Chem,2005,280:24839-24848

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700